

Object-Oriented
Oracle™

JohannaWennyRahayu
La Trobe University, Australia

David Taniar
Monash University, Australia

Eric Pardede
La Trobe University, Australia

IRM Press

Publisher of innovative scholarly and professional
information technology titles in the cyberage

Hershey London ¢ Melbourne ¢ Singapore

Acquisitions Editor: Renée Davies

Development Editor: Kristin Roth

Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig

Copy Editor: Shanelle Ramelb
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
IRM Press (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033-1240
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

Library of Congress Cataloging-in-Publication Data

Object-oriented Oracle / Wenny Rahayu, David Taniar and Eric Pardede, editors.
p. cm.

Summary: " The book covers comprehensive and fundamental aspects of the implementation of
object-oriented modeling in a DBMS that was originated as a pure Relational Database, Oracle"--
Provided by publisher.

Includes bibliographical references and index.

ISBN 1-59140-810-5 (hardcover : alk. paper) -- ISBN 1-59140-607-2 (softcover : alk. paper) -- ISBN
1-59140-608-0 (ebook : alk. paper)

1. Oracle (Computer file) 2. Object-oriented methods (Computer science) |. Rahayu, Wenny, 1968-
II. Taniar, David. Ill. Pardede, Eric, 1975-
QA76.9.D26023 2005
005.1'1--dc22
2005005340

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

Object-Oriented
Oracle™

Table of Contents

Preface ..cccccccicceissensnncssessnnsanssansssssssssssssssassssssssssassssssssssassssssssssasssassans vill
Chapter I. Object-Relational Approachescoueeueeieecsnencseensneenne 1
Object-Oriented Conceptual Model.....................cccceevevcevecvennenne. 1
Static Aspects Of OOCMc.cccovcuvevoiieiiaiieeiieee e 2
ODbjects and ClaSSESccvevveiiiiieieee e, 3
Inheritance Relationships ..o 4
Association Relationshipscccovvveviiieiic e 6
Aggregation Hierarchiesccccvevieeieiicsi e 7
Dynamic Aspects 0f OOCMccccoovveeviieeiiiieiiieeeiieeeeeene, 12
Generic MEethodscccoveiiiiiiee e 13
User-Defined Methodsccoovvvriniiininiisee e 14
New Era of Object-Relational Approachesccc.ccuu..... 15
OOCM Implemented on Relational Databasesccc....... 16
Object Wrappers on Relational Systems............cccccevvvevveiennenne. 16
Extended Relational SyStems...........ccccevvvveiiiieiiienecic e 17
Object-Oriented System and RDBMS Coexistence 18
OODBMS and RDBMS Interoperationccccceevvevveivennnnnn 19
Object-Relational Database SyStemcccevvveeeecieeencnenanne. 20
CaSe STUAY ... 21
SUMMIATY ..ot 23
REfErenCesSccovveeviieeiieeie e 24
Chapter Problemscccooeueeeeieeeiieeeieeeeiee e 25

Chapter II. Object-Oriented Features in Oracle™.............ccceeveeunennee 31

Relational-Model Featurescccooovviieiiiiiiieaaieeaean, 31
Object-Oriented FeQtUresccouuveeeioeeiieaiiieeeiieeeieeeenen, 34
Object Types and User-Defined TYPesS......ccccccevvrveeiverieinnnnenn 34
COlIECHION TYPES ...t 35
ODbjJect Identifiersccovieieiiiee e 36
RelationshipS USING Refoovivviiiieieiieiecee e, 38
(O 11 T ST TRT 39
Inheritance Relationships using Underc..cccccvevvveveancnnn.. 40
ENCAPSUIALION ..o 41
SUMIATY ..o 47
REfEreNCeSocveiieiiiieeeeeee e 47
Chapter Problemscc.ccoueeeeeeiieiieeieesieeeeee e 48
Chapter SOIULIONSc.ccccveeieieiieeiieeeee e 49
Chapter II1. Using Object-Oriented Featurescccocceveecsuecsueecnens 51
Using Inheritance Relationshipscccccocecvevviveviceeniieennnn. 51
Union Inheritance Implementationccoovvveieienencneneenne, 52
Mutual-Exclusion Inheritance Implementationc.cc.ccoenee. 54
Partition Inheritance Implementationcccoovieiiiiiciinnn 56
Multiple Inheritance Implementationccccveeieienencncnenn. 57
Using Association RelationShipscccccoevcvevvveeviieenncnennen. 59
Creating an Association Relationship by a Primary-Key
and Foreign-Key Relationshipc.ccoovveieiinniiienen 60
Creating an Association Relationship by Object
RETEIENCES ... s 62
Primary Keys: Foreign Keys vs. Object References in an
Association Relationship ... 65
Using Aggregation Relationshipscccccccccvevvveeviceenceeennnnn. 67
Implementing Existence-Dependent Aggregation using the
Clustering TECNNIQUEceoiiiiiiieeeeeeeeee e 67
Implementing Existence-Dependent Aggregation using the
Nesting TEChNIQUEcooviiiiiie 70
Implementing Existence-Independent Aggregationc.cc.cce... 73
CaSe STUAY ... 76
SUMIATY ..ot 81
REfOFENCeS ...t 81
Chapter ProbIemscccccoueeeeecieiiieieeseeeeee e 81

Chapter SOIULIONSc..cccveviieiiieiieceeee e 83

Chapter IV.Object-Oriented Methodsccceevereevercscnnicssnnccssnnecnns 89
Implementation of Encapsulation Using Stored Procedures

or Functions and Grant Mechanismsccccccceeeenencann. 90
Stored Procedures or FUNCEIONSccccoviviniicincicecieas 90
Grant ... 97

Implementation of Encapsulation Using Member Procedures
OF FUNCHIONS ...t 98
CaSE STUAY ..o 102
SUMIATY ..o 107
REfOFENCES ... 108
Chapter Problemscccccoeeveeeeeciesieeiieeeeeeee e, 108
Chapter SOIULIONScccoevevieeieiieeieeieee e 111
Chapter V.Generic Methodsccoceierceeicssnncsssnncssnncssnsscsssnecsnsees 114
Implementation of Methods in Inheritance Hierarchies 115

Implementation of Methods in Union Inheritance 116
Implementation of Methods in Mutual-Exclusion
INNEITEANCE ... 126
Implementation of Methods in Partition Inheritance................... 133
Implementation of Methods in Multiple Inheritance................... 135

Implementation of Methods in Association Relationships 138
Implementation of Methods in Aggregation Relationships 142
Implementation of Methods in Aggregation Relationships
Using the Clustering Techniqueccccccooeiiiiniiinennn 145
Implementation of Methods in Aggregation Relationships
Using the Nesting Techniqueccccoovviieiciincncnee, 146
CaSE STUAY ..o 151
SUMIATY ..o 159
Chapter Problemscccccoeevveeceiieeeiieeieeeeeeee e, 159
Chapter SOIULIONSccccoeveiiieiiiiieiieeieee e 163
Chapter VI. User-Defined Queries 170
User-Defined Queries in Inheritance Hierarchies 170
SUDCIASS QUETY ... 171
SUPEICIasS QUETYoiiiiiiieieieriesie s 172
User-Defined Queries in Association Relationships 175

ReferenCing QUETYcoiiiiieieieieresese e 175

Dereferencing QUENYooiiieieieieniesiesie e 177
User-Defined Queries in Aggregation Hierarchies 178

Part QUETYooiieiiiei e 179

WhHOIE QUENY ..o 181

User-Defined Queries Using Multiple Collection Types 184
Varray Colection TYPE ...ccvoveieieeieiesesese e 184
Nested-Table Collection TYPecccoveiiriiiiiiiceeeesieia 186

User-Defined Queries with Object References 187
VALUE ... 188
DEREF ...ttt 190
IS DANGLING ... 190

Object Table vs. Object Attribute.................cccoveeecevevieeacrannnn. 191

Clustering Technique vs. Index-Organization Table 193

CaSE STUAY ..o 194

SUMIATY ..o 202

Chapter Problemscccccoeeveeceeiieiieeiieeeeeeeee e, 202

Chapter SOIULIONSc.ccccoeviiieiiiieeiieeieee e 206

Chapter VIL. University Case Studyccceeverersercscnnrcscnnrcssssccsnsenes 210

Problem Descriptioncc.ccceeeveeeeeeiieeieeeieeie e, 210

Problem SOIULIONccccooiviiiiiiiiiiiieceeee e 217
Campus_T Table ..o 217
Faculty T Class and Part CIassescccceveerivrrieniienneiesieenn 218
Building_T Class and Part CIassesccccoovvvveienencnenininns 221
DEgree T CIaSScoeiiriiiieieieiie et 224
Person_T Class, the Subclasses, and the Enrolls_In Table 227
Subject_T Class and Takes Tablecccocevveiieiininniiiinnnn, 240

Sample Database EXeCULIONcceeveeeceeeciaiieaeeiieeenn, 243
Generic Methods Sampleccooeiiiiiiiieeeee e 243
User-Defined Methods Samplecccoeviiiiieiiiencncncns 247

Building Case Applicationccccccceeevveeeiieeiiiieiiieeeeen, 249

SUMIATY ..o 275

Chapter VIII. Retailer Case Studyc..c.... 276

Problem Descriptionccccceeviioieniioeiieiieesee e 276

Problem SOIULIONc.cccooioviiiiiiiiiiiiieeeee e 282
Company_T Class and the Subclassesccccccevvverviieenennnns 284
Shareholders_T Class and Own_Shares Tableccccoe..e. 285
Management_T Class and the Subclasses...........cccocevveriennenne 288
Store_T Class and the Department_T Part Classc....... 290
Employee_T Class and the Subclassescccccoeieiininininns 294
MaKEr T ClaSS ..c.veevieiiieiiieie e 300

Item_T Class and Available_In Table..........cccocoooeviniinnnnnee. 301

CUSEOMEN_T CIASS ..cvveveieiieiieeie e 303

TranSaction_T Classc.ecveiieriiiieieere e 306
Building Tools Using Oracle™ Developerc.ccc.cuo...... 307
Creating a Form Using the Data-Block Formcc.cooe.e. 308
Creating a Form Using a Custom FOIrmc.ccecveveviennennns 315
SUMIATY ..o 323
ADOUtthe AULROTS c..ccuueeceeiniiitiiiicteninneeneenneneensesseessesseessnes 324

viii

Preface

Why This Book?

Object orientation has now invaded traditional relational database-manage-
ment systems. Oracle™ without exception has included object-oriented fea-
tures in its system. SQL is now richer due to these additional features. How-
ever, the object-oriented elements in Oracle ™ will not be fully utilized without
a proper database design. For example, a database application designed us-
ing a traditional database modeling, such as entity-relationship (E/R) model-
ing, will not be able to make use of most object-oriented features in Oracle™.
This is simply due to the absence of object-oriented elements in the design.
Even with a proper object-oriented design, without careful transformation from
design to implementation, many of the object-oriented features will be lost.

Object-Oriented Oracle™ addresses this need by not only explaining the
new object-oriented features in Oracle™, but most importantly how these
features can be fully utilized in database applications. We put a heavy empha-
size on how an object-oriented conceptual model is implemented in Oracle™.
This includes the static aspect of an object-oriented conceptual model, in-
cluding the inheritance, association, and aggregation relationships, as well as
the dynamic aspect covering generic object-oriented methods and user-de-
fined queries.

Just as we enjoyed writing this book, we hope that you will enjoy reading it,
and most importantly gain valuable lessons from it. We trust that this book will
give you a comprehensive insight into object-oriented Oracle™.

Distinguishing Features

Object-Oriented Oracle™ presents the right mix between theoretical and
practical lessons on object-oriented features of Oracle™.

In the theoretical part, it describes the foundation of object-oriented concepts
and how they are used in the implementation. The importance of these con-
cepts is invaluable because without this understanding, the new object-ori-
ented features offered by Oracle™ will not be fully utilized. Therefore, these
theoretical elements serve as the foundation of object orientation in Oracle™.

In the practical part, the book contains two case studies (Chapters VIl and
VI11) that thoroughly explain the development of a database application using
the object-oriented technology of Oracle™. The case studies start with the
description of an application, followed by the appropriate object-oriented
designs. The designs are then transformed for implementation in Oracle™.

Each chapter also contains extensive examples and code. These examples
and code will give readers a better understanding of how object-oriented
elements are used in Oracle™.

At the end of each chapter, a set of problems, together with their solutions,
are given. These will be suitable exercises for the classroom. The solutions
will be useful for both students and their teachers.

Topical Coverage

Object-Oriented Oracle™ contains eight chapters.

Chapter I starts with object-relational approaches that cover the object-ori-
ented conceptual model. There have been many approaches in amalgamating
the object-oriented model with database systems, from which the new era of
object-relational databases is born.

Chapter Il explains object-oriented features in Oracle™. These include the
use of fype and object in conjunction with table creation, varray, and nested
table. These features, together with the refrelationships, index cluster, and
the under clause for subtyping, change the whole concept of database model-
ing.

Chapter I11 describes how these object-oriented features should be properly
used in Oracle™. This includes how the object-oriented conceptual model
described in Chapter I is implemented using the features presented in Chapter

I1. This chapter particularly focuses on the static aspect of the object-oriented
conceptual model, including the inheritance, association, and aggregation re-
lationships.

Chapter IV justifies how the dynamic aspect of the object-oriented concep-
tual model (encapsulation and object-oriented methods) is implemented using
the new features of Oracle™, namely member procedures and functions.

Chapter V describes generic methods in Oracle™. This covers generic meth-
ods found in the object-oriented conceptual model, including the inheritance,
association, and aggregation relationships. The generic methods comprise typi-
cal database operations (e.g., update, delete, and insert) applied to the mem-
ber attributes of a class. The use of generic methods is a direct implementation
of object-oriented encapsulation features.

Chapter VI focuses on user-defined queries. New SQL features, covering
referencing and dereferencing using ref, super- and subclass accesses using
treat, nesting techniques using the and table, are explained. The chapter also
discusses the varray and nested-table collection types, object references deref,
the is dangling clause, and object attributes.

Chapter VII introduces a university case study that contains a database to
maintain the running of courses in a university. This case study shows the en-
tire database-application development life-cycle process from the object-ori-
ented design to transformation for implementation in Oracle™.

Finally, Chapter V111 presents another case study based on a retailer-chain
company. In addition to using the object-oriented conceptual model for the
database design, implementation is carried out using Oracle™ Form Devel-
oper. The aim is to show how a window-based database application can be
developed using the object-oriented technology in Oracle™.

Intended Audience

Object-Oriented Oracle™is intended for the following audiences.

. Database Practitioners

Object orientation in Oracle™ has now opened a wide opportunity in
exploring new ways for building database applications. This book shows
how object-oriented features can be adapted for database-application
development. It describes not only the practical aspects of database-
application development, but also the theoretical foundations that lead to

xi

the use of the object-oriented technology in database applications using
Oracle™. The two case studies included in this book show the two
flavours of database applications using the object-oriented technology
as their foundation whereby the first application is a text-based applica-
tion, and the second is window-based using Oracle™ Form Developer.

College Students and Teachers

This book is suitable as a textbook for database courses at any level: an
introductory database course whereby this book can be used as a supple-
ment to the standard database-management textbook, or an advanced
database course concentrating on object-oriented database development.
Students who are learning the standard material of SQL are now able to
learn, at the same time, the new object-oriented features of SQL. Fur-
thermore, students are now able to relate how a database design, in this
case using an object-oriented method, can smoothly be implemented in
Oracle™, thus making the entire database-application-development life
cycle transparent.

General IT Readers

General IT readers who are keen on the new technology of Oracle™ will
find this book useful and informative. Object orientation has been an
interesting topic in general due to the popularity of object-oriented pro-
gramming languages, like C++ and Java. The object-oriented concepts,
which underpin these programming languages, have been widely under-
stood. However, their applications to database systems have not been
broadly explored. This book demonstrates how object-oriented features
could be used easily in Oracle™, and most of all, how they could be
used appropriately and efficiently.

IT Researchers

Object orientation in relational database systems has been an active re-
search area in the last decade. Many researchers have proposed meth-
ods for transforming object-oriented design to relational database imple-
mentation. Other groups of researchers have been concentrating on ob-
ject-relational databases. Due to the increasing trend whereby most da-
tabase-management-system vendors are positioning themselves in the ob-
ject-oriented tracks, there are plenty of research opportunities in this
important area. This book will give researchers the basic foundation for
amalgamating two different elements: object-oriented and relational da-
tabase systems.

Xii

Feedback and Comments

Although we have fully tested all code included in this book, should there be
any problems or confusion about the code, please do not hesitate to contact
us.

We would appreciate if you could also share any other comments or feedback
with us so that we can incorporate them in a future edition. Comments and
feedback may be sent directly to the publisher at

Object-Oriented Oracle™

Idea Group Inc.

701 East Chocolate Avenue, Suite 200
Hershey, PA 17033-1240, USA

xiii

Acknowledgments

Object-Oriented Oracle™ would not have been published without the sup-
port of a number of parties. We owe them our gratitude.

First of all, we would like to thank Mehdi Khosrow-Pour and Jan Travers of
Idea Group Publishing for believing in us on this project. They supported our
ideas in writing a book on this topic, and only because of their encouragement
and trust, this book becomes a realization.

We would also like to thank the team at Idea Group for keeping the schedule
on track. Their communication and support were very efficient and profes-
sional. We were glad for this opportunity to collaborate with them.

Finally, we would like to express our sincere thanks to our respective em-
ployers, the Department of Computer Science and Computer Engineering, La
Trobe University, Australia, and the School of Business Systems, Monash
University, Australia, for the facilities and time that we received during the
writing of this book. Without these, the book would not have been written in
the first place.

J. W. Rahayu
D. Taniar
E. Pardede

Melbourne, June 20, 2005

Object-Relational Approaches 1

Chapterl

Object-Relational
Approaches

This book focuses on the implementation of an object-oriented model into
object-relational DBMS using Oracle™. All aspects of the object-oriented
model, particularly those that play asignificantrole in database implementation,
will be discussed in this book.

The object-oriented modeling technique is an important issue in this book
because it is the underlying notion behind the development of the object-
relational approaches. Therefore, inthis chapter we will start with an outline of
the object-oriented conceptual model (OOCM).

Object-Oriented Conceptual Model

An OOCM encapsulates the structural and static as well as behavioral and
dynamic aspects of objects. The static aspects consist of the classes and
objects, and the relationships between them, namely, inheritance, association,
and aggregation. Each of these relationships is associated with a set of
constraints. The dynamic aspect of the OOCM is divided into two types of
methods: generic and user defined.

The object-oriented method promised to improve software quality and effi-
ciency. One of the mostenticing promises is that of real reusability: reusability

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2 Rahayu, Taniar and Pardede

of codes, program portions, designs, formal specifications, and alsocommer-
cial packages. As software-development cost increases, more developers see
the benefit of using reusable components. Solving the reusability problem
essentially means reducing the effort required to write codes; hence, more
effort can be devoted to improving other factors such as correctness and
robustness.

The main idea of the object-oriented method is that it provides amore natural
way to model many real-world situations. The model obtained by the object-
oriented method will be amore directrepresentation of the situations, providing
abetter framework for understanding and manipulating the complex relation-
shipsthat may exist.

The basic segment of the object-oriented systemisan object. Everything that
existsand is distinguishable isan object. Each object has one or more unique
attributes that make it distinguishable from the others.

However, several objects can also have the same structure of attributes and
operations. Only after the attributes’ values are given can an object be
recognized. A set of attribute structures and operations applicable to those
attributesiscalledaclass.

Inthe object-oriented method, we also recognize the concept of encapsula-
tion. Basically, froman outside point of view, each objectis justathing ora
person (such asastudentnamed Jennie, Andy, etc.). However, if each object
isexplored ingreater detail, itactually consists of some attributes (identity,
name, status, gender, etc.) for which each object has its own value and so is
distinguishable, as are the operations thatare applicable to those sets of data
(print details, set details, etc.). In other words, an object is simply an
encapsulation of dataand their operations.

Static Aspects of OOCM

The static aspects of OOCM involve the creation of the objects and classes that
alsoincludes decisions regarding their attributes. In addition, the static aspects
of OOCM are also concerned with the relationship between objects, that is,
inheritance, association, and aggregation.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 3

Objects and Classes

Anobject can be a physical object, such asacomputer, vehicle, or person. It
can be an event such as a queue in front of the teller, sales, and so forth.
People’srolessuch as that of an officer, tutor, student, and so forth can also
be classified as objects.

Anobjectisadataabstraction that is defined by an object name as aunique
identifier, valued attributes (instance variables) that give astate to the object,
and methods or routines that access the state of the object. Itis convenient to
use agraphical notation to representan object model. We will use a notation
thatisamodified UML notation (Booch, Rumbaugh, & Jacobson, 1999). The
modifications will be clarified throughout this discussion. Most of these relate
to the semantics and definitions of some terms such as composition, aggrega-
tion,and so forth. An objectis often drawnasarectangle havingan object name
and its properties (attributes and methods). With far fewer details, an objectis
often shown as a square with the object name only. Figure 1.1 gives an
illustration of agraphical notation for objects.

The state ofan objectisactually aset of values of its attributes. The specified
methods are the only operations that can be carried out on the attributes in the
object. The client of the object cannot change the state except by method
invocation. Thus, an object encapsulates both state and operations. Insome
languages, the methods are procedures and functions. A procedure may or may
not have arguments, and it can be used to access the attributes of an object. A
functionissimilartoaprocedure, butitreturnsavalue.

Objectsare the basic run-time entities in an object-oriented system. An object
can be created only during runtime. Figure 1.2 shows anexample where at run
time an object Staff with name Adam isastaff member in the computer-science
department.

Figure 1.1. Object

Person q4{----—-—-—-- object
ID
name 4{-------- attributes
address
get age () <dq-------- methods

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4 Rahayu, Taniar and Pardede

Figure 1.2. Object as run-time entity

Staff
name = ‘Adam’
work = ———r=—=p Department
put_staff () name = ‘Computer Science’
set_staff () mail = 39

set_details ()
put_details ()

Each object has an identity, called object identity (OID). An OID is an
invariant property of an object that distinguishes it logically and physically from
all other objects. An OID is therefore unique. Two objects can be equal without
beingidentical.

Along with objects, we also need to understand classes. It is important to
distinguish between them, and they should not be confused.

A class is a description of several objects that have similar characteristics
(Dillon & Tan, 1993). Coad and Yourdon (1990) described class as a set of
specifications that characterizes and is applicable to a collection of objects.
Objects of the same class have common methods and, therefore, uniform
behavior. Class isacompile-time notion, whereas objects existonly atruntime.
Therefore, a class has three aspects: the type as attributes and applicable
routines, a container of objects of the same type, and an instantiation
mechanism, Such as to create.

Inheritance Relationships

An inheritancerelationship isgenerally known asageneralization or special-
ization relationship, inwhich the definition of a class can be based on other
existing classes. Giventhataclass inherits from another class, the former class
isknown as a subclass, whereas the latter is the superclass.

Asubclassisaclassthatinherits from at least one generalized class that is the
superclass. Consequently, a subclass must have all the properties of the
superclass, and may have others as well. In other words, a subclass is more
specialized than the superclass. Inheritance is a key feature of the object-
oriented paradigm.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 5

Figure 1.3. Inheritance relationship as an extension

Person -f-------- superclass
name
address
Z‘A isa
Student 4{-------- subclass
student_ID
major

Consider Figure 1.3 asanexample. Suppose there are two classes: Person and
Student. Inthis case, every student must be a person, so Student class inherits
from Person class. All features that apply to a person are applicable to a
student, and every studentisaperson. A student will also have aname and an
address from Person class. Moreover, astudent can have additional features.
Therefore, the inheritance mechanism can be viewed as an extension of a
superclass.

Onthe other hand, rather than being considered as an extension, inheritance
can be viewed as arestriction on the superclass by hiding previously exported
features of the superclass. Figure 1.4 shows anexample of using inheritance as
arestriction. Beside features such as name, address, and so forth, Employee
class hasan attribute salary, whereas VVolunteer class, whichis a special case
ofemployee, does not receive any salary.

Figure 1.4. Inheritance relationship as a restriction

Employeed--------- superclass
salary

isa
Volunteer == ======-= subclass
no_salary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

6 Rahayu, Taniar and Pardede

If several classes have considerable commonality, it can be factored outina
deferred or abstract class. The differences are provided in several subclasses
of the deferred class. A deferred class provides only a partial implementation
ofaclassornoimplementationatall. Fromthe design point of view, adeferred
class providesthe global view of aclass, although the details have not yet been
implemented.

Association Relationships

Association refersto aconnection between object instances. Association is
basically areference from one object to another that provides access paths
among objectsinasystem.

Objects are connected through an association link. The link can have a
specified cardinality, such as one-to-one, one-to-many, and many-to-many. In
additionto this, in object orientation, collection types have also been intro-
duced and can characterize anassociation link.

One-to-One Association

Inthistype, only one object can be connected with another object of the other
type for the particular association link, and vice versa.

Forexample, in Figure 1.5, Staff class and Office class are connected through
awork_inassociation link. The link is one-to-one type because only one staff
canwork inone office, and one office can have only one staff working init.

One-to-Many Association

In this type, the first object can be connected only with one of the second
object, but the second object can connect with many of the first object.

Figure 1.5. One-to-one association

j 1
Staff 1 work_in

Office

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 7

Figure 1.6. One-to-many association

1... enrolled in 1
Student Department

Figure 1.7. Many-to-many association

takes 1.
Student - Subject

Forexample, in Figure 1.6, Student classand Department class are connected
throughan enrolled inassociation link. The link is one-to-many type because
one student canenroll only in one department, but one department can have
many studentsenrolledinit.

Many-to-Many Association

Inthistype, one object can be connected with many objects of the other type
for the particular association link, and vice versa.

For example, in Figure 1.7, Student class and Subject class are connected
througha takes association link. The link isa many-to-many type because one
student can take many subjects, and one subject can be taken by many
students.

Aggregation Hierarchies

Aggregation is a tightly coupled form of association (Rumbaugh, Blaha,
Premerlani, Eddy, & Lorensen, 1991). The main difference between aggrega-
tionandassociation is the underlying semantic strength. While anaggregation
formsamethod of organization that exactly maps human thinking, an associa-
tionisamere mapping between objects inanapplication (Coad & Yourdon,
1991).

Aggregationisacomposition or “part-of” relationship, inwhich acomposite
object (whole) consists of other component objects (parts). This relationship
isused extensively in the areas of engineering, manufacturing, and graphics

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

8 Rahayu, Taniar and Pardede

design. In these applications, when a composite object is created, one may
merely wantto know the type of the parts involved without being bothered with
the details. At other times, one may need the details of a particular partonly
(Dillon & Tan, 1993).

In an aggregation relationship, in which one whole can have many parts
associated with itthrough a part-of relationship, the entire part-of relationship
isviewed as one composition, not several association relationships. Let us
consider anaggregation relationship betweenaPC (personal computer) asa
whole and its parts consisting of the hard disk, monitor, keyboard, and CPU
(Figure 1.8). It would be inappropriate to model the aggregation as an
association since the composition semantic would be lost in the association.
Modeling the above example as an association will form several association
relations, namely, the PC and hard disk, PC and monitor, PC and keyboard,
and PC and CPU. Instead of creating one composition, we will end up with
several associations.

Because the relationship between the whole and the parts is very clearly
designated in aggregation relationships, we should be able to retrieve all
aggregate parts that belong to a whole by identifying the whole only. For
example, when a PC object is accessed, the aggregate parts Hard Disk,
Monitor, Keyboard, and CPU that belong to that PC can also be identified.
Implementing the above aggregation as an association will require usto go
through every association relationship inorder to retrieve all parts that belong
toawhole.

Dillonand Tan (1993), Dittrich (1989), and Kim (1990) identify four types of
composition: sharable dependent, sharable independent, nonsharable depen-
dent, and nonsharable independent. We will refer to nonsharable and sharable
as exclusive composition and nonexclusive composition, and dependent
and independent as existence-dependent and existence-independent com-
position, respectively.

Figure 1.8. Aggregation

PC

Y

Hard Disk Monitor Keyboard CPU

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 9

Existence-Dependent and Existence-Independent Composition

When the existence of the part object is fully dependent on the whole object,
thenthe aggregationrelationship is of an existence-dependent type. Inthistype
ofaggregation, whenever the whole objectisremoved, then all its associated
partobjects will also be removed. Thus, no part object can exist withoutan
associated whole object. This isthe most common type of aggregation, where
thewhole objectis more like a container object. When the existence of a part
object is independent of any whole object, we will have an existence-
independentaggregation.

Existence-dependentand existence-independent compositions are two aggre-
gationtypesinwhichthe dependencies between the whole objectand its part
objectsaresignificant.

Figure 1.9 shows an example of an existence-dependent composition. Inthe
example, a Course Outline object isan encapsulation of several part objects,
thatis, Course Objectives, Course Contents, and Course Schedule. When a
whole objectisaccessed, its part objects can be identified without the necessity
totrace every link from the Course Outline object. Inan existence-dependent
type of composition, the deletion of a course outline will cause the deletion of
that particular course outline and all of its elements.

Inan existence-independenttype of composition, the existence of the partis
independent. For example, in Figure 1.10, if for some reason Travel Docu-
ments isremoved, the ticket, itinerary, and passport still exist.

Figure 1.9. Existence-dependent composition

Course Outline

1

1’ 1.. ‘ 1...
’ Course Objectives ‘ ’ Course Content ‘ ’ Course Schedule ‘

Figure 1.10. Existence-independent composition

Travel Documents

10O

1. 1. 1.
Tickets Itinerary Passport

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10 Rahayu, Taniar and Pardede

Exclusive and Nonexclusive Composition

Wheninanaggregation relationship aparticular part object can be shared by
more than one whole object, then we have anonexclusive type. Otherwise,
when each part object is exclusive to a particular whole only, then itis an
exclusive type of aggregation.

Creating an exclusive composition means that the whole object is the sole
owner of the part objects. The need for exclusiveness arises particularly when
modeling physical objects, such as vehicles, bridges, electronic devices, and so
forth. Inorder to capture the semantics of such applications, the aggregation
relationship should emphasise the exclusivity; for example, alaptop does not
share a CPU or hard disk with other laptops.

Inthe example showninFigure 1.11, we need to ensure that every part object
isexclusively owned by a particular whole only.

Inanonexclusive composition, a part of one whole object may be shared or
referenced by other whole objects, and thus the part is not exclusive. For
example, abinary file oratextfile can be referenced by more than one directory
(see Figure 1.12).

Itisimportantto note thatin UML, the term composition refersto exclusive and
dependentaggregation. However, we use composition interchangeably with
aggregationand use qualifications todistinguish between the different categories.

Figure 1.11. Exclusive composition

1
\

1 1

Figure 1.12. Nonexclusive composition

O

1.

1 1

Binary File

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 11

Homogeneous Composition

The previous examples are categorized into a heterogeneous composition since
one whole object may consist of several different types of part objects. In
contrast, homogeneous composition implies that one whole object consists of
part objects of the same type.

Inthe example shown by Figure 1.13, a Hard Disk object consists of several
Hard-Disk Controllers. Once we add another type under the whole, the type
has changed into heterogeneous composition.

The mainadvantage of modeling the homogeneous type of composition is that
the model is flexible enough for further extensions or modifications to include
components of another type. In the case of a mixture of homogeneous and
heterogeneous components, the homogeneous compositionisindicated by the
cardinality, namely, 1ton.

Multilevel Composition Objects or Complex Objects

In many applications, the composition hierarchy may span an arbitrary number
of levels. If one gets a composite or aggregated object design that has

Figure 1.13. Homogeneous composition

Hard Disk

1

1...
Hard-Disk Controller

Figure 1.14. Entertainment-unit complex object

‘ Entertainment Unit AGGREGATE

‘ (level 1 of path 1)
fiQ - /

AGGREGATE 1] R |
(level 2 of path 1) ‘ Visual Unit ‘ ‘ Audio Unit ‘
AGGREGATE
1@ Q / (level 2 of path 2)
l
‘ Screen ‘ ‘ Pro;ector ‘

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

12 Rahayu, Taniar and Pardede

component objects that are themselves composite or aggregated objects, then
one gets atwo-level aggregation or composition hierarchy. This hierarchy
couldbe repeated to several levels of composition or aggregation. Because of
the arbitrary number of the part-of relationships between the objects, the
objectsinvolved inthe composition are also known as complex objects.

Figure 1.14 shows an example of an entertainment-unit multilevel composition
hierarchy. Theaggregationrelationshipsineach level of the composition can be
seenasatype of simple aggregation relationship (e.g., existence dependent or
independent, exclusive or nonexclusive, orhomogenous). However, amulti-
level composition hierarchy may include differenttypes of aggregation relation-
ships ateach level of the composition.

Dynamic Aspects of OOCM

Dynamic aspects can be called implementation or behavioral aspects of
OOCM. They involve the creation of the routines. Routines are specified as
operations or methods, which are defined in the class that describes the object.
The specified routines are the only operations that can be carried out on the
attributes in the object. The client of the object cannot change the state
(attributes) except by routine call. Routines form the interface between the state
of an object and the user.

Routinesare implemented in OOCM using the encapsulation concept. Encap-
sulation, also known as information hiding, prevents the client programs from
seeing the internal part of an object where the algorithm of the routines and the
data structures are implemented, which does not need to be known by the
clients. Figure 1.15 shows the encapsulation of an object.

Figure 1.15. Encapsulation of attributes and routines

Object

Attributes
7}
y

A

Client Programs M

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 13

Methods as a routine can be divided into two main parts: the generic method
and user-defined method.

Generic Methods

Generic methods are used to access attributes of an object. The concept behind
the need for generic methods is encapsulation, in which attributes associated
with anobject can be accessed directly only by the methods of the object itself.
In object orientation, attributes refer to simple or primitive types (such as
integer, string, etc.), user-defined objects (such as Person, Student, etc.), or
collection types (such as list, array, set, and bag). Generic methods should
provide ways for accessing the different types of attributes.

Generic methods may have the following operations: retrieval, update,
delete, or insert. The retrieval generic methods are methods to retrieve the
attributes’ values. They are actually read-only methods and are often known as
queries. The update generic methods are used to update the values of the
specified attributes. The delete generic methods are used to delete the specified
attributes’ values. Since the update and the delete generic methods manipulate
the values of the specified attributes, they are often associated with the data-
manipulation language (DML). The insertgeneric methods insert new values to
the specified attributes. Thisissimilar to the concept of object creationinan
object-oriented environment.

All of the above operations (i.e., retrieve, update, delete, and insert) can be
appliedto inheritance, association, and aggregation hierarchies. Generic meth-
odsoninheritance hierarchies are methods thataccess attributes in inheritance
hierarchies. Normally, the method is declared inasubclass and accesses the
value of the superclasses’ attributes, and it may also access local attributes
(attributes of the subclass) as well.

Generic methods on association structures are methods that access attributes
of classesalong anassociation structure. If two classes are associated through
an association relationship, methods declared in one class may access at-
tributes of the other class.

Generic methods on aggregation hierarchies are methods that access attributes
of other specified classes inanaggregation hierarchy. If the method is declared
in awhole class, the methods may access attributes of its part classes. The
oppositeisapplied if the method isdeclared inapart class, where it may access
attributes of the whole class as well as its own. Figure 1.16 illustrates the

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

14 Rahayu, Taniar and Pardede

Figure 1.16. A taxonomy for generic methods

Retrieve Update Delete Insert

Inheritance

Association

Aggregation

taxonomy of generic methods in object orientation. The matrix indicates the
operations ingeneric methodsincluding retrieve, update, delete, and insert, and
object hierarchies including inheritance, association, and aggregation hierar-
chies.

Inthe transformation of generic methods into object-relational operations, we
consider all of the operations specified above (i.e., retrieval, update, delete,
and insert) and operations on object hierarchies (i.e., inheritance, association,
andaggregation).

In this book, a semiautomatic transformation of object-oriented generic
methods into aset of object-relational operations is presented. These relational
operations can subsequently be implemented as stored procedures. The
transformation rules are determined by the different types of attributes being
accessed by the generic methods (result type), as mentioned above, and the
structure of the objects that own the generic methods.

User-Defined Methods

Assuggested by the name, user-defined methods are nongeneric methods that
are defined by usersin order to perform certain database functionality. Inthis
book, the representation of user-defined methods in object-relational data-
bases is presented. The functions and expressions used to represent user-
defined methods are supported by most commercial database systems avail-
able today. Ways by which to optimise queries that access the stored
procedures are also described.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 15

New Era of
Object-Relational Approaches

As mentioned in the previous sections, object-oriented concepts provide an
excellentbasis for modeling because the object structures permitanalysts and
designerstofocusonaproblematahighlevel of abstraction, butwitharesulting
design that can be easily and practically implemented. In the past few years,
more software has been written using the object-oriented paradigm. Many
prototypesas well ascommercial object-oriented DBMSs (OODBMSs) such
as 02, Versant, POET, ONTOS, Objectivity, GemStone, and ObjectStore
have beendeveloped by both industrial and research laboratories around the
world (Deux, 1990; Kim, 1990; Robie, Lapp, & Achach, 1998; Stonebraker,
1990).

Nevertheless, object-oriented databases are still notas widely used as rela-
tional databases (RDBs) that rest on a firm formal foundation. Stonebraker
(1996) reports thatthe OODBMS market is 100 times smaller in comparison
withthe RDBMS market, and itis expected that this figure will be maintained
inmany yearstocome. Itisafactthat RDBsstill largely dominate the database
community. RDBMS technology is considered mature and has been the basis
ofalarge number of applications around the world. However, the relational
approach, when used to model real-world problems, is not nearly strong
enoughtomodel all the differentkinds of relationships, both static and dynamic.
This also includes the fact that the relational model has a lack of semantic
featuresandan inability to represent complex structures and operations (Kim,
1995).

The object-oriented data model has significant benefits inthe areas of semantic
datamodeling. Theserichsemanticsare lacking inthe relational model. Onthe
other hand, inthe implementation of the data model, there are major strengths
oftheexistingRDBMS that OODBMS does not have. These include RDBMS’s
widespread acceptance as well as the simplicity of the query processing.

The above reasons have stimulated the emergence of anew approach in the
development of database systems, namely, the object-relational approach. In
general, this approach is a method of combining both object-oriented and
relational approaches with the aim of incorporating the advantages of each and
eliminating their drawbacks.

Inthe nextsections, the object-relational approach is grouped into five major
categories.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

16 Rahayu, Taniar and Pardede

OOCM Implemented on Relational Databases

Despite the differences between the object-oriented and the relational para-
digm, inreality, most of object-based development systems are still using the
RDBMS engine astheir persistence mechanism. Therefore, atransformation
from object-oriented models into relational structures and operationsis crucial.

Much work has been done inthis area, where each structure inthe OOCM is
transformed into implementation in pure RDBMS (Rahayu, Chang, Dillon, &
Taniar, 2000, 2001). This method is especially useful when the RDBMS
chosen for the implementation is a pure RDB that does not support object-
oriented extensions (SQL 92 standard).

Object Wrappers on Relational Systems

An object wrapper (see Figure 1.17) is basically a layer on top of a
conventional RDB engine that simulates object-oriented features. One of the
mainaims of this layer isto transform object queries (OQL) submitted by users
into relational queries. OQL isan enhanced relational query with additional
capabilities to understand arbitrary complex types as well as user-defined
operations. Thus, the user is allowed to interact with the system through the
object wrapper as if it were an OODBMS even though the underlying
mechanismisRDBMS.

Itisnecessary to have asolid transformation methodology that can be used by
the object wrapper to perform the translations of the object-oriented features
totheir relational equivalent for interaction with the underlying RDBMS. The
transformation methodology should notonly provide translation techniques,
butalso ensure efficient access to the result of the translation process.

Figure 1.17. Object wrappers on relational systems

Object Wrapper

sQL
User
Applications > OoQL ——

RDBMS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 17

Figure 1.18. Extended relational systems

Extended
—— Relational System

User SQL .
Applications ——— > Object-

Oriented

RDBMS Features

Extended Relational Systems

Inthis category, relational systems are extended in order to support object-
oriented features (see Figure 1.18). The extensions include the support of
objectidentifiers, inheritance structures, complex type representations, and
user-defined operations.

The SQL3 standard and the forthcoming SQL4 may provide the solution to
standardizing the extensionsto RDBMS. However, until now, work on SQL4
is still ongoing, and none of the existing extended relational systems fully
supports the standard, even for SQL3.

There are several different approaches that belong to this category. One of the
approaches used for capturing the concept of complex structuresisto allow
relations to have attributes thatare also relations, thereby abandoning the first
normal form of the relational model. The model, which is known as the nested-
relations or NF2 (nonfirstnormal form) datamodel (Scheck & Scholl, 1986),
can be used to represent composite objects and set-valued attributes. An
example isa DBMS prototype developed by Dadam etal. (1986) that supports
the NF2 model.

Another approachinthis category is an extension of aconventional SQL that
isusedto retrieve and manipulate data. For example, POSTGRES (Stonebraker,
1986) provides an extended SQL called POSTQUEL query with the ability to
capture the concept of abstract data types (encapsulated data structures and
methods), inheritance structures, and object identity. Another example is
Starburst (Lindsay & Haas, 1990; Schwarz et al., 1986) that extends the
relational algebraand supports user-defined operations and complex types.
Oracle™ 8 and above provide the implementation of most of the above
extensions. Itallowsthe creation of objects and user-defined types, encapsu-
lation of data structure and methods, complex relationships including inherit-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

18 Rahayu, Taniar and Pardede

Figure 1.19. Object-relational coexistence approach

User Applications

«

Object-Oriented 4 » ApI/Gateway <« » RDBMS
Programming

ance and referencing, as well as composition through nested tables and
collection types. Because of this, we will use Oracle™ throughout this book to
demonstrate the design and implementation of object-relational databases.

Object-Oriented System and RDBMS Coexistence

As opposedto a hybrid system inwhich both object-oriented and relational
systems are combined into asingle system, the coexistence approach provides
aninterface that allows object-oriented systems to access and manipulate a
relational system by encapsulating RDB entities suchas tablesand queries into
objects. Forexample, Borland Database Engine API for Borland C++ Builder
allows an object-oriented programming language C++to access standard data
sources in Paradox, dBase, or Interbase format. Similar interfaces such as
Microsoft Jet Database Engine are used by Microsoft Visual C++.

This coexistence approach (see Figure 1.19) is obviously quite attractive to
many commercial vendors. The main reason for this isthat the cost of building
the overall system is minimized by taking the two systems (object-oriented
systemand RDBMS) and letting them coexist. The work required to accom-
modate the new functionality in both systems and to let them communicate in
acoexistentenvironmentis far less than the effort needed to combine both
systemsintoasingle hybrid system.

Eventhough noattempt is made to enforce the storage of the object instances
withinthe schema forthe RDBMS, itis essential to have a solid methodology
for the transformation of the object model into the associated relational
schemas that ensures correctness and efficiency of the data storage and
retrieval.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 19

Figure 1.20. OODBMS-RDBMS interoperation

1 1 1 1
1 1] 1
! | OODBMS | ! 1 | RDBMS :
i i : i
I \ / :
1 1] 1
! ! : !
1 1
d 1 Translator : :
1 1
H User i : User i
! Applications : H Applications |
1 1 1 1

OODBMS and RDBMS Interoperation

Inthe interoperation approach (see Figure 1.20), arequest froman originating
database side istranslated and routed to a target database side for processing.
The result is then returned to the originator of the request. To achieve
transparency of the interoperation process, translation between the different
models of the participating database systems must be performed during the
data interchange (Ramfos et al., 1991). There are two major translations
needed inthisapproach:

» schematranslations, where the schema of the target database istranslated
into the data-definition language (DDL) of the originating database side,
and

» querytranslations, whereaquery inthe DML of the originating database
side (posed against the above produced schema) is translated into the
DML of the target database side.

Thisapproachisfrequently used inamulti-DBMS. A multi-DBMS isasystem
that controls multiple translators (or gateways), one for each remote database
(Kim, 1995). In this type of environment, it is possible for one application
program to work with data retrieved from both one OODBMS and one or
more RDBMSs.

Todevelopacomprehensive translator, the identification of the schemas and
operations owned by each of the participant database sides, OODBMS and
RDBMS, needsto be fully understood. A complete methodology that supports

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

20 Rahayu, Taniar and Pardede
the theoretical mapping fromthe originating schema into the target schemais

essential. Ideally, this mapping methodology should cover both the structural
componentas well as the dynamic component of the database systems.

Object-Relational Database System

Therelational data model has asound theoretical foundation, isbased on the
mathematical theory of relations and first-order logic, and gives the users a
simple view of data in the form of two-dimensional tables. Many DBMSs use
thisrelational model. Evennonrelational systems are often described as having
supporting relational features for commercial purposes. The model’s objec-
tiveswere specified as follows.

» Toallowahighdegree of dataindependence. The application programs
must not be affected by modifications to the internal data representation,
particularly by the changes of file organizations, record orderings, and
access paths.

* Toprovide substantial grounds for dealing with data semantics, consis-
tency, and redundancy problems.

* Toenablethe expansion of set-oriented DMLs.

» Tobecomeanextensible model that can describe and manipulate simple
and complex data.

The firsttwo objectives have been achieved by the relational model, mainly
because of the simplicity of the relational views presenting the data in two-
dimensional tables and the application of the normalization theory to database
design.

The third objective has been achieved by the use of relational algebra, which
manipulates tables in the same way that arithmetical operators manipulate
integers, and by nonprocedural languages based on logical queries specifying
the data to be obtained without having to explain how to obtain them.

The lastobjective isthe essence of current developments concerning extended
relational and object-relational models.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 21

Case Study

The Australian Education Union (AEU) keepsthe records of its propertiesand
activities in a database using an object-oriented concept. Property can be
divided into two main categories: building and vehicle. Beside these two, there
are also other minor properties that are not categorized into building and
vehicle. Each building has several rooms and each room has computersinit.
Some of the rooms also have overhead projectors (OHPs).

The unionemployees’ records are kept in aseparate class. Employees can be
divided into two types: office staff and organizers. Management is notincluded
inthese two categories, although their data isalso kept in the employee class.
While office staff work only internally in the union, the organizers have to
representteachers inthe areato which they have been assigned. One organizer
can represent many teachers, but one teacher can have only one organizer as
her or hisrepresentation. For this purpose, each organizer has beengivenone
vehicle, andthat vehicle may be used only by that particular organizer. Each
organizer will be assigned only one area, which can be divided into several
suburbs. The areaand suburb data are also kept in separate classes.

Theunionalso keeps records for teachers who are union members. All of these
teachers have towork ingovernmentschools. Althoughitisnotcommon, a
teacher can work in more than one school. The type of school that can liaise
with AEU has to be categorized into one of the three distinct types: primary
school, secondary school, and technical college (TechC).

Wewill draw an object-oriented model of the AEU database and determine the
type where necessary. We will identify the objects and the relationships as
follows.

* Identify Objects

Tostartwith, we know that there will be aunion object to store the data
about the AEU organization. It also has a property object that can be
divided into building and vehicle objects. Furthermore, there isaroom
object that is composed of PC and OHP objects.

Next, we will need an employee object for AEU’s employee records.
Theirtypesarealso objects: Office Staff and Organizer. For working area
and suburb, we need two new objects as well.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

22 Rahayu, Taniar and Pardede

Finally, asemployeeswill need to work with teachers, we need a teacher
object. Along with that, the additional objects of School and its special-
izations—Primary, Secondary, and TechC—will be added.

* Identify Relationships

Therewill be three types of relationships that we need to recognize before
producing the object-oriented model diagram.

First, we need to identify inheritance relationships. Inheritance can be
shown by the generalization-specialization feature. One of them is be-
tween Employee and its specializations Office Staff and Organizer.
Property can also be specialized into Vehicle and Building. And the last
oneisthespecialization of School into Primary, Secondary, and TechC.

Second, we need to identify association relationships. Thisrelation is
usually the most frequent relation inan object-relational system. Fromthe
union object there are two associations: one to Property (one to many)
and the other one to Employee (one to many). Organizer has three

Figure. 1.21. Object-oriented diagram of AEU case study

1 1

1... 1 ..
ke |
Employee wores Union has Property
. ;I

| : |

Office Staff Organizer uses 1I Vehicle || Building |
1

1

X . represents
assigned in

1 1

Teacher

teaches in

School

| Primary | | Secondary | | TechC |

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 23

association relationships, that is, associations to Vehicle (one to one),
Area (one to one), and Teacher (one to many). The last association
relation is between Teacher and School (many to many).

The last relationship type is aggregation. Building has two levels of
aggregation. Thefirstlevel ishomogeneous aggregationto Room, and the
second level is to PC and OHP. Another homogeneous aggregation
relationship is between Areaand Suburb.

After identifying the objects and their relationships, we can draw down the
object-oriented model for the AEU case study as itisshown in Figure 1.21.

Summary

Anapproach toanew model in database systemsis needed due to the limitation
ofthe relational model that iswidely used commercially. The relational model
isnotrichenoughto representthe high complexity of real-world problems. On
the other hand, the object-oriented model that is well recognized as a very
powerful approach to model high-complexity problems, such as in procedural
languages, is notawell-known database system model. Also, usersstill like the
ease of use of the relational model.

Although the mostwidely used model of current database systems isarelational
model, it can also be extended to adopt the concept of the object-oriented
model. Inan object-oriented model, the objects encapsulate their attributes
and their methods from other objects, thereby facilitating the concept of
information hiding. Thismodel alsoaccommodates the structural relationship of
classesand objects, which can be categorized into inheritance, association, and
aggregation, and the implementation of methods that consist of generic methods
and user-defined methods.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

24 Rahayu, Taniar and Pardede

References

Ambler, S.W. (1997). Mapping objects to relational databases. In Building
object applications that work. SIGS Books.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling
language user guide. Reading, MA: Addison-Wesley.

Coad, P., & Yourdon, E. (1990). Object-oriented analysis. Englewood
Cliffs, NJ: Yourdon Press.

Coad,P., & Yourdon, E. (1991). Object-oriented design. Englewood Cliffs,
NJ: Yourdon Press.

Dadam, P., et al. (1986). A DBMS prototype to support extended NF2
relations: Anintegrated view on flattablesand hierarchies. Proceedings
of the ACM SIGMOD Conference.

Deux, O. (1990). The story of O2. [EEE Transactions on Data and
Knowledge Engineering TKDE, 2(1), 91-108.

Dillon, T. S., & Tan, P. L. (1993). Object-oriented conceptual modeling.
Prentice-Hall.

Dittrich, K. R. (1989). Object-oriented database systems for information
systems of the future. In Seminar notes. Melbourne, Australia.

Halper, M., Geller, J., & Perl, Y. (1992). “Part” relations for object-oriented
databases. Proceedings of the 11th International Conference on the
Entity-Relationship Approach.

Kim, W. (1990). Introduction to object-oriented databases. The MIT
Press.

Kim, W. (1995). Modern database systems. Addison-Wesley.

Lindsay, B.G., &Haas, L. M. (1990). Extensibility in the starburst experimen-
tal database system. In IBM symposium: Database systems of the 90s
(pp.217-248). Springer-Verlag.

Rahayu, J. W., Chang, E., Dillon, T.S., & Taniar, D. (2000). A methodology
for transforming inheritance relationships inan object-oriented concep-
tual model to relational tables. Information and Software Technology
Journal, 42(8), 571-592.

Rahayu, J. W., Chang, E., Dillon, T. S., & Taniar, D. (2001). Performance
evaluation of the object-relational transformation methodology. Data and
Knowledge Engineering, 38(3), 265-300.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 25

Ramfos, A., etal. (1991). A meta-translation system for object-oriented to
relational schematranslations. In M. S. Jackson & A. E. Robinson (Eds.),
The Proceedings of the Ninth British National Conference on Data-
bases (BNCOD).

Robie, J., Lapp,J., & Achach, D. (1998). XML query language (XQL). The
Query Languages Workshop.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Prentice Hall.

Scheck, H.J., & Scholl, M. H. (1986). The relational model with relation-
valued attributes. Information Systems, 11(4).

Schwarz, P. M., Chang, W., Freytag, J. C., Lohman, G. M., McPherson, J.,
Mohan, C., etal. (1986). Extensibility in the starburst database system.
Proceedings of OODBS 1986 (pp. 85-92).

Stonebraker, M. (1986). Object management in postgres using procedures.
Proceedings of OODBS 1986 (pp. 66-72).

Stonebraker, M. (1990). The postgres DBMS. Proceedings of SIGMOD
1990 (p. 394).

Chapter Problems

1. Listfive major categories of an object-relational approach.
Discuss the static and dynamic aspects of an object-oriented model.

3. Discussthe background of object-relational DBMS (ORDBMS) devel-
opment.

4. Explainthe terms existence-dependent, existence-independent, exclu-
sive—composition, and nonexclusive composition for aggregation rela-
tionships.

5. Each postgraduate student at L University needs to maintain a list of
references that he or she needs for research. For this purpose, references
used are categorized into four types: book, article inajournal, conference
paper, and PhD thesis. A reference can be included in one type only. The
fields of eachtype of reference are listed in the following table.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

26 Rahayu, Taniar and Pardede

Reference Type Fields
Book title of the book, list of authors, publisher
Atrticle Journal title of the paper, list of authors, title of the journal,
volume, editor, publisher
Conference Paper title of the paper, list of authors, title of the conference,
publisher
PhD Thesis title of the thesis, author, school

Assuming that there are five classes, that is, References, Book,
Article_Journal, Conference_Paper,and PhD_Thesis, develop the class
hierarchy for the above description, and draw the corresponding class
diagram. You also need to identify the relationship between references
and another class, Postgraduate. Assume some attributes where neces-
sary.

6. AllBooks Library wants to extend its database by using the object-
oriented concept. For this purpose, in the database the authors are
categorized according to their backgrounds: industry based or academic.
If the author is an academic, the database needs to be further categorized
into research or teaching staff. They found that many academics are also
involved inindustry and vice versa. However, it is found thatan academic
may simultaneously be involved in both researchand teaching. Tosimplify
the database, the developer decides that an academic can only be
recorded as aresearch staff or ateaching staff depending on his or her
primaryrole.

Inthe database, the books that the authors have written or edited are kept
in a different object named Course_Manual. For each datum in
Course_Manual, there are descriptions of each chapter that are kept as
another object. Draw the diagram for the object-oriented model de-
scribed above.

7. A new fast-food company, Hungry Burger, has just opened its first
restaurantinthe country. One of itsmain menu items is called Huge Meal.
The Huge Meal package includesabig special hamburger, adrink,and a
generous-size bag of fries. The construction of the hamburger at Hungry
Burger has aspecial order that has to be followed. On the lower half of
the bun, kitchen staff will putaslice of meat patty, followed by two pieces
of lettuce, aslice of cheese, and aslice of tomato. The fries are made of
potatoes fried in grease. The hamburger and the fries may be sold
separately or with another package on the menu.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 27

Draw the aggregation diagram for Hungry Burger’s Huge Meal. Explain
the dependency, order, and also the exclusiveness where necessary.

8. TheFastRunBicycle Companyisamajor bicycleretailer. Unlike other
bicycle companies, itassembles its own bicycles to meet the customers’
requirements. The three main components are seats, frames, and wheels.
These three main components are inherited from the part class and these
parts are bought from several manufacturers. There are three categories
of bicyclesassembled by Fast Run: racing, mountain, and road bicycles.
Fromthe description given, draw adiagram for Fast Run that shows the
aggregation, inheritance, and association relationships.

Chapter Solutions

1. Fivemajorcategoriesof anobject-relational approach are as follow.

* OOCM implemented onrelational databases

» Objectwrappersonrelational systems

* Extendedrelational systems

* Object-oriented systemsand RDBMS coexistence
» OODBMSand RDBMS interoperation

2. Staticaspects of an object-oriented model include the objectand class
datastructure that facilitates encapsulation, and the relationships that can
be divided into three major divisions: inheritance, association, and aggre-
gation. The dynamic aspects of an object-oriented model include the
implementation of methods or operations, both generic methods and user-
defined methods.

3. ORDBMS is developed to add the desirable features of the object-
oriented model to the relational database system. RDBMS has been
widely used commercially and inaddition, itisalso reasonably simple to
implement. However, RDBMS cannot be used to represent certain
complexproblems.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

28 Rahayu, Taniar and Pardede

Anobject-oriented model can capture most complex-problem domains;
however, the database based on the object-oriented model, OODBMS,
isstillnotaswidely used. Itisexpected that instead of replacing the earlier
RDBMS, OODBMS will coexistin order to serve some specific problem
areas only. Therefore, the combination of both strengths have been
explored and implemented in the new database system: ORDBMS.

Existence-dependent composition is the type of aggregation where the
partobjects are totally dependent on the whole object. Thus, by removing
the whole object, we will automatically remove the part objects. Onthe
other side, existence independent is the type of aggregation where the part
objectcanstill existalthoughits whole object isremoved.

Exclusive composition isthe type of aggregation where the whole object
is the sole owner of the part object. On the other side, nonexclusive
composition isthe type of aggregation where a part object of one whole
object may be shared or referenced by other whole objects.

There isan inheritance relationship between the reference objectto the
subclasstype.

The association between Postgraduate and References is many to many,
where each reference can be used by many postgraduates, and each
postgraduate can refer to many references.

refers to

Postgraduate | 1 References
name Ul ID
address year
degree get ID ()
get_name () lr
Book Article_Journal Conference_Paper PhD_Thesis
title title title title
authors authors authors author
publisher title_journal title_conference school
year volume publisher
editor
publisher

Thereisaninheritance relationship between superclass Author and its
subclasses. There is also an aggregation relationship between the
Course_Manual and Chapter classes, which in this case ishomogeneous.
The whole object consists of part objects that are the same type.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Relational Approaches 29

Course_Manual
1

writes
Author

" homogeneous
| Industry_Based | | Academic |
[r 1.
| |
| Research_Staff | | Teaching_Staff |

7. Theaggregation at Level 1 is existence independent because the part
object can be sold separately without the whole object. Itisan exclusive
composition because one part, for example, one hamburger, canonly be
acomposite of one whole part.

The aggregation at Level 2 is existence dependent. There is room for
argument for this one. Although all parts can exist on their own, they do
nothave value. Thisaggregation isalso an exclusive composition because
one part, for example, one particular bun, can only be a part of one

particular hamburger.

1

1| 1
Hamburger | | Drink | | Fries |
T t-
N T 1] I l1...
Bun ” Meat | Lettuce ” Cheese || Tomato | Potato || Grease |

8. Bicycle is an aggregation of Seat, Frame, and Wheel. The type is an
exclusive compositionasa particular part can only be incorporated into
aparticularwhole. Itisalso an existence-dependent composition because
the seat, frame, and wheels do not have their own value at Fast Run unless
they are assembled intoabicycle.

The bicycle class also has an inheritance relationship to the racing,
mountain, and road bicycles. The parts class with the seat, frame, and
wheel classes show another inheritance relationship.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

30 Rahayu, Taniar and Pardede

Finally, there isaone-to-many association relationship between Custom-
ers and Bicycle, and a many-to-many relationship between Parts and
Manufacturers.

| Racing_Bicycle || Mountain_Bicycle || Road_Bicycle |

" sold to
o e

1

1 1 [2

| Seat || Frame || Wheel |

made by
It

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 31

Chapterll

Object-Oriented
Features in Oracle™

Inthis chapter, we will describe Oracle™ features that can be used to support
the implementation of an object-oriented model. Asan overview, Section 2.1
will outline some of the original features withinastandard relational model. The
nextsectionswill illustrate the additional object-oriented features. We will use
these new features for our implementation in the subsequent chapters.

Relational-Model Features

Inarelational model, the attributes are stored as columns of a table and the
recordsare stored as rows ofatable. Asin moststandard RDBMSs, Oracle™
provides a create-table statement following the SQL standard. After the
declaration of the table name, we define the attributes’ names and their data
types. We can also perform the checking of attribute value. In the table,
Oracle™ enables users to determine the uniqueness of the records by defining
the primary key.

Oracle™ also enablesthe usage of a foreign key. The foreign-key attribute in
atablereferstoanotherrecordinanother table. In addition to the foreign key,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

32 Rahayu, Taniar and Pardede

Figure 2.1. Create-table statement

General Syntax:

CREATE TABLE <table schema>

(key attribute NOT NULL,
attribute attribute type,
attribute attribute type
[CHECK (<attribute value> IN (set of values))]
PRIMARY KEY (key attribute));
Example:

CREATE TABLE Employee

(id VARCHAR2 (10) NOT NULL,
name VARCHAR?2 (20) ,
address VARCHAR?2 (35),
emp_type VARCHAR2 (8)
CHECK (emp_type IN (‘Manager’, ‘Worker’)),

PRIMARY KEY (id));

we can specify the referential integrity constraint every time we want to
manipulate the target of a foreign-key reference. There are three types of

constraint.

* Restrict: The manipulation operation isrestricted to the case where there

are no such matching attributes; itwill be rejected, otherwise.

* Cascade: The manipulation operation, such as delete and update,

cascades to the matching attributes.

* Nullify or set null: The manipulation operation isdone after the foreign

key issettonull.

Oracle™ performsthe restrict integrity constraintas default. It prevents the
update or deletion ofasuperclass key if there isarow in the subclass table that
isreferencing the key. However, Oracle™ provides only an on-delete integrity
constraint. Therefore, to perform integrity constraint on other manipulations

suchasinsertand update, we might need to use triggers.

Once we have created the table, we can perform the data manipulation. The
manipulation can take form in the insertion, deletion, or update of data. The

syntax of each of these is shown.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 33

Figure 2.2. Create table with referential integrity checking

General Syntax:

CREATE TABLE <table schema> OF <object schema>

(key attribute NOT NULL,

attribute attribute type,
PRIMARY KEY (key attribute),
FOREIGN KEY (key attribute)

REFERENCES <referenced table schemas(key attribute)
[ON DELETE][CASCADE/SET NULL]) ;

Example:

CREATE TABLE Student

(id VARCHAR2 (10) NOT NULL,
course VARCHAR2 (10) ,
year VARCHAR2 (4) ,

PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE) ;

Figure 2.3. Data manipulation in Oracle™

General Syntax of Insertion:

INSERT INTO <table schema> [(attribute,,attribute)]
VALUES (attribute value,,attribute value);
Example:

INSERT INTO Student
VALUES ('1001’, ‘BEng’, ‘2005');

General Syntax of Deletion:

DELETE FROM <table schema>
WHERE <statements>;

Example:

DELETE FROM Student
WHERE id = '1001’;

General Syntax of Update:
UPDATE <table schemas>
SET <statements>

WHERE <statements>;
Example:

UPDATE Student

SET year = ‘2005’
WHERE id = ‘1001’;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

34 Rahayu, Taniar and Pardede

Object-Oriented Features

More recentcommercial RDBMSs such as Oracle™ 8 and above (Loney &
Koch, 2000, 2002; ORACLE™ 8, 1997) have extended their database
systems with object-oriented features. In Oracle™ 8 and above, these features
include enhancement of the existing data types with new data types including
object typesand user-defined types, and so forth.

Object Types and User-Defined Types

In Oracle™, a statement “create type” is used to create a new data type
(object type) that can then be used as a generic type to create a table using the
statement “create table,” or to create another data type. The general syntax for
these two create statements is shown in Figure 2.4. “As object” is used after
creating an object type. Note that “or replace” is optional. By having this
additional phrase, an object with the same name will automatically be replaced
with the newest version of the object type. Figure 2.4 also shows an example
of using object type Person_T as an attribute type in a new table, Course.

Figure 2.4. Oracle™ object type

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS OBJECT
(attribute attribute type,,
attribute attribute type)

/

Example:

CREATE OR REPLACE TYPE Person T AS OBJECT

(person_id VARCHAR2 (10) ,
person_name VARCHAR2 (30))
/
CREATE TABLE Course
(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (20) ,
lecturer Person T);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 35

Figure 2.5. Oracle™ varying array type

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS VARRAY(n) OF (object/data
type)

/

Example:

CREATE OR REPLACE TYPE Persons AS VARRAY(3) OF Person T
/

CREATE TABLE Course

(course id VARCHAR2 (10) ,
course_name VARCHAR2 (20) ,
lecturer Persons) ;

Collection Types

Oracle™ allows the creation of an array type (varray or varying array). The
syntax is basically using the same statement “create type” with the additional
statement “as varray(») of” followed by the object or the data type. Following
Figure 2.4, itis possible to have more than one lecturer for a particular course,
and therefore a new array of Persons can be defined.

Another extension is the support of nested tables, as shown in Figure 2.6. To
create a table object, we use the same “create type” statement with the
additional “as table of” statement following the name of the object table. This
objecttable canthen be used asacolumninatable. When atable type appears
asthetypeofacolumninatable orasanattribute of the underlying object type,
Oracle™ storesall of the nested table data inasingle table, which isassociated
with the enclosing table or object type. Every time we create a table with
columnsor column attributes whose type isa nested table, we have to include
the nested-table storage clause, “nested table (object table column schema)
store as” followed by the separate storage-table name. Using the previous
example from Figure 2.4, another data type called Person_Table_T canbe
created based on the Person_T data type to store the instances of a person.
Note that Oracle™ 9 and above have also enabled users to create multilevel
nested tables.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

36 Rahayu, Taniar and Pardede

Figure 2.6. Oracle™ nested table

General Syntax:

CREATE [OR REPLACE] TYPE <object table schema> AS TABLE OF (object

schema)

/

CREATE TABLE <table schema>
(attribute attribute type,,
attribute attribute type,
nested item object table schema);

NESTED TABLE nested item STORE AS storage table schema;

CREATE TABLE <table schemas>
(attribute attribute type,,
outer nested item object table schema);
NESTED TABLE <outer nested item>
STORE AS <outer storage table schema>
(NESTED TABLE <inner nested item>
STORE AS <inner storage table schemas);

Example:
CREATE OR REPLACE TYPE Person T AS OBJECT
(person_id VARCHAR2 (10) ,

person_name VARCHAR2 (30))
/

CREATE OR REPLACE TYPE Person Table T AS TABLE OF Person T
/

CREATE TABLE Course

(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (20) ,
lecturer Person_Table)

NESTED TABLE lecturer STORE AS Person_tab;

Object Identifiers

Inan object-oriented system, the OID is system generated and is used as a
referenceto locate the particular object. In Oracle™, the notion of an OID as
alogical pointer is not supported; however, the concepts of an OID to uniquely
identifyarecord (i.e.,asaprimary key) can be used. Thisis particularly useful
inadeep inheritance hierarchy, where all subclasses have to carry the OID of
the superclass inorder to establish the connection between the superclass and
itssubclasses.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 37

Figure 2.7. Oracle™ object-identifiers implementation

General Syntax:

CREATE TABLE <table schema> OF <object schemas
(key attribute NOT NULL,

attribute attribute type,
PRIMARY KEY (key attribute),
FOREIGN KEY (key attribute)

REFERENCES <referenced table schemas (key attribute) ;
Example:

CREATE OR REPLACE TYPE Person T AS OBJECT

(person_id VARCHAR2 (10) ,
person_name VARCHAR2 (30))

/

CREATE OR REPLACE TYPE Employee T AS OBJECT

(person_id VARCHAR2 (10) ,
title VARCHAR2 (10) ,
salary NUMBER)

/

CREATE TABLE Person OF Person T
(person_id NOT NULL,
PRIMARY KEY (person_id));

CREATE TABLE Employee OF Employee T
(person_id NOT NULL,
PRIMARY KEY (person_id),
FOREIGN KEY (person_id) REFERENCES Person(person id)) ;

Figure 2.7 illustrates the implementation of using OID to keep the inheritance
between the superclass and its subclasses. Note that we can create atable from
anobjectand determine the primary keys and foreign keys inthistable. Every
time we determine the foreign key, we have to use a “references” statement
followed by the table and the column that is being referred. The general syntax
forthis primary key and foreign key implementationisshownin Figure 2.7. The
table created isderived from an object type. Thus, we do not have to specify
the attribute type anymore. They have to be identified while we create the
objecttype. Note, however, that we can add a constraint “not null”” statement
toavoida“null” value of an attribute. It is needed for particular attributes.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

38 Rahayu, Taniar and Pardede

Figure 2.8. Oracle™ relationship using object references

General Syntax:

CREATE TABLE <table schema>
(object REF (object schema) [SCOPE IS (table schema)l]);

Example:

CREATE OR REPLACE TYPE Person T AS OBJECT
(person_id VARCHAR2 (10) ,
person_name VARCHAR2 (30))

/

CREATE TABLE Academic_Staff OF Person T;

CREATE TABLE Course
(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (20) ,
lecturer REF Person T SCOPE IS Academic_ Staff);

Relationships using Ref

Oracle™ providesaway of referencing from one object to another by using the
keyword ref. This object-referencing technique can be used to replace the
standard “join” operations to traverse from one object to another.

We canthenrunaquery:

SELECT C.course name

FROM Course C
WHERE C.lecturer.person name = 'Rahayu';

Inthe example above, the “scope is” statement is used to specify the exact table
being referenced by the object. Whenever the scope parameter is used, the
database engine will performajoin operation, which can be optimized using
indexes. Onthe contrary, if the scope parameter is omitted and more than one
table has been created using the given object type, the database engine will
navigate through aset of object reference values in order to identify the location
of the requested records (Dorsey & Hudicka, 1999).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 39

Inthe following chapters, we will not use the “scope is” parameter in our table-
creation statement. In most situations, we will not build more than one table for
each object type we declared, thereby avoiding the situation where the
database engine has to navigate through anumber of object references. When
only onetableiscreated for the object type, the ref operator will directly point
tothe associated reference.

Cluster

Oracle™ provides a clustering technique that can be very useful for an
aggregationrelationship. A cluster is created and will be defined interms of all
componentsthattake partinthe aggregation relationship, asisshown in Figure
2.9.

Figure 2.9. Oracle™ cluster

General Syntax:

CREATE CLUSTER <cluster schemas>
(cluster attribute attribute type);

CREATE TABLE <table schemas>

(cluster attribute attribute type,
attribute attribute type,,
attribute attribute type)

CLUSTER <cluster schema> (cluster attribute);
CREATE INDEX <index schema> ON CLUSTER <cluster schemas;
Example:

CREATE CLUSTER HD Cluster
(hd_id VARCHAR2 (10)) ;

CREATE TABLE Hard_DiSk
(hd_id VARCHAR2 (10) NOT NULL,
capacity VARCHAR2 (20) ,
PRIMARY KEY (hd_id))
CLUSTER HD Cluster (hd_id) ;

CREATE INDEX HD Cluster Index
ON CLUSTER HD Cluster;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

40 Rahayu, Taniar and Pardede

Inheritance Relationships using Under

Oracle™ 9 and above have a new feature that accommodates inheritance-
relationship implementation. We do not have to use a primary-foreign-key
relationship in order to simulate the relationship between a superclass and its
subclasses.

To implement subtypes, we need to define the objectas “not final” at the end
of itstype declaration. By default, without the keyword, the object type will be
treated as final and no subtypes can be derived from the type. Oracle™
provides the keyword under to be used with the statement “create type” to
create a subtype of a supertype such as shown in Figure 2.10.

Figure 2.10. Oracle™ “under” features

General Syntax:

CREATE [OR REPLACE] TYPE <super-type object schema> AS OBJECT

(key attribute attribute type,
attribute attribute type, ...,
attribute attribute type) [FINAL|NOT FINAL]

/

CREATE [OR REPLACE] TYPE <sub-type object schema> UNDER <super-type
object schema>

(additional attribute attribute type,

additional attribute attribute type)

[FINAL|NOT FINAL]
/

CREATE TABLE <super-type table schema> OF
<super-type object schema>

(key attribute NOT NULL,

PRIMARY KEY (key attribute));

Example:

CREATE OR REPLACE TYPE Person T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (20) ,
address VARCHAR2 (35)) NOT FINAL
/
CREATE OR REPLACE TYPE Student_T UNDER Person_ T
(course VARCHAR2 (10) ,
year VARCHAR2 (4))

/

CREATE TABLE Person OF Person_ T
(id NOT NULL,
PRIMARY KEY (id);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 41

Encapsulation

Oracle™ providestwo different types of encapsulation for an object-relational
model. The first is through stored procedures or functions. The second is
through member procedures or functions.

Stored Procedure or Function

Thedeclaration of astored procedure or function is basically very similar tothe
standard procedure declaration in many procedural languages. The encapsu-
lation is provided by giving a grant to a specific role or user to access the
particular stored procedure or function.

We need to use a “create procedure” statement. As in other create statements,
the “orreplace” statementis optional.

Astored procedure can have parameters attached to it, each of which must be
followed by its type. We can also add the mode of the parameters between the
parameter and the parameter type thatis optional. There are three parameter
modes (Oracle™, 1998).

* In.Thevalueofthe actual parameter is passed into the procedure when
the procedure isinvoked. Inside the procedure, the formal parameter is
consideredread only: It cannot be changed. Then the procedure finishes
and control returnsto the calling environment; the actual parameter is not
changed.

* Out. Anyvalue theactual parameter has whenthe procedureiscalledis
ignored. Inside the procedure, the formal parameter is considered write
only; it can only be assigned to and cannot be read from. When the
procedure finishes and control returns to the calling environment, the
contents of the formal parameter are assigned to the actual parameter.

* InOut. Thismode isacombination of the two previous modes. The value
ofthe actual parameter is passed into the procedure when the procedure
isinvoked. Inside the procedure, the formal parameter can be read from
and written to. When the procedure finishes and control returns to the
calling environment, the contents of the formal parameter are assigned to
the actual parameter.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

42 Rahayu, Taniar and Pardede

Figure 2.11. Stored-procedures general syntax

General Syntax:

CREATE [OR REPLACE] PROCEDURE <procedure name>
[parameter [{IN | OUT | IN OUT}] parameter type,

parameter [{IN | OUT | IN OUT}] parameter type)] AS
[local variables]

BEGIN
<procedure body>;
END <procedure names;

GRANT EXECUTE ON <procedure name> TO <user>;
Example:

CREATE OR REPLACE PROCEDURE Delete Student (
delete_id Student .id%TYPE) AS

BEGIN
DELETE FROM Student
WHERE id = delete id;
END Delete Student;
/
GRANT EXECUTE ON Delete Student TO Principal;

The stored procedure can have local variablesinit. These are variablesthatare
used only inthe procedure body. Within the procedure body, we can use SQL
statements such as select, insert, update, and delete. Thus, methods thatare
used to manipulate the database tables can be encapsulated within stored
procedures. To runthe procedure, we use the general syntax below.

General Syntax to Run the Stored Procedure:
EXECUTE procedure name [parameter, ..., parameter];
EXECUTE Delete Student['1001’];

Apart from stored procedures, stored functions are also available. Similar to
stored procedures, stored functions can be likewise declared asin Figure 2.12.
Note that for a function, we have to declare the type of the return value after

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 43

Figure 2.12. Stored-functions general syntax

General Syntax:

CREATE [OR REPLACE] FUNCTION <function namex>
[parameter [{IN}] parameter type,

parameter [{IN}] parameter type)]
RETURN datatype IS

[local variables]

BEGIN
<function bodys>;
RETURN value;

END <function names;

Example:

CREATE OR REPLACE FUNCTION Student Course (
s_id Student .id%TYPE)
RETURN VARCHAR2 IS

v_course VARCHAR (10) ;

BEGIN

SELECT course INTO v_course
FROM Student
WHERE id = s_id;

RETURN v_course;

END Student Course;

/

we declare the function name. In addition, a stored function can take “in”
parametersonly.

Member Procedure or Function

Member procedures and member functions are physically implemented as PL
or SQL procedures or functions, and they are defined together within the
specification of the object type. Figure 2.13 demonstrates the general syntax.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

44 Rahayu, Taniar and Pardede

Unlike stored procedures, by using member methods we can identify the
visibility scope of the methods. There are three types: public, private, and
protected. By default, the attributes will be declared public.

Publicattributesare visible fromthe class’ interface (Fortier, 1999) and can be
accessed by other types, tables, or routines. Private attributes are only visible
frominternal methods and will not be visible from outside the class specifica-
tion. Finally, protected attributes are accessible from its own class or from any
table or methods that use the class as a subtype.

The biggestadvantage of methods over stored routines is the visibility gained
by being part of the class. Methods will have access to attributes, procedures,
and functions that may not be visible at the class interfaces (private or
protected). Onthe other hand, astored routine does not have access to these
types of attributes, procedures, and functions.

Furthermore, the visibility of the methods inside a class can also be specified
asprivate and protected. Same as attributes, the private methods can only be
accessed by internal methods inside the particular class, and protected meth-
ods can be accessed only by its own user-defined types or any supertype
interface of the particular class. We cannotapply this for stored routines.

Figure 2.14 shows an example of different visibility scopes of attributes and
methods. All the attributes in Person are declared publicand thus can be visible
outside of the type interface. Some attributes in Staff, however, are declared
private and protected. These attributes require additional internal methods for
access, such as the function RetrieveTotalPayment to access the attributes
StaffPayRate and StaffCommRate, and return the total payment. The function
RetrieveStaffPhone in Person can be used to access the protected attribute in
its subtype, StaffPhone. The procedure RetrievePersonDetail can be used to
retrieve the attributes inside Person, including the private function
RetrieveStaffPhone.

Finally, member methods have substitutability featured in the inheritance
structure. Very often, whenwe insert datainto atable, we wish to store different
subtypes derived fromasingle or multiple supertypes. Using stored routines,
we will require adifferent routine for adifferent parameter. With the substitut-
ability feature, an instance of a subtype can be used in every context where an
instance of asupertype can be used (Fortier, 1999). The context includes the
use of different subtypes as parameters of the same function.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 45

Figure 2.13. Method implementation of member procedure

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS OBJECT
(attribute attribute types,

attribute attribute types,

MEMBER PROCEDURE <procedure name>
[(parameter [{IN | OUT | IN OUT}] parameter type,

parameter [{IN | OUT | IN OUT}] parameter type)],

MEMBER FUNCTION <function namex>
[(parameter [{IN}] parameter type,

parameter [{IN}] parameter type)]
RETURN datatype) ;
/
CREATE [OR REPLACE] TYPE BODY (object schema) AS

MEMBER PROCEDURE <member procedure names
[parameter [{IN | OUT | IN OUT}] parameter type,

parameter [{IN | OUT | IN OUT}] parameter type)] IS
[local variables]

BEGIN
<procedure body>;

END <member procedure names>;

MEMBER FUNCTION <function name>
[parameter [{IN}] parameter type,

parameter [{IN}] parameter type)]
RETURN datatype IS

[local variables]
BEGIN
<procedure body>;

END <member function names;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

46 Rahayu, Taniar and Pardede

Figure 2.13. (continued)

Example:

CREATE OR REPLACE TYPE Student T AS OBJECT

(id VARCHAR2 (10) ,
course VARCHAR2 (20) ,
year VARCHAR2 (4) ,

MEMBER PROCEDURE
Delete_ Student)
/

CREATE OR REPLACE TYPE BODY Student T AS

MEMBER PROCEDURE
Delete_Student IS

BEGIN

DELETE FROM Student

WHERE Student.id = self.id;
END Delete_Student;

END;
/

Figure 2.14. Visibility scope inside a class

CREATE TYPE Person

(PersonlID VARCHAR (10) ,
FirstName VARCHAR (20) ,
LastName VARCHAR (20) ,
Domicile ADDRESS,
BirthDate DATE,

PRIVATE FUNCTION RetrieveStaffPhone,
PUBLIC PROCEDURE RetrievePersonDetail) ;

CREATE TYPE Staff UNDER PERSON

(PUBLIC StaffStartDate DATE,

PROTECTED StaffPhone CHAR(10),

PRIVATE StaffPayRate DECIMAL(5,2),
PRIVATE StaffCommRate DECIMAL(5,2),

PUBLIC FUNCTION RetrieveTotalPayment)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 47

Figure 2.15. Member-methods substitutability

CREATE TYPE <objectl schemas

(attr; data type, ..., Original
attr; data type, Method
PROCEDURE <procedurel name> (4+—

param; parameter type data type, ...,
param, parameter type data type);
) NOT FINAL/

CREATE TYPE <object2 schema> UNDER <objectl schemax>
(attr: data type, ...,
attr; data type,

OVERRIDING PROCEDURE <procedurel name>(g———

param; parameter type data type, ..., o

param, parameter type data type); Overriding

)/ Method
Summary

Similar to many other DBMSs, Oracle™ was first targeted for RDBs. It has
supported standard relational features in SQL including the data-definition
language and the data-manipulation language. Due to the increased demand of
amore powerful database, Oracle™ hasadded some object-oriented features
into its DBMS. This chapter introduces some of them including the object type,
collectiontype, inheritance, nested tables, and so forth. A list of references
below provides more information on the syntax and definition of the features
described inthis chapter.

References

Dorsey, P., & Hudicka, J. (1999). Oracle™ 8§ design using UML object
modelling (chap. 1). Oracle Press, Osborne McGraw Hill.

Fortier, P. (1999). SQL3 implementing the SQL foundation standard.
McGraw Hill.

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

48 Rahayu, Taniar and Pardede

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. UsingOracle™, create atable to store book records. Each record has the
title, the author, the publisher, and the ISBN (International Standard
Book Number) that uniquely differentiate the book.

2. Continuing from Question 1, now we wantto refer the attribute publisher
into atable Publisher that has “name” as the primary key. If adeletionis
performed in the publisher table, the associated referring key will be
nullified. Alter your create-table statement from Question 1.

3. Writeastatementin Oracle™ toimplementan ordered collection type of
the 20 most expensive book prices in abookstore.

4. AsinQuestion1, youwantto create atable Book. However, you want
to instantiate the table from aspecified Book_Type. Write the create-type
and create-table statement.

5. Movie Guide magazine wants to keep a database of directors and the
filmsthatthey directed. The director table has the attributes of name, age,
andresidence. The filmis saved asan object with the attributes of title,
genre, year, and rating. Asadirector may direct more than one film, the
filmobjectisimplemented into the director table using a nesting technique.
Show the implementation of the relationships described.

6. Discussbriefly the two mechanisms of encapsulation to implement meth-
odsoroperations inan object-relational DBMS.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features in Oracle™ 49

Chapter Solutions

1. Weuseacreate-table statementwith the attributes of ISBN, title, author,
and publisher. The primary key is the ISBN attribute.

CREATE TABLE Book

(isbn VARCHAR2 (10) NOT NULL,
title VARCHAR2 (100) ,
author VARCHAR2 (100) ,
publisher VARCHAR2 (50),

PRIMARY KEY (isbn));

2. Weassumethetable Publisheralready exists.

CREATE TABLE Book

(isbn VARCHAR2 (10) NOT NULL,
title VARCHAR2 (100) ,
author VARCHAR2 (100) ,
publisher VARCHAR2 (50),

PRIMARY KEY (isbn),
FOREIGN KEY (publisher) REFERENCES Publisher
(Name) ON DELETE NULLIFY) ;

3. Foranordered collection with only one data element (in this case the
price), we can use varray.

CREATE OR REPLACE TYPE prices AS VARRAY (20) OF
NUMBER (12, 2)
/

4. First, create the type and then follow this by creating the table.

CREATE OR REPLACE TYPE Book Type AS OBJECT

(isbn VARCHAR2 (10),
title VARCHAR2 (100) ,
author VARCHAR2 (100) ,
publisher VARCHAR2 (50))
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

50 Rahayu, Taniar and Pardede

CREATE TABLE Book OF Book Type
(isbn NOT NULL,
PRIMARY KEY (isbn),
FOREIGN KEY (publisher) REFERENCES Publisher (name)

ON DELETE NULLIFY) ;

5. For a nested table, we have to create the object type followed by an
object table before we can nestitto the table as an attribute.

CREATE OR REPLACE TYPE Film T AS OBJECT

(title VARCHAR2 (50) ,
genre VARCHAR?2 (10) ,
year NUMBER,
rating VARCHAR2 (10))
/
CREATE OR REPLACE TYPE Film_Table_T AS TABLE OF
Film T
/
CREATE OR REPLACE TYPE Director_T AS OBJECT
(name VARCHAR2 (20) ,
age NUMBER,
residence VARCHAR2 (20) ,
filmography Film Table T)

/

CREATE TABLE Director OF Director T
(name NOT NULL,
PRIMARY KEY (name))
NESTED TABLE filmography STORE AS Film tab;

6. The two mechanisms are encapsulation using stored procedures or
functions with grants, and encapsulation using member procedures or
functions.

The first mechanism is based on pure RDBMS practice. Itisaspecific
method for accessing the data that can be privileged to certain usersby a
grantmechanism. The second mechanism is based on an object-oriented
model where the methods are encapsulated inside the class with the
attributes. They are usually called member methods such as member
procedures and member functions.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 51

Chapter I11

Using Object-Oriented
Features

In Chapter I, we discussed the different featuresavailable in Oracle™ thatcan
be used to implementan object-oriented model. We will use those featuresin
this chapter. The discussion in this chapter will be categorized based on the
relationship types.

There are three distinct relationship types that we have to consider in object-
oriented modeling forimplementation in object-relational databases: inherit-
ance, association, and aggregation. Some manipulations will be needed in order
toaccommodate the features of these relationships.

Using Inheritance Relationships

The conceptof inheritance, where an object orarelation inherits the attribute
(and methods) of another object, is not supported in the older versions of
Oracle™ (priorto Oracle™ 9). The implementation of an inheritance relation-
shipisestablished using primary-key and foreign-key relationships (shared ID)
inorder to simulate the relationship between a superclass and its subclasses.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

52 Rahayu, Taniar and Pardede

Union Inheritance Implementation

Figure 3.1showsan inheritance relationship of union type. Itdeclares that the
union of a group of subclasses constitutes the entire membership of the
superclass. Inaunion inheritance, we know thatevery object in the superclass
isanobjectof at least one of the subclasses. In the example (see Figure 3.1),
the union type does not preclude amember of a subclass from being amember
ofanother subclass. For example, a person who isastaff member may also be
astudentatthat university.

In order to simulate the union inheritance, Student and Staff will carry the
primary key of the superclass, Person, intheir relational tables. The primary key
of the superclassbecomesaforeignkey inthe subclasses. The foreign keysin
the subclasses are also their primary keys. It becomes the main difference
between the primary-key and foreign-key relationships inassociationandin
inheritance. Thus, in Figure 3.1 itisnoted that the primary key of Person is also
the primary key of both Studentand Staff. Atthe same time, the constraint of
the primary-key and foreign-key relationship between the ID attributes in
Studentand Staff and the ID in Person is maintained in order to make sure that
each studentand staff isalso a person. Thus, we have to specify the referential
integrity constraintevery time we wantto manipulate the target of a foreign-key
reference.

If we use the newer Oracle™ version, which supports inheritance using the
“under” keyword, we can create Student and Staff subclasses under the
superclass Person. The implementation isshown in Figure 3.3. Note that for
union inheritance, we need to create one table each for the superclass andall
the subclasses. As can be seeninthe later sections, thisunion inheritance has
adifferentway of implementation compared with other inheritance types. Using

Figure 3.1. Union inheritance

Person
1D
name
address

ZP‘ union

[1
Student Staff

course department
year room_no

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features

Figure 3.2. Implementation of union inheritance

53

CREATE TABLE Person

(id VARCHAR2 (10) NOT NULL,
name VARCHAR?2 (20) ,
address VARCHAR?2 (35) ,

PRIMARY KEY (id));

CREATE TABLE Student

(id VARCHAR2 (10) NOT NULL,
course VARCHAR2 (10) ,
year VARCHAR2 (4) ,

PRIMARY KEY (id),

CREATE TABLE Staff

(id VARCHAR2 (10) NOT NULL,
department VARCHAR2 (10),
room_no VARCHAR2 (4) ,

PRIMARY KEY (id),

FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE) ;

FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE) ;

Figure 3.3. Implementation of union inheritance using “under”

CREATE OR REPLACE TYPE Person T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (20) ,
address VARCHAR2 (35)) NOT FINAL

/

CREATE TABLE Person OF Person T
(id NOT NULL,
PRIMARY KEY (id)):;

CREATE OR REPLACE TYPE Student T UNDER Person T
(course VARCHAR2 (10) ,
year VARCHAR?2 (4))

/

CREATE TABLE Student OF Student T
(id NOT NULL,
PRIMARY KEY (id)):;

CREATE OR REPLACE TYPE Staff T UNDER Person T
(department VARCHAR2 (10),
room no VARCHAR2 (4))
/

CREATE TABLE Staff OF Staff T
(id NOT NULL,
PRIMARY KEY (id)):

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

54 Rahayu, Taniar and Pardede

the “under” keyword, normally we do not need to create separate tables for the
subclasses because the table created for the superclass can also be used to
store the instances of the subclasses. However, in this union type of inheritance,
we need to allow a particular person to be both a student as well as a staff. If
we are to store all instances into one superclass table, we will not be able to
store the two records together as they will violate the primary-key constraints
(i.e.,tworecords with the same ID). Therefore, we need to create a separate
table for each of the subclasses to allow the same person’s record to appear
in both the Student as well as Staff tables. We also need to create a table for
Person to store persons who are neither staff members nor students.

Mutual-Exclusion Inheritance Implementation

Mutual-exclusioninheritance declaresthatagroup of subclasses inan inherit-
ance relationshipis pairwise disjointed. An example of thistype isshownin
Figure 3.4. Thisexample is called mutual exclusion because there isno manager
who isalso aworker, and vice versa. However, in this case there may be an
employee who is neither amanager nor aworker.

The bestway to handle mutual-exclusion inheritance without losing the seman-
tics of the relationship is by adding to the superclass table an attribute that
reflects the type of the subclasses or has the value null. For example (see Figure
3.4), in the table Employee, an attribute called emp_type is added. Thus,
emp_type can take the values manager, worker, or null. There are no
employees that can have two values for this attribute, such asa manager who
is also a worker simultaneously (mutual exclusion). Figure 3.5 shows the
implementation details. Note that we use the “check’” keyword for the purpose
of checking the value of an attribute ina set of values.

Figure 3.4. Mutual-exclusion inheritance

Employee
ID

name
address

VAN
mutuallexclusion
Manager Worker
annual_salary weekly_wage

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 55

Figure 3.5. Implementation of mutual-exclusion inheritance

CREATE TABLE Employee
(id VARCHAR2
name VARCHAR2
address VARCHAR2
emp_type VARCHAR2

CHECK (emp_type IN (‘Manager’, ‘Worker’, NULL)),
PRIMARY KEY (id));

10) NOT NULL,
20),
35),
8)

CREATE TABLE Manager
(id VARCHAR2 (10) NOT NULL,
annual_salary NUMBER,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Employee (id)
ON DELETE CASCADE) ;

CREATE TABLE Worker
(id VARCHAR2 (10) NOT NULL,
weekly wage NUMBER,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Employee (id)
ON DELETE CASCADE) ;

Figure 3.6. Implementation of mutual-exclusion inheritance using “under”

CREATE OR REPLACE TYPE Employee T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (20) ,
address VARCHAR?2 (35) ,
emp_type VARCHAR2 (8)) NOT FINAL

/

CREATE TABLE Employee OF Employee T
(id NOT NULL,
emp_ type CHECK (emp_ type in (‘Manager’, ‘Worker’, ‘NULL’)),
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Manager T UNDER Employee T

(annual_salary NUMBER)
/
CREATE OR REPLACE TYPE Worker T UNDER Employee T
(weekly wage NUMBER)
/

Using the newer Oracle™ version for the same example, we can create
Manager and Worker subclasses under the superclass Employee (see Figure
3.6). Notice that in this type of inheritance, we create only one table for the
superclass. We do not need subclass tables because an object can be amember

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

56 Rahayu, Taniar and Pardede

ofonly one subclass. These subclasses are instantiations of the superclass. Also
notice thatalthough the table is created from the superclass table, Oracle™
maintains the integrity constraint between the subclass and the superclasstable.
We cannot delete the subclass while the superclass table still exists.

Inthis case, an employee can only be a manager, aworker, or neither. Ifan
employee is neither amanager nor aworker, he or she isonly an object of the
superclass, Employee. If anemployee isamanager, forexample, he or she will
be an object of the subclass Manager. Thus, the employee will have all of the
attributes of the Manager type and all other attributes thatare inherited fromthe
Employee type. However, all of the subclass tables can be kept in the
superclasstable.

Partition Inheritance Implementation

Partition inheritance declaresthatagroup of subclasses partitionsasuperclass.
A partition requires that the partitioning sets be pairwise disjointed and that
their union constitute the partitioned set. Therefore, a partition type can be said
to be a combination of both union and mutual-exclusion types. Figure 3.7
shows anexample of a partition type of inheritance. We use the example of an
employee again, but here anew class, Casual, isadded, and itisassumed that
each member of the Employee class must belong to one and only one of the
classes Manager, Worker, and Casual. For example, anemployee cannot be
both amanager and a casual.

Similartothe other types of inheritance, the best way to map the partition type
of inheritance into tables is to have one table for each superclass and one for

Figure 3.7. Partition inheritance

Employee
ID

name
address

ZF partition

I I 1
Manager Worker Casual
annual_salary weekly_wage hourly_rate

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 57

each subclass. Like the mutual-exclusion type, anew attribute emp_typeis
added to the superclass table. The difference is that this new attribute has a
constraint, which is “not null.” This will ensure that each superclass object
belongstoaparticular subclass type. Italso ensures that no superclass object
belongs to more than one subclass. Figure 3.8 shows an example of the
implementation of partition inheritance. Notice that the attribute emp_typeis
also needed inthe Employee table with the “not null” constraint.

The newer Oracle™ version can alsoaccommodate this inheritance type. Itis
very similar to the implementation in the mutual-exclusion type. The only
difference isthe constraintofemp_type inthe Employee table asisshownin
Figure 3.9.

Multiple Inheritance Implementation

The lasttype of inheritance relationship is called multiple inheritance. Figure
3.10 givesan example of multiple inheritance. A Tutor class can be said to be
inheriting from overlapping classes because basically a tutor can be astudent
who isalso a staff member.

The bestway to handle this inheritance from overlapping classes is to use one
table for each superclass and one table for the subclass. Figure 3.11 givesan
example ofamultiple inheritance implementation. A Tutor class can be said to
be inheriting from overlapping classes Student and Staff.

Figure 3.8. Implementation of partition inheritance

CREATE TABLE Employee

(id VARCHAR2 (10) NOT NULL,
name VARCHAR?2 (20) ,
address VARCHAR?2 (35) ,
emp_type VARCHAR2 (8) NOT NULL
CHECK (emp_type IN (‘Manager’, ‘Worker’ ,’Casual’)),

PRIMARY KEY (id));

CREATE TABLE Manager same as in mutual exclusive inheritance
CREATE TABLE Worker same as in mutual exclusive inheritance

CREATE TABLE Casual
(id VARCHAR2 (10) NOT NULL,
hourly rate NUMBER,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Employee (id) ON DELETE CASCADE) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

58 Rahayu, Taniar and Pardede

Figure 3.9. Implementation of partition inheritance relationship using
“under”

CREATE OR REPLACE TYPE Employee T AS OBJECT

(id VARCHAR2 (10) ,

name VARCHAR?2 (20) ,

address VARCHAR2 (35) ,

emp_type VARCHAR2 (8)) NOT FINAL
/

CREATE TABLE Employee OF Employee T
(id NOT NULL,
emp type NOT NULL
CHECK (emp_type in (‘Manager’, ‘Worker’, ‘Casual’)),
PRIMARY KEY (id)) ;

CREATE TYPE Manager T same as in mutual exclusive inheritance
CREATE TYPE Worker T same as in mutual exclusive inheritance

CREATE OR REPLACE TYPE Casual T UNDER Employee T
(hourly rate NUMBER)
/

Figure 3.10. Multiple inheritance

University_Person

1D
name
address

AN

Student Staff
CTOUTSE department
year room_no

V\/

Tutor
o_fours
rate

At the time of this writing, the newer Oracle™ does not support multiple
inheritance using the “under” keyword. This keyword isapplicable only to the
single inheritance type. However, this multiple inheritance concept is often
simulated using other existing techniques. For example, we can use the “under”
keyword to implement one inherited parent, and use an association type to link
to the other parent. The drawback of using this technique isthat only the parent
type implemented using “under” can be inherited, and therefore we have to be
careful when choosing which parentto inheritand which one to associate.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 59

Figure 3.11. Implementation of multiple inheritance relationship

CREATE TABLE Person

(id VARCHAR2 (10) NOT NULL,
name VARCHAR2 (20) ,
address VARCHAR2 (35) ,

PRIMARY KEY (id));

CREATE TABLE Student

(id VARCHAR2 (10) NOT NULL,
course VARCHAR2 (10) ,
year VARCHAR2 (4) ,

PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE) ;

CREATE TABLE Staff

(id VARCHAR2 (10) NOT NULL,
department VARCHAR2 (10),
room_no VARCHAR2 (4) ,

PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE) ;

CREATE TABLE Tutor

(id VARCHAR2 (10) NOT NULL,
no_hours NUMBER,
rate NUMBER,

PRIMARY KEY (id)
FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE) ;

Using Association Relationships

Relational data structures can be related to the concepts of sets through the fact
that tuplesare notinany particular order and duplicate tuples are notallowed.
Therefore, the implementation of association relationships with a set semantic
into object-relational tables is identical to the well-known transformation of
many-to-many or one-to-many relationships from relational modeling to rela-
tional tables.

Inrelational modeling, many-to-many relationships are converted into tables in
which the primary key is a composite key obtained from the participating
entities. Should there be any attributes of the relationships, these will automati-
cally be added to the tables that represent the many-to-many relationships.
Likewise, inobjectmodeling, ifaclass hasaset relationship with another class
and the inverse relationship is also a set, the transformation of such an

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

60 Rahayu, Taniar and Pardede

association isidentical to the many-to-many relationships’ transformation from
relational modeling to relational tables where atable is created to represent the
setrelationship. This transformation strategy also enforces thateach element
withinasetcannotbe duplicated, which isrealized by the implementation of the
composite primary key of the relationship tables.

In one-to-many relationships, as in relational modeling, the primary key of the
oneside is copied to the many side to become a foreign key. In other words,
there is no special treatment necessary for the transformation of association
relationships having asetsemantic.

InOracle™, there are two ways of implementing an association relationship:
by primary-key and foreign-key relationships and by object references. Each
of these methods will be described as follows.

Creating an Association Relationship by a Primary-Key
and Foreign-Key Relationship

Thisfirstmethod isthe traditional relational implementation of connecting two
or more tables together. The placement of the foreign keys is based on the
cardinality of the association relationship, whether itis one to one, one to many,
or many to many. We will use the following object-oriented diagram to show
the implementation of association relationships.

Thefirstassociation between Studentand Course isamany-to-many relation-
ship. Athird table needs to be created to keep the relationship between the two

Figure 3.12. Object-oriented diagram for association relationships

enrolls_in

Student Course

stud_ID L. L. course_ID

stud_name course_name

1.
taught by

1

located_in

Lecturer Office
lect_ID office_ID
lect_name building_name

iy

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 61

Figure 3.13. Implementation of many to many using a primary-key and

foreign-key relationship

CREATE TABLE Course
(course_id VARCHAR2 (10) NOT NULL,
course_name VARCHAR2 (20) ,
PRIMARY KEY (course id));

CREATE TABLE Student
(stud_id VARCHAR2 (10
stud name VARCHAR2 (20
PRIMARY KEY (stud_id))

) NOT NULL,
)

CREATE TABLE Enrolls in
(course_id VARCHAR2 (10) NOT NULL,
Stud_id VARCHAR2 (10) NOT NULL,
PRIMARY KEY (course_id, stud_id),
FOREIGN KEY (course_id) REFERENCES Course
ON DELETE CASCADE,
FOREIGN KEY (Stud_id) REFERENCES Student
ON DELETE CASCADE) ;

(course_id)

(stud_id)

Figure 3.14. Implementation of one to many using a primary-key and

foreign-key relationship

CREATE TABLE Lecturer

(lect_id VARCHAR2 (10) NOT NULL,
lect _name VARCHAR2 (20),
PRIMARY KEY (lect_id));
CREATE TABLE Course
(course_id VARCHAR2 (10) NOT NULL,
course_name VARCHAR?2 (20) ,
lect id VARCHAR (10) ,

PRIMARY KEY (course_id),
FOREIGN KEY (lect id) REFERENCES Lecturer
ON DELETE CASCADE) ;

(lect_id)

connected tables. Thistable will have the primary keys

of the connected tables

as its primary (composite) key. Each of the primary keys, which form the
composite, is connected to the originated table through a primary-key and

foreign-key relationship.

The second association is aone-to-many relationship between Lecturer and
Course. Inordertoestablish the association relationship inthe implementation,
the primary key of the one side, Lecture, becomesaforeign key of the table that

holds the many side, Course.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

62 Rahayu, Taniar and Pardede

Figure 3.15. Implementation of one-to-one using a primary-key and
foreign-key relationship

CREATE TABLE Office
(office_id VARCHAR2 (10) NOT NULL,
building name VARCHAR2 (20) ,
PRIMARY KEY (office_id));

CREATE TABLE Lecturer
(lect_id VARCHAR2 (10) NOT NULL,
lect _name VARCHAR2 (20),
office id VARCHAR2(10),
PRIMARY KEY (lect_id),
FOREIGN KEY (office_id) REFERENCES Office (Office_id)
ON DELETE CASCADE) ;

Thethird association isaone-to-one relationship between Lecturer and Office.
In this type of relationship, one has to decide the participation constraint
between the two connected tables (EImasri & Navathe, 2000). There are two
types of participation constraints, namely, total and partial. In the above
example, every lecturer must be located in one particular office; thus, the
participation of the lecturer in the relationship is total. On the other hand, one
particular office may be vacant; no particular lecturer has been assigned the
room. Inthis case, the participation of the office inthe relationship is partial. In
ordertoestablish the association relationship inthe implementation, the primary
key of the table with partial participation, Office, becomesaforeign key of the
table that holds the total participation, Lecturer.

Creating an Association Relationship by Object
References

Another implementation method of association relationshipsin Oracle™ is
using object references. Instead of connecting two tables through the values of
the associated primary key and foreign key, this method allows one to directly
connect two tables through the referencing attribute. Thus, the associated
attribute that connects the two tables is not holding a value of the primary key
of the other connected table, but areference of where the connected table is
actually stored.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 63

Figure 3.16. Implementation of many to many using object references

CREATE OR REPLACE TYPE Person_ T AS OBJECT

(person_id VARCHAR2 (10) ,
person_name VARCHAR2 (30))
/

CREATE OR REPLACE TYPE Course T AS OBJECT
(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (30))

/

CREATE TABLE Student OF Person T
(person_id NOT NULL,
PRIMARY KEY (person_id)) ;

CREATE TABLE Course OF Course T
(course_id NOT NULL,
PRIMARY KEY (course_ id)) ;

CREATE TABLE Enrolls in
(student REF Person T,
course REF Course T);

Figure 3.17. Implementation of one to many using object references

CREATE OR REPLACE TYPE Person T AS OBJECT

(person id VARCHAR2 (10) ,
person_name VARCHAR2 (30))
/

CREATE OR REPLACE TYPE Course T AS OBJECT
(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (30),
course lecturer REF Person T)

/

CREATE TABLE Lecturer OF Person T
(person id NOT NULL,
PRIMARY KEY (person_id));

CREATE TABLE Course OF Course T
(course_id NOT NULL,
PRIMARY KEY (course id)) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

64 Rahayu, Taniar and Pardede

Figure 3.18. Implementation of one to one using object references

CREATE OR REPLACE TYPE Office T AS OBJECT

(office_id VARCHAR2 (10) ,
building name VARCHAR2 (20))

/

CREATE OR REPLACE TYPE Person T AS OBJECT

(person_id VARCHAR2 (10) ,
person_name VARCHAR2 (30) ,
person_office REF Office T)

/

CREATE TABLE Office OF Office T
(office_id NOT NULL,
PRIMARY KEY (office id));

CREATE TABLE Lecturer OF Person T
(person_id NOT NULL,
PRIMARY KEY (person_ id));

Figure 3.19. Association example using collection types

requires writes

Course] Book Author
course_ID 1 Alist} [Thook 1D st} {list} author 1D
course_name book_title author_name

The following figures show the implementation of many-to-many, one-to-
many, and one-to-one relationships of the example in Figure 3.17 using object
references.

In some cases, we want to have additional semantics at the many side, for
example, by incorporating an ordering semantic. Toshow more implementation
examples of association relationships involving collection types, we will extend
theexample inFigure 3.12. The additional classes are shown in Figure 3.19.
Every course will require alist of books as references. The class Book isalso
associated with alistof authors. Note that in this example we use the term /ist
torepresentan ordered collection as opposed to the earlier example of set for
anunordered collection.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 65

Figure 3.20. Implementation of one to list using object references

CREATE OR REPLACE TYPE Course T AS OBJECT

(course_id VARCHAR2 (10) ,
course_name VARCHAR2 (30))
/
CREATE OR REPLACE TYPE Book T AS OBJECT
(book_id VARCHAR2 (10) ,
book title VARCHAR2 (30) ,
course_book REF Course T)

/

CREATE TABLE Course OF Course T
(course_id NOT NULL,
PRIMARY KEY (course_id));

CREATE TABLE Book OF Book T
(book_id NOT NULL,
PRIMARY KEY (book id));

CREATE TABLE Require

(Book REF Book T,
Index_ Book NUMBER NOT NULL,
Course REF Course T) ;

The following figures show the implementation of one-to-listand list-to-list
relationships of this example using object references. Note that we have the
attribute Index_Book in table Require because we need the ordering semantic
of the book associated with a specific course.

The main difference between a listimplementation and the earlier many-to-
many association is the need to add one index attribute (e.g., Index_Authorin
Figure 3.21). Thisindex will maintain the ordering semantic within the list.

Primary Keys: Foreign Keys vs. Object References in an
Association Relationship

Anassociation relationship uses keysto provide a solid referential integrity
constraint. Asmentioned earlier, we can add constraints (cascade, restrict, and
nullify) by either using the Oracle™ system-defined constraints or by triggers.
Withthe referential integrity constraints, there will be anautomatic check onthe
table thatis being referenced before data manipulation is performed. On the

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

66 Rahayu, Taniar and Pardede

Figure 3.21. Implementation of list to list using object references

CREATE OR REPLACE TYPE Book T AS OBJECT

(book_id VARCHAR2 (10) ,
book title VARCHAR2 (30))
/
CREATE OR REPLACE TYPE Author T AS OBJECT
(author_id VARCHAR2 (10) ,
author name VARCHAR2 (30))

/

CREATE TABLE Book OF Book T
(book_id NOT NULL,
PRIMARY KEY (book_id)) ;

CREATE TABLE Author OF Author T
(author_ id NOT NULL,
PRIMARY KEY (author id));

CREATE TABLE Write

(Book REF Book T,
Index Book NUMBER NOT NULL,
Author REF Author T);

CREATE TABLE Written By

(Author REF Author T,
Index_Author NUMBER NOT NULL,
Book REF Book T);

other hand, using the object reference ref, there is no referential integrity
constraint performed. There is the possibility for an object reference to be
dangling ifthe objectitrefersto has beenaccidentally deleted.

Onesuggestiontoavoidthisisbyapplyingaforeign key to the object-reference
concept. Forexample, recalling Figure 3.18, we can create anew version to
add referential integrity into the object reference (see Figure 3.22).

Figure 3.22. Implementation of one to one using ref and references

CREATE TYPE Office T -- same as in Figure 3.18
CREATE TYPE Person T -- same as in Figure 3.18
CREATE TABLE Office -- same as in Figure 3.18

CREATE TABLE Lecturer OF Person T
(person_id NOT NULL,
PRIMARY KEY (person_ id),
FOREIGN KEY (person office) REFERENCES Office
ON DELETE CASCADE) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 67

Using Aggregation Relationships

There are two techniques that can be used in Oracle™ in order to simulate the
implementation of aggregations: the clustering technique and the nesting tech-
nique.

Implementing Existence-Dependent Aggregation using
the Clustering Technique

Inthis section we use an example of ahomogeneous aggregation relationship
between Hard Disk (HD) and HD Controller (HD_Contr; see Figure 1.13).
The Oracle™ implementation of this type of aggregation using the clustering
techniqueisshown in Figure 3.23.

Itisclear from the implementation that the clustering technique supportsonly
anexistence- dependentaggregation. Itisnot possible to have an HD controller
(partobject) thatdoes not belong to an HD (whole object). Thisisenforced
by the existence of the cluster key in all the part tables. Moreover, the example
in Figure 3.23 also shows a nonexclusive aggregation type, where each part

Figure 3.23. Implementation of existence-dependent aggregation using
the clustering technique

CREATE CLUSTER HD Cluster
(hd_id VARCHAR2 (10)) ;

CREATE TABLE Hard Disk
(hd_id VARCHAR2 (10) NOT NULL,
capacity VARCHAR2 (20) ,
PRIMARY KEY (hd_id))
CLUSTER HD Cluster (hd_id);

CREATE TABLE HD_Contr

(hd_id VARCHAR2 (10) NOT NULL,
hd_contr_id VARCHAR2 (10) NOT NULL,
description VARCHAR?2 (25) ,

PRIMARY KEY (hd id, hd _contr id),
FOREIGN KEY (hd_id) REFERENCES Hard Disk (hd_id))
CLUSTER HD_ Cluster (hd_id) ;

CREATE INDEX HD Cluster Index
ON CLUSTER HD Cluster;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

68 Rahayu, Taniar and Pardede

Figure 3.24. Implementation of exclusive aggregation using the clustering
technique

CREATE TABLE Hard Disk
(hd_id VARCHAR2 (10) NOT NULL,
capacity VARCHAR2 (20) ,
PRIMARY KEY (hd_id))
CLUSTER HD Cluster (hd_id) ;

CREATE TABLE HD Contr

(hd_id VARCHAR2 (10) NOT NULL,
hd contr id VARCHAR2 (10) NOT NULL,
description VARCHAR2 (25) ,

PRIMARY KEY (hd contr_ id),
FOREIGN KEY (hd _id) REFERENCES Hard Disk (hd id))
CLUSTER HD Cluster (hd_id) ;

object can be owned by more than one whole object. For example, HD
controller HDC1 may belongto HD1 aswellasHD2.

Depending onthe situation, the above nonexclusive type may not be desirable.
We can enforce the aggregation-exclusive type by creating asingle primary key
for the partobjectand treating the cluster key as a foreign key rather than as
partofthe primary key. Figure 3.24 shows the implementation of the previous
exampleasan exclusive type (the implementation of the cluster and the cluster
index remain the same).

Eachtimeanewrecord isinserted into the parttable, HD_Contr, the value of
the cluster key, hd_id, is searched for. If it is found, the new record will be
added to the cluster. The rows of the whole table, Hard_Disk, and the rows of
the parttable, HD_Contr, are actually stored together physically (see Figure
3.25). Theindexis created in order to enhance the performance of the cluster
storage.

Figure 3.25. Physical storage of the aggregation relationship using
cluster

hd id | capacity | hd contr id | description
HD11 | 2GB Contrlll | .,
Contrll2 |
HD12 | 6GB Contrl2l |
Contrl22 | ...
Contrl23 |

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 69

Figure 3.26. Implementation of an aggregation relationship with multiple
part objects

CREATE CLUSTER PC Cluster
(pc_id VARCHAR2 (10)) ;

CREATE TABLE PC
(pc_id VARCHAR2 (10) NOT NULL,
type VARCHAR2 (20) ,
PRIMARY KEY (pc_id))
CLUSTER PC_Cluster (pc_id) ;

CREATE TABLE Hard Disk
(pc_id VARCHAR2 (10) NOT NULL,
hd_id VARCHAR2 (10) NOT NULL,
capacity VARCHAR2 (20),
PRIMARY KEY (pc_id, hd id),
FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster (pc_id) ;

CREATE TABLE Monitor
(pc_id VARCHAR2 (10) NOT NULL,
monitor id VARCHAR2 (10) NOT NULL,
resolution VARCHAR2 (25),
PRIMARY KEY (pc_id, monitor id),
FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC Cluster (pc_id) ;

CREATE TABLE Keyboard

(pC_id VARCHAR2 (10) NOT NULL,
keyboard_id VARCHAR2 (10) NOT NULL,
type VARCHAR2 (25) ,

PRIMARY KEY (pc_id, keyboard id),
FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster (pc_id);

CREATE TABLE CPU

(pc_id VARCHAR2 (10) NOT NULL,
cpu_id VARCHAR2 (10) NOT NULL,
speed VARCHAR2 (10) ,

PRIMARY KEY (pc_id, cpu_id),
FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster (pc_id);

CREATE INDEX PC Cluster_ Index
ON CLUSTER PC_Cluster;

It is also possible to use the cluster method to implement an aggregation
relationship between awhole object with anumber of part objects. Figure 3.26
demonstrates the implementation of an aggregation between a PC with
Hard_Disk, Monitor, Keyboard, and CPU (see Figure 1.8 in Chapter 1).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

70 Rahayu, Taniar and Pardede

Figure 3.27. Physical storage of multiple-aggregation relationships using
cluster

whole id | whole attribute part ID part attribute
PCO01 | . HardDiskl |cccocue.ee.
HardDiskl |
Monitorll |
Keyboard
CPU11
PC002 | . HardDisk2
Monitor21
Keyboard
CPU21 | .

Figure 3.27 shows the physical storage of the multiple aggregation relationship
between a PC with Hard_Disk, Monitor, Keyboard, and CPU.

Implementing Existence-Dependent Aggregation using
the Nesting Technique

Another Oracle™ implementation technique for aggregation involves using
nested tables. Inthistechnique, similar to the clustering one, the part informa-
tion is tightly coupled with the information of the whole object and it is
implemented as anested table. This actually enforces the aggregation exist-
ence-dependenttype. If the data of the whole object is removed, all associated
part objects will need to be removed as well. Moreover, the data in the part
nested table is normally accessed through the whole object only. Because of
this, this nested-table technique is suitable only for the implementation of the
aggregation existence-dependent type.

Figure 3.28 describes the link between the whole and the part table inanesting
structure, whereas Figure 3.29 shows the implementation of the homogenous
aggregation depicted in Figure 1.13 using the nested-table technique.

Note that there is neither the concept of a primary key nor the integrity
constraint in the part nested table as shown in Figure 3.28. For example, ifa
particular HD controller is used by another HD from the whole table, thenall
the details of the HD controller will be written again as a separate record within
the nested table.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 71
Figure 3.28. Aggregation relationships using a nested table

HardDisk_ID Capacity

HD11 2GB [=

HD12 6GB '/ HD_Contr_ID Description

Contrlll
Contr112
Contr121
Contr122
Contr123

Figure 3.29. Implementation of aggregation relationships using nested
tables

CREATE OR REPLACE TYPE HD Contr AS OBJECT
(hd_contr_id VARCHAR2 (10) ,
description VARCHAR?2 (30)) ;

/

CREATE OR REPLACE TYPE HD Contr Table AS TABLE OF HD Contr
/

CREATE TABLE Hard Disk
(hd_id VARCHAR2 (10) NOT NULL,
capacity VARCHAR?2 (20) ,
controller HD Contr Table,
PRIMARY KEY (hd_id))
NESTED TABLE controller STORE AS HD_ Contr_ tab;

Oracle™ also facilitates multilevel nested tables and thus can be used for
implementingamultilevel aggregation relationship. Itisimplemented by using
the innerand outer table principle (see Figure 3.30). APC isanaggregation of
several HDs,and aHD isan aggregation of several HD controllers. Inthis case,
the inner table isanested table of HD controller, and the outer table isanested
table of HD. The implementation of thisaggregation isshown in Figure 3.31.

Note inthe implementation (see Figure 3.29 and Figure 3.31) that we do not
create standard tables for the HD controller. We only need to define a HD
controller type, and define itas a nested table later when we create the Hard
Disktable (for Figure 3.29) and the PC table (for Figure 3.31). Itisalso shown
that the information of the nested table is stored externally inatable called
HD_Contr_tab. Thisisnotastandard table; no additional constraints can be

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

72 Rahayu, Taniar and Pardede

Figure 3.30. Multilevel aggregation relationships using nested tables

PC_ID HardDisk

PC001

[)
PCo02 r/) HardDisk_ID Contr
(reference)

HD11
HD12
HD21 °

HD22 ° HardDisk_ID Description

(Contr11l
Contrl12

Contr121
Contr122

Figure 3.31. Implementation of multilevel aggregation relationships
using nested tables

Example:

CREATE OR REPLACE TYPE HD Contr AS OBJECT
(hd_contr id VARCHAR2 (10) ,
description VARCHAR2 (30))
/

CREATE OR REPLACE TYPE HD Contr Table AS TABLE OF HD Contr
/

CREATE OR REPLACE TYPE Hard Disk AS OBJECT
(hd_id VARCHAR2 (10) ,
capacity VARCHAR2 (20) ,
controller HD Contr Table)

/

CREATE OR REPLACE TYPE Hard Disk Table AS TABLE OF Hard Disk
/

CREATE TABLE PC
(pc_id VARCHAR2 (10) NOT NULL,
hd Hard Disk Table,
PRIMARY KEY (pc_id))
NESTED TABLE hd STORE AS HD tab
(NESTED TABLE controller STORE AS HD Contr tab);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 73

attached to this table and no direct access can be performed to this table
without going through the Hard Disk table.

Everywhole objectcan own any part object in the nesting technique, even if that
particular part has been owned by another whole object. The record of the
HD_Controbjectwill simply be repeated every time ahard disk claims to own
it. Thisshows anonexclusive type of aggregation, where a particular part object
can be shared by more than one whole object.

Because there isno standard table created for the HD controller, we cannot
have a primary key for the table, which we usually employ to enforce an
exclusive type of aggregation (see the previous clustering technique).

Itisclear from the above sections on clustering and nesting techniques that these
techniquesare suitable only for the implementation of the existence-dependent
type of aggregation. The clustering technique supports both nonexclusive and
exclusive aggregation. However, the nesting technique supports only the
nonexclusivetype.

In the following section we will see how we can implement an existence-
independenttype of aggregation.

Implementing Existence-Independent Aggregation

Toimplementthe existence-independentaggregation type inrelational tables,
an Aggregate table is created. This table maintains the part-of relationship
between the whole table and the parttables. By having one Aggregate table,
we avoid havinga link from the whole to the part that is hard coded within one
of the tables. In both the clustering and nesting techniques, the connection
between whole and part is either hard coded within the whole table (in the
nesting technique) or within the part tables (in the clustering technique). These
techniquesactually prevent us from creating independent part objects that exist
butare not necessarily connected to a particular whole atany giventime.

Inthe Aggregate table, only the relationships between the identifiers of the
whole table and the part tables are stored. To maintain consistency in the
Aggregate table, the identifiers across different part tables should be kept
unique. Ifthe number of the part tables is more than one, a new attribute type
isused todistinguish the different types of the part tables.

Figure 3.32 shows an existence-independent aggregation, where lab is an
aggregate of Computer, Printer, and Scanner. There are times when we have

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

74 Rahayu, Taniar and Pardede

Figure 3.32. Existence-independent type of aggregation

Lab
Lab_ID
location
1

1. 1. 1.
Computer Printer Scanner
comp_ID printer_ID scan_ID
description || description description

Figure 3.33. Existence-independent type of aggregation using the
Aggregate table

Computer

comp_ID
description

Lab Aggregate -

Lab_ID Lab_ID Printer
location Part_ID printer_ID
Part_type description

Scanner

scan_ID

description

new computers or printers that have not been allocated to any particular lab.
We want to still be able to keep the record of the new parts even when no
associated whole isestablished.

Thissituation cannot be implemented using either the clustering or the nested
technique. Inthe nesting technique, we can only insertanew part record within
the nested table if we have an existing whole record for it. In the clustering
technique, the primary key of the whole serves as the cluster key; thus, itis not
supposed to be null.

Figure 3.33 shows how an Aggregate table is created to store the relationship
between Lab and Computer, Printer, and Scanner. The Aggregate table
contains the primary key of the whole, whichislab_ID, and anattribute called
part_ID, whichisthe primary key of either one of the parttables (comp_ID,
printer_ID, orscan_ID). Thelastattribute iscalled part_type, whichisthetype

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 75

Figure 3.34. Implementation of the existence-independent type of
aggregation

CREATE TABLE Lab
(lab_id VARCHAR2 (10) NOT NULL,
location VARCHAR?2 (20) ,
PRIMARY KEY (lab id));

CREATE TABLE Computer
(Comp_id VARCHAR2 (10) NOT NULL,
description VARCHAR2 (10) ,
PRIMARY KEY (comp_ id));

CREATE TABLE Printer

(printer id VARCHAR2 (10) NOT NULL,
description VARCHAR2 (10) ,
PRIMARY KEY (printer id));

CREATE TABLE Scanner
(scan_id VARCHAR2 (10) NOT NULL,
description VARCHAR2 (10) ,
PRIMARY KEY (scan_id)) ;

CREATE TABLE Aggregate
(lab_id VARCHAR2 (10) NOT NULL,
part_id VARCHAR2 (10) ,
part_type VARCHAR?2 (20)

CHECK (part type in (‘Computer’, ‘Printer’, ‘Scanner’)),

PRIMARY KEY (lab id, part_ id),
FOREIGN KEY (lab_id) REFERENCES Lab (lab id));

ofthe part_ID (computer, printer, or scanner). Figure 3.34 demonstrates the
implementation of the above aggregation structure.

Figure 3.34 shows an implementation of the existence—independent, nonexclu-
sive aggregationtype. Itisan existence-independent type because the new
records of part tables, Computer, Printer, and Scanner, can be inserted without
any associated record within the whole table, Lab. IfaLab record is removed
fromthe Labtable, itwill only be cascaded to the Aggregate table where the
specific Labrecord appears; however, it does not have to affect the records
withinthe associated parttables. The above example isalsoanonexclusive type
because one particular part, suchasaprinter, can appear inthe Aggregate table
more than once and is associated with a different lab_ID. This is possible
because boththe lab_ID and part_ID are primary keys of the Aggregate table.
If this situation is not desirable, then we can make the lab_ID a foreignkey in

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

76 Rahayu, Taniar and Pardede
the Aggregate table, and only the part_ID will be the primary key. This will

enforce each part_ID toappear only once within the Aggregate table and be
associated with one particular lab_ID only.

Case Study

The following course-manual authorship case study shows how we can
implement an object-oriented model in Oracle™. The diagram shows two
inheritance relationships. Firstis the union inheritance between an author and
an industry-based author and an academic author. Second is the mutual-
exclusion inheritance betweenanacademic and aresearch staff and ateaching
staff. There are association relationships between the author and course
manual, as well as between the teaching staff and subject. There isalso one
aggregation relationship between the course manual and its chapters.

To implement the course-manual authorship object-oriented model into
Oracle™, we will apply the following systematic steps: type and table. We have

Figure 3.35. Course-manual authorship case study

Author_T Course_Manual_T
name 1. ISBN
address 1. title
g year
Industry_Based_T Academic_T
company name institution name Chapter_T
company address institution address
. chapter no.
lcompany size number of students chapter title
page no.
Research_Staff_T Teaching_Staff_T Subject_T
1. o ,
research topic total contact hours subject code
1 subject name
. contact no. : <varray>
research director 4 venue

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 77

Figure 3.36. Implementation of the case study in Oracle™

CREATE OR REPLACE TYPE Author T AS OBJECT

(ao_id VARCHAR2 (3) ,
name VARCHAR2 (10) ,
address VARCHAR2 (20)) NOT FINAL
/
CREATE OR REPLACE TYPE Industry Based T UNDER Author T
(c_name VARCHAR2 (10) ,
c_address VARCHAR?2 (20) ,
c_size VARCHAR2 (10))
/

CREATE OR REPLACE
(i_name
i _address
no_student
academic_type

/

CREATE OR REPLACE
(topic
director

/

CREATE OR REPLACE
/

CREATE OR REPLACE
(total_hour
contact_no

/

TYPE Academic_T UNDER Author T
VARCHAR2 (10) ,
VARCHAR2 (20) ,
NUMBER,

VARCHAR2 (20)) NOT FINAL

TYPE Research Staff T UNDER Academic_T
VARCHAR2 (20) ,
VARCHAR2 (10))

TYPE Contacts AS VARRAY (3) OF NUMBER

TYPE Teaching Staff T UNDER Academic T
NUMBER,
Contacts)

CREATE TABLE Author OF Author T
(ao_id NOT NULL,
PRIMARY KEY (ao_id)) ;

-- implementation of inheritance using an earlier version of Oracle
-- or traditional relational databases

CREATE OR REPLACE
(ao_id
name
address

/

TYPE Author T AS OBJECT
VARCHAR2 (3) ,

VARCHAR2 (10) ,

VARCHAR2 (20))

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

78 Rahayu, Taniar and Pardede

Figure 3.36. (continued)

CREATE OR REPLACE TYPE Industry Based T AS OBJECT

(ao_id VARCHAR2 (3) ,
c_name VARCHAR2 (10) ,
c_address VARCHAR2 (20) ,
c_size VARCHAR2 (10))
/
CREATE OR REPLACE TYPE Academic_ T AS OBJECT
(ao_id VARCHAR2 (3) ,
i _name VARCHAR2 (10) ,
i_address VARCHAR2 (20) ,
no_student NUMBER,
academic type VARCHAR2 (20))
/
CREATE OR REPLACE TYPE Research Staff T AS OBJECT
(ao_id VARCHAR2 (3),
topic VARCHAR2 (20) ,
director VARCHAR2 (10))
/
CREATE OR REPLACE TYPE Contacts AS VARRAY (3) OF NUMBER
/
CREATE OR REPLACE TYPE Teaching Staff T AS OBJECT
(ao_id VARCHAR2 (3) ,
total hour NUMBER,
contact no Contacts)
/

CREATE TABLE Author OF Author T
(ao_id NOT NULL,
PRIMARY KEY (ao_ id));

CREATE TABLE Industry Based OF Industry Based T
(ao_id NOT NULL,
PRIMARY KEY (ao id),
FOREIGN KEY (ao_id) REFERENCES author (ao_id)
ON DELETE CASCADE) ;

CREATE TABLE Academic OF Academic_T
(ao_id NOT NULL,
academic_type
CHECK (academic_type IN (‘Research’, ‘Teaching’, NULL)),
PRIMARY KEY (ao_id),
FOREIGN KEY (ao_id) REFERENCES author (ao_id)
ON DELETE CASCADE) ;

CREATE TABLE Research Staff OF Research Staff T
(ao_id NOT NULL,
PRIMARY KEY (ao id),
FOREIGN KEY (ao_id) REFERENCES author (ao_id)
ON DELETE CASCADE) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features

Figure 3.36. (continued)

79

CREATE TABLE Teaching Staff OF Teaching Staff T
(ao_id NOT NULL,
PRIMARY KEY (ao_id),
FOREIGN KEY (ao_id) REFERENCES author (ao_id)
ON DELETE CASCADE) ;

-- implementation of one-to-many association using ref

CREATE OR REPLACE TYPE Subject T AS OBJECT

(code VARCHAR2 (10) ,
sub_name VARCHAR2 (20) ,
venue VARCHAR2 (10) ,
lecturer REF Teaching Staff T)
/

-- implementation of aggregation using a nesting technique

CREATE OR REPLACE TYPE Chapter T AS OBJECT

(c_no NUMBER,
c_title VARCHAR2 (20) ,
page_no NUMBER)

/
CREATE OR REPLACE TYPE Chapter Table T AS TABLE OF Chapter T

/

CREATE OR REPLACE TYPE Course Manual T AS OBJECT

(isbn VARCHAR2 (10) ,

title VARCHAR2 (20) ,

year NUMBER,

chapter Chapter Table T)

/

CREATE TABLE Course Manual OF Course Manual T
(isbn NOT NULL,
PRIMARY KEY (isbn)) ;

-- implementation of the Publish table

CREATE TABLE Publish
(author REF Author T,
course manual REF Course Manual T);

CREATE TABLE Subject OF Subject T
(code NOT NULL,
PRIMARY KEY (code)) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

80 Rahayu, Taniar and Pardede

todetermine typesand tables that we will need to implement the model. For this
case, we needthetypes Author_T, Industry_T, Academic_T, Research_Staff T,
Teaching_Staff_T,and Subject_T.

Foreach of them, we will create the table respectively. We also need a type
Contacts for the multiple-collection varray of the contact_no attribute in
Teaching_Staff_T.Finally, wewill needtype Course_Manual_T anditstable,
and also Chapter_T type and Chapter_Table_T type if we decide to use the
nested-table implementation inan aggregation relationship.

* Inheritancerelationship. Thereare two inheritance relationshipsinthe
model. First is the inheritance between Author_T and the subclasses
Industry_T and Academic_T. Second is the inheritance between
Academic_Tanditssubclasses Research_Staff Tand Teaching_Staff T.
We will show two methods of implementing inheritance in our sample
solution.

» Association relationship. There are two association relationships from
thismodel. The firstone is between Author_T and Course_Manual_T. If
we use a nested table in implementing the aggregation relationship
between Course_Manual_T and Chapter_T, we will be abletocreatea
new table using the ref of Author_T and Course_Manual_T init. The
second association isthe relationship between Teaching_Staff_Tand
Subject_T. Asitisaone-to-many association, we will need to use the ref
oftheoneside, inthiscase Teaching_Staff_T, inthemanyside, Subject_T.

* Aggregation relationship. There is one homogeneous aggregation
relationship inthismodel. If we use a nested table, we have to create the
type and type table for the part class, and the type and table for the whole
class. If we use the clustering technique, we do not need the type, but we
do need to create the cluster beforehand using the primary key of the
whole class, Course_Manual, and then create an index after that.

* Complete solution. The complete solution isshown in Figure 3.36.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 81

Summary

Object-oriented features such as object types, object identity, object refer-
ences, and relationships are the new object-based features that have been
introduced in Oracle™ to enrich traditional RDBMSs with object-oriented
characteristics. Using these new features, complex relationships can be imple-
mented, including differentsemantics of inheritance, associationsamong differ-
entcollectiontypes, and aggregation relationships. Although the latest object-
oriented Oracle™ has incorporated various object-model features, it still
maintains some basic concepts of the relational model such as data integrity and
the simplicity of the implementation.

References

Elmasri, R., & Navathe, S. B. (2000). Fundamentals of database systems
(3rded.). Addison Wesley.

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. Auniversity hasanumber of books listed as textbooks, each of which may
be used by more than one university. A book is published by only one
publisher, but one publisher can publish more than one book. Show the
implementation of the association relationships above using object refer-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

82 Rahayu, Taniar and Pardede

ences. Assume thatthere are three object types, thatis, University, Book,
and Publisher. Add any attribute where necessary.

2. TheCity College has just builtanew computer laboratory. It has many
PCsinitwiththeir own IDs, capacities, and brands. Although these PCs
are currently located in the new laboratory, they are removable to other
laboratories or offices. Using the clustering technique, show the imple-
mentation of the aggregation relationship described.

3. TheVictorian state government stores geographic data in the ranking of
aggregation. Data of the state isan aggregation of the area data, and data
ofthe areaisanaggregation of the suburb data. For the firstimplemen-
tation, each level containsonly an ID and a name as the attributes. Using
anestedtable, show the implementation of this case.

4. Saving supermarket is preparing many types of food hampers for the
Christmas season. Each hamper hasitsown ID and price. It contains items
that can be categorized into biscuit, confectionery, and deli products.
Each category hasitsown ID, name, and price. These part items can be
sold as a part of the hamper or sold separately. For this purpose,
implementthe aggregation relationshipsas described.

5. The Animal class hasattributes ID, name, and description. Ithas inherit-
ance to three other objects, that is, Fish, Bird, and Mammal. The Fish
object has an attribute of its own, water_habitat. The Bird object has
attributes color, sound, and fly. Mammal has attributes dietand size. Most
of the animals can be allocated to these three objects. However, there is
some problemwhenan animal like awhale isgoing to be inserted because
itcan be categorized into two different objects. Show the object-oriented
diagramand the implementation for this inheritance relationship.

6. Avresearcher develops an object-based database for his collection of
technical papers. The attributes for the Technical_Papersobjectaretitles
and authors. One object inherited from a technical paper is
Conference_Paper, which basically contains papers taken fromaconfer-
ence. Theattributes for this objectare conference name, conference year,
and conference venue. To make the database more detailed, he inserted
other objects that inherit from Conference_Papers. One of them is
OO_Conf_Papers, which contains all conference papers on object-
oriented topics. Ithasits local attribute imp_type. Show the diagram and
implementation of the inheritance relationship.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 83

Chapter Solutions

1. TheOOdiagram for the case is shown below.

Publisher Book University

p_name 1 1... | title 1... 1...| u_name

p_address . author . u_city
published by ISBN used in

CREATE OR REPLACE TYPE Publisher T AS OBJECT

(p_id VARCHAR2 (3) ,
p_name VARCHAR?2 (20) ,
p_address VARCHAR2 (50))
/
CREATE OR REPLACE TYPE Book T AS OBJECT
(b_id VARCHAR2 (3) ,
title VARCHAR2 (50) ,
author VARCHAR?2 (20) ,
isbn VARCHAR2 (10) ,
published by REF Publisher T)
/
CREATE OR REPLACE TYPE University T AS OBJECT
(u_id VARCHAR2 (3),
u_name VARCHAR2 (20) ,
u city VARCHAR2 (20))
/

CREATE TABLE Publisher OF Publisher T
(p_id NOT NULL,
PRIMARY KEY (p_id));

CREATE TABLE Book OF Book T
(b_id NOT NULL,
PRIMARY KEY (b _id));

CREATE TABLE University OF University T
(u_id NOT NULL,
PRIMARY KEY (u_id));

CREATE TABLE Used_in
(Book REF Book T,

University REF University T);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

84 Rahayu, Taniar and Pardede

2. Theaggregationisshown below.

Lab

<

CREATE CLUSTER Lab Cluster
(lab_id VARCHAR2 (3)) ;

CREATE TABLE Lab
(lab_id VARCHAR2 (3) NOT NULL,
location VARCHAR?2 (20),
PRIMARY KEY (lab id))
CLUSTER Lab Cluster(lab_id);

CREATE TABLE PC

(lab_id VARCHAR2 (3) NOT NULL,
pc_id VARCHAR2 (3) NOT NULL,
capacity VARCHAR2 (10),
brand VARCHAR?2 (20) ,

PRIMARY KEY (lab id, pc_id),
FOREIGN KEY (lab id) REFERENCES Lab (lab id))
CLUSTER Lab Cluster (lab id);

CREATE INDEX Lab Cluster Index
ON CLUSTER Lab Cluster;

3. Usinganested table, we need to create the object from the lowest part
object. Forthis case, it starts from suburb, then moves to area and then
state.

Area

Suburb

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Suburb T AS OBJECT

Using Object-Oriented Features

85

(sb_id VARCHAR2 (3) ,
sb_name VARCHAR2 (30))
/
CREATE OR REPLACE TYPE Suburb_Table AS TABLE OF
Suburb T
/
CREATE OR REPLACE TYPE Area T AS OBJECT
(a_id VARCHAR2 (3) ,
a_name VARCHAR?2 (30),
suburb Suburb_ Table)
/
CREATE OR REPLACE TYPE Area_Table AS TABLE OF Area T
/
CREATE TABLE State
(st_id VARCHAR2 (3) NOT NULL,
st _name VARCHAR?2 (30),
areas Area_ Table,

PRIMARY KEY (st _id))
NESTED TABLE areas STORE AS Area tab

(NESTED TABLE suburb STORE AS Suburb tab);

4. Toimplementthe case, we need to create an Aggregate table that stores
the whole and the part IDs as the primary keys. The figure below shows
the implementation for the case. Part_ID inthe Aggregate table is the
primary key of each parttable, and the part_type is the type of the part

itself.

Hamper
h_ID
h_prigg
’ Aggregate
\‘ R_ID
part_ID
part_type

Biscuit(Confectior}gry
b_ID c_ID
b_name C_name d_name
b_price c_price d_price
CREATE TABLE Hamper
(h_id VARCHAR2 (3) NOT NULL,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

86 Rahayu, Taniar and Pardede

h price NUMBER,
PRIMARY KEY (h _id));

CREATE TABLE BRiscuit
(b_id VARCHAR2 (3) NOT NULL,
b name VARCHAR?2 (20) ,
b price NUMBER,
PRIMARY KEY (b_id)) ;

CREATE TABLE Confectionery
(c_id VARCHAR2 (3) NOT NULL,
C_name VARCHAR?2 (20) ,
c_price NUMBER,
PRIMARY KEY (C_id)) ;

CREATE TABLE Deli
(d_id VARCHAR2 (3) NOT NULL,
d_name VARCHAR?2 (20) ,
d price NUMBER,
PRIMARY KEY (d_id)) ;

CREATE TABLE Aggregate
(h_id VARCHAR2 (3) NOT NULL,
part_id VARCHAR2 (3) NOT NULL,
part type VARCHAR2 (20)CHECK (part_ type IN
(‘biscuit’, ‘confectionery’, ‘deli’)),
PRIMARY KEY (h id, part_id),
FOREIGN KEY (h id) REFERENCES hamper (h _id));

5. Thediagram forthe inheritance isas follows.

Animal

ID

name
description

mutual exclusive

Fish Bird Mammal
water_habitat color diet
A ?onund size
N
Fish_Mammal

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Object-Oriented Features 87

Thereisamultiple inheritance of class Fish_Mammal that can inheritattributes
and methods from two classes, Fishand Mammal.

CREATE OR REPLACE TYPE Animal T AS OBJECT

(id VARCHAR2 (3),
name VARCHAR?2 (20) ,
description VARCHAR2 (50) ,
animal type VARCHAR2 (10))

CREATE OR REPLACE TYPE Fish T AS OBJECT
(id VARCHAR2 (3),
water habitat VARCHAR2 (20))

/
CREATE OR REPLACE TYPE Bird_T AS OBJECT
(id VARