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Introduction

Approximately 94 million American adults use the internet on a typical day [24]. The
number one internet activity is reading and writing email. Search engine use is next
in line and continues to increase in popularity. In fact, survey findings indicate that
nearly 60 million American adults use search engines on a given day. Even though
there are many internet search engines, Google, Yahoo!, and MSN receive over 81% of
all search requests [27]. Despite claims that the quality of search provided by Yahoo!
and MSN now equals that of Google [11], Google continues to thrive as the search
engine of choice receiving over 46% of all search requests, nearly double the volume of
Yahoo! and over four times the volume of MSN.

I use Google’s search engine on a daily basis and rarely request information from
other search engines. One particular day, I decided to visit the homepages of Google,
Yahoo!, and MSN to compare the quality of search results. Coffee was on my mind that
day, so I entered the simple query “coffee” in the search box at each homepage. Table 1
shows the top ten (unsponsored) results returned by each search engine. Although
ordered differently, two webpages, www.peets.com and www.coffeegeek.com, appear in
all three top ten lists. In addition, each pairing of top ten lists has two additional
results in common.
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Order Google Yahoo! MSN

1 www.starbucks.com (�) www.gevalia.com (�) www.peets.com (∗)

2 www.coffeereview.com (†) en.wikipedia.org/wiki/Coffee (M) en.wikipedia.org/wiki/Coffee (M)

3 www.peets.com (∗) www.nationalgeographic.com/coffee www.coffeegeek.com (∗)

4 www.coffeegeek.com (∗) www.peets.com (∗) coffeetea.about.com (M)

5 www.coffeeuniverse.com (†) www.starbucks.com (�) coffeebean.com

6 www.coffeescience.org www.coffeegeek.com (∗) www.coffeereview.com (†)

7 www.gevalia.com (�) coffeetea.about.com (M) www.coffeeuniverse.com (†)

8 www.coffeebreakarcade.com kaffee.netfirms.com/Coffee www.tmcm.com

9 https://www.dunkindonuts.com www.strong-enough.net/coffee www.coffeeforums.com

10 www.cariboucoffee.com www.cl.cam.ac.uk/coffee/coffee.html www.communitycoffee.com

Approximate Number of Results:
447,000,000 151,000,000 46,850,246

Shared results for Google, Yahoo!, and MSN (∗); Google and Yahoo! (�); Google and MSN (†); and
Yahoo! and MSN (M)

Table 1: Top ten results for search query “coffee” at www.google.com, www.yahoo.com,
and www.msn.com on April 10, 2006

Depending on the information I hoped to obtain about coffee by using the search
engines, I could argue that any one of the three returned better results; however, I was
not looking for a particular webpage, so all three listings of search results seemed of
equal quality. Thus, I plan to continue using Google. My decision is indicative of the
problem Yahoo!, MSN, and other search engine companies face in the quest to obtain
a larger percentage of Internet search volume. Search engine users are loyal to one or
a few search engines and are generally happy with search results [14, 28]. Thus, as
long as Google continues to provide results deemed high in quality, Google likely will
remain the top search engine. But what set Google apart from its competitors in the
first place? The answer is PageRank. In this article I explain this simple mathematical
algorithm that revolutionized Web search.
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Google’s Search Engine

Google founders Sergey Brin and Larry Page met in 1995 when Page visited the com-
puter science department of Stanford University during a recruitment weekend [2, 9].
Brin, a second year graduate student at the time, served as a guide for potential re-
cruits, and Page was part of his group. They discussed many topics during their first
meeting and disagreed on nearly every issue. Soon after beginning graduate study at
Stanford, Page began working on a Web project, initially called BackRub, that ex-
ploited the link structure of the Web. Brin found Page’s work on BackRub interesting,
so the two started working together on a project that would permanently change Web
search. Brin and Page realized that they were creating a search engine that adapted to
the ever increasing size of the Web, so they replaced the name BackRub with Google
(a common misspelling of googol, the number 10100). Unable to convince existing
search engine companies to adopt the technology they had developed but certain their
technology was superior to any being used, Brin and Page decided to start their own
company. With the financial assistance of a small group of initial investors, Brin and
Page founded the Web search engine company Google, Inc. in September 1998.

Almost immediately, the general public noticed what Brin, Page, and others in the
academic Web search community already knew — the Google search engine produced
much higher quality results than those produced by other Web search engines. Other
search engines relied entirely on webpage content to determine ranking of results, and
Brin and Page realized that webpage developers could easily manipulate the ordering of
search results by placing concealed information on webpages. Brin and Page developed
a ranking algorithm, named PageRank after Larry Page, that uses the link structure of
the Web to determine the importance of webpages. During the processing of a query,
Google’s search algorithm combined precomputed PageRank scores with text matching
scores to obtain an overall ranking score for each webpage.

Although many factors determine Google’s overall ranking of search engine results,
Google maintains that the heart of its search engine software is PageRank [3]. A few
quick searches on the Internet reveal that both the business and academic communi-
ties hold PageRank in high regard. The business community is mindful that Google
remains the search engine of choice and that PageRank plays a substantial role in the
order in which webpages are displayed. Maximizing the PageRank score of a webpage,
therefore, has become an important component of company marketing strategies. The
academic community recognizes that PageRank has connections to numerous areas of
mathematics and computer science such as matrix theory, numerical analysis, informa-
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tion retrieval, and graph theory. As a result, much research continues to be devoted to
explaining and improving PageRank.

The Mathematics of PageRank

The PageRank algorithm assigns a PageRank score to each of more than 25 billion
webpages [7]. The algorithm models the behavior of an idealized random Web surfer
[12, 23]. This Internet user randomly chooses a webpage to view from the listing of
available webpages. Then, the surfer randomly selects a link from that webpage to
another webpage. The surfer continues the process of selecting links at random from
successive webpages until deciding to move to another webpage by some means other
than selecting a link. The choice of which webpage to visit next does not depend on the
previously visited webpages, and the idealized Web surfer never grows tired of visiting
webpages. Thus, the PageRank score of a webpage represents the probability that a
random Web surfer chooses to view the webpage.

Directed Web Graph

To model the activity of the random Web surfer, the PageRank algorithm represents
the link structure of the Web as a directed graph. Webpages are nodes of the graph,
and links from webpages to other webpages are edges that show direction of movement.
Although the directed Web graph is very large, the PageRank algorithm can be applied
to a directed graph of any size. To faciliate our discussion of PageRank, we apply the
PageRank algorithm to the directed graph with 4 nodes shown in Figure 1.

 

1 2 

3 4

Figure 1: Directed graph with 4 nodes
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Web Hyperlink Matrix

The process for determining PageRank begins by expressing the directed Web graph
as the n× n “hyperlink matrix,” H, where n is the number of webpages. If webpage i
has li ≥ 1 links to other webpages and webpage i links to webpage j, then the element
in row i and column j of H is Hij = 1

li
. Otherwise, Hij = 0. Thus, Hij represents the

likelihood that a random surfer selects a link from webpage i to webpage j. For the
directed graph in Figure 1,

H =


0 1 0 0

0 0 1 0

1
2

0 0 1
2

0 0 0 0

 .

Node 4 is a dangling node because it does not link to other nodes. As a result, all
entries in row 4 of the example matrix are zero. This means the probability is zero
that a random surfer moves from node 4 to any other node in the directed graph.
The majority of webpages are dangling nodes (e.g., postscript files and image files), so
there are many rows with all zero entries in the Web hyperlink matrix. When a Web
surfer lands on dangling node webpages, the surfer can either stop surfing or move
to another webpage, perhaps by entering the Uniform Resource Locator (URL) of a
different webpage in the address line of a Web browser. Since H does not model the
possibility of moving from dangling node webpages to other webpages, the long term
behavior of Web surfers cannot be determined from H alone.

Dangling Node Fix

Several options exist for modeling the behavior of a random Web surfer after landing
on a dangling node, and Google does not reveal which option it employs. One option
replaces each dangling node row of H by the same probability distribution vector, w, a
vector with nonnegative elements that sum to 1. The resulting matrix is S = H + dw,
where d is a column vector that identifies dangling nodes, meaning di = 1 if li = 0
and di = 0, otherwise; and w =

(
w1 w2 . . . wn

)
is a row vector with wj ≥ 0 for all

1 ≤ j ≤ n and
∑n

j=1 wj = 1. The most popular choice for w is the uniform row vector,

w =
(

1
n

1
n

. . . 1
n

)
. This amounts to adding artificial links from dangling nodes to

all webpages. With w =
(

1
4

1
4

1
4

1
4

)
, the directed graph in Figure 1 changes (see

Figure 2).
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Figure 2: Dangling node fix to Figure 1

The new matrix S = H + dw is,

S =


0 1 0 0

0 0 1 0

1
2

0 0 1
2

0 0 0 0

 +


0

0

0

1

 (
1
4

1
4

1
4

1
4

)

=


0 1 0 0

0 0 1 0

1
2

0 0 1
2

1
4

1
4

1
4

1
4

 .

Regardless of the option chosen to deal with dangling nodes, Google creates a new
matrix S that models the tendency of random Web surfers to leave a dangling node;
however, the model is not yet complete. Even when webpages have links to other
webpages, a random Web surfer might grow tired of continually selecting links and
decide to move to a different webpage some other way. For the graph in Figure 2, there
is no directed edge from node 2 to node 1. On the Web, though, a surfer can move
directly from node 2 to node 1 by entering the URL for node 1 in the address line of
a Web browser. The matrix S does not consider this possibility.
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Google Matrix

To model the overall behavior of a random Web surfer, Google forms the matrix
G = αS + (1 − α)11v, where 0 ≤ α < 1 is a scalar, 11 is the column vector of ones,
and v is a row probability distribution vector called the personalization vector. The
damping factor, α, in the Google matrix indicates that random Web surfers move to
a different webpage by some means other than selecting a link with probability 1− α.
The majority of experiments performed by Brin and Page during the development of
the PageRank algorithm used α = 0.85 and v =

(
1
n

1
n

. . . 1
n

)
[12, 23]. Values of

α ranging from 0.85 to 0.99 appear in most research papers on the PageRank algorithm.

Assigning the uniform vector for v suggests Web surfers randomly choose new
webpages to view when not selecting links. The uniform vector makes PageRank
highly susceptible to link spamming, so Google does not use it to determine actual
PageRank scores. Link spamming is the practice by some search engine optimization
experts of adding more links to their clients’ webpages for the sole purpose of increas-
ing the PageRank score of those webpages. This attempt to manipulate PageRank
scores is one reason Google does not reveal the current damping factor or personal-
ization vector for the Google matrix. In 2004, however, Gyöngyi, Garcia-Molina, and
Pederson developed the TrustRank algorithm to create a personalization vector that
decreases the harmful effect of link spamming [17], and Google registered the trade-
mark for TrustRank on March 16, 2005 [6].

Since each element Gij of G lies between 0 and 1 (0 ≤ Gij ≤ 1) and the sum of
elements in each row of G is 1, the Google matrix is called a row stochastic matrix.
In addition, λ = 1 is not a repeated eigenvalue of G and is greater in magnitude than
any other eigenvalue of G [18, 26]. Hence, the eigensystem, πG = π, has a unique
solution, where π is a row probability distribution vector.∗ We say that λ = 1 is the
dominant eigenvalue of G, and π is the corresponding dominant left eigenvector of G.
The ith entry of π is the PageRank score for webpage i, and π is called the PageRank
vector.

∗Though not required, the personalization vector, v, and dangling node vector, w, often are defined
to have all positive entries that sum to 1 instead of all nonnegative entries that sum to 1. Defined
this way, the PageRank vector also has all positive entries that sum to 1.
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Damping Personalization Google PageRank Ordering of
Factor Vector Matrix Vector Nodes

(α) (v) (G) (≈ π) (1 = Highest)

Model 1 0.85
(

1
4

1
4

1
4

1
4

)


3
80

71
80

3
80

3
80

3
80

3
80

71
80

3
80

37
80

3
80

3
80

37
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

) (
3 2 1 3

)

Model 2 0.85
(
1 0 0 0

)


3
20

17
20

0 0

3
20

0 17
20

0

23
40

0 0 17
40

29
80

17
80

17
80

17
80

 (
0.30 0.28 0.27 0.15

) (
1 2 3 4

)

Model 3 0.95
(

1
4

1
4

1
4

1
4

)


1
80

77
80

1
80

1
80

1
80

1
80

77
80

1
80

39
80

1
80

1
80

39
80

1
4

1
4

1
4

1
4

 (
0.21 0.26 0.31 0.21

) (
3 2 1 3

)

Model 4 0.95
(
1 0 0 0

)


1
20

19
20

0 0

1
20

0 19
20

0

21
40

0 0 19
40

23
80

19
80

19
80

19
80

 (
0.24 0.27 0.30 0.19

) (
3 2 1 4

)

Table 2: Modeling surfer behavior for the directed graph in Figure 2

Table 2 shows four different Google matrices and their corresponding PageRank
vectors (approximated to two decimal places) for the directed graph in Figure 2. The
table indicates that the personalization vector has more influence on the PageRank
scores for smaller damping factors. For instance, when α = 0.85, as is the case for
the first and second models, the PageRank scores and the ordering of the scores differ
significantly. The first model assigns the uniform vector to v, and node 1 is one of
the nodes with the lowest PageRank score. The second model uses v =

(
1 0 0 0

)
,

and node 1 receives the highest PageRank score. This personalization vector suggests
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that when Web surfers grow tired of following the link structure of the Web, they
always move to node 1. For the third and fourth models, α = 0.95. The difference
in PageRank scores and ordering of scores for these models is less significant. Even
though v =

(
1 0 0 0

)
in the fourth model, the higher damping factor decreases the

influence of v.

Computing PageRank Scores

For small Google matrices like the ones in Table 2, we can quickly find exact solutions
to the eigensystem, πG = π. The Google matrix for the entire Web has more than 25
billion rows and columns, so computing the exact solution requires extensive time and
computing resources. The oldest and easiest technique for approximating a dominant
eigenvector of a matrix is the power method. The power method converges when the
dominant eigenvalue is not a repeated eigenvalue for most starting vectors [13, §9.4].
Since λ = 1 is the dominant eigenvalue of G and π is the dominant left eigenvector,
the power method applied to G converges to the PageRank vector. This method was
the original choice for computing the PageRank vector.

Given a starting vector π(0), e.g. π(0) = v, the power method calculates successive
iterates

π(k) = π(k−1)G, where k = 1, 2, ...,

until some convergence criterion is satisfied. Notice that π(k) = π(k−1)G can also be
stated π(k) = π(0)Gk. As the number of nonzero elements of the personalization vector
increases, the number of nonzero elements of G increases. Thus, the multiplication of
π(k−1) with G is expensive; however, since S = H + dw and G = αS + (1 − α)11v, we
can express the multiplication as follows:

π(k) = π(k−1)G

= π(k−1) [α (H + dw) + (1− α) 11v]

= απ(k−1)H + α
(
π(k−1)d

)
w + (1− α)

(
π(k−1)11

)
v

= απ(k−1)H + α
(
π(k−1)d

)
w + (1− α) v, since π(k−1)11 = 1.

This is a sum of three vectors: a multiple of π(k−1)H, a multiple of w, and a multiple
of v. (Notice that π(k−1)d is a scalar.) The only matrix-vector multiplication required
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is with the hyperlink matrix H. A 2004 investigation of Web documents estimates
that the average number of outlinks for a webpage is 52 [22]. This means that for a
typical row of the hyperlink matrix only 52 of the 25 billion elements are nonzero, so
the majority of elements in H are 0 (H is very sparse). Since all computations involve
the sparse matrix H and vectors w and v, an iteration of the power method is cheap
(the operation count is proportional to the matrix dimension n).

Writing a subroutine to approximate the PageRank vector using the power method
is quick and easy. For a simple program (in MATLAB), see Langville and Meyer [20,
§4.6].

The ratio of the two eigenvalues largest in magnitude for a given matrix determines
how quickly the power method converges [16]. Haveliwala and Kamvar were the first
to prove that the second largest eigenvalue in magnitude of G is less than or equal to
the damping factor α [18]. This means that the ratio is less than or equal to α for
the Google matrix. Thus, the power method converges quickly when α is less than 1.
This might explain why Brin and Page originally used α = 0.85. No more than 29
iterations are required for the maximal element of the difference in successive iterates,
π(k+1) − π(k), to be less than 10−2 for α = 0.85. The number of iterations increases
to 44 for α = 0.90.

An Alternative Way to Compute PageRank

Although Brin and Page originally defined PageRank as a solution to the eigensystem
πG = π, the problem can be restated as a linear system. Recall, G = αS +(1− α) 11v.
Transforming πG = π to 0 = π − πG gives:

0 = π − πG

= πI − π (αS + (1− α) 11v)

= π (I − αS)− (1− α) (π11) v

= π (I − αS)− (1− α) v

The last equality follows from the fact that π is a probability distribution vector, so
the elements of π are nonnegative and sum to 1. In other words, π11 = 1. Thus,

π (I − αS) = (1− α) v,

which means π solves a linear system with coefficient matrix I − αS and right hand
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side (1− α) v. Since the matrix, I − αS, is nonsingular [19], the linear system has
a unique solution. For more details on viewing PageRank as the solution of a linear
system, see [8, 10, 15, 19].

Google’s Toolbar PageRank

The PageRank score of a webpage corresponds to an entry of the PageRank vector,
π. Since π is a probability distribution vector, all elements of π are nonnegative and
sum to one. Google’s toolbar includes a PageRank display feature that provides “an
indication of the PageRank” for a webpage being visited [5]. The PageRank scores on
the toolbar are integer values from 0 (lowest) to 10 (highest). Although some search
engine optimization experts discount the accuracy of toolbar scores [25], a Google
webpage on toolbar features [4] states:

PageRank Display: Wondering whether a new website is worth your time?
Use the Toolbar’s PageRankTM display to tell you how Google’s algorithms
assess the importance of the page you’re viewing.

Results returned by Google for a search on Google’s toolbar PageRank reveal that
many people pay close attention to the toolbar PageRank scores. One website [1] men-
tions that website owners have become addicted to toolbar PageRank.

Although Google does not explain how toolbar PageRank scores are determined,
they are possibly based on a logarithmic scale. It is easy to verify that few webpages
receive a toolbar PageRank score of 10, but many webpages have very low scores.

Two weeks after creating Table 1, I checked the toolbar PageRank scores for the top
ten results returned by Google for the query “coffee.” The scores are listed in Table 3.
The scores reveal a point worth emphasizing. Although PageRank is an important com-
ponent of Google’s overall ranking of results, it is not the only component. Notice that
https://www.dunkindonuts.com is the ninth result in Google’s top ten list. There are six
results considered more relevant by Google to the query “coffee” that have lower toolbar
PageRank scores than https://www.dunkindonuts.com. Also, Table 1 shows that both
Yahoo! and MSN returned coffeetea.about.com and en.wikipedia.org/wiki/Coffee in
their top ten listings. The toolbar PageRank score for both webpages is 7; however,
they appear in Google’s listing of results at 18 and 21, respectively.
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Order Google’s Top Ten Results Toolbar PageRank

1 www.starbucks.com 7

2 www.coffeereview.com 6

3 www.peets.com 7

4 www.coffeegeek.com 6

5 www.coffeeuniverse.com 6

6 www.coffeescience.org 6

7 www.gevalia.com 6

8 www.coffeebreakarcade.com 6

9 https://www.dunkindonuts.com 7

10 www.cariboucoffee.com 6

Table 3: Toolbar PageRank scores for the top ten results returned by www.google.com
for April 10, 2006, search query “coffee”

Since a high PageRank score for a webpage does not guarantee that the webpage
appears high in the listing of search results, search engine optimization experts em-
phasize that “on the page” factors, such as placement and frequency of important
words, must be considered when developing good webpages. Even the news media
have started making adjustments to titles and content of articles to improve rankings
in search engine results [21]. The fact is most search engine users expect to find rele-
vant information quickly, for any topic. To keep users satisfied, Google must make sure
that the most relevant webpages appear at the top of listings. To remain competitive,
companies and news media must figure out a way to make it there.
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Want to Know More?

For more information on PageRank, see the survey papers by Berkhin [10] and Langville
and Meyer [19]. In addition, the textbook [20] by Langville and Meyer provides a
detailed overview of PageRank and other ranking algorithms.
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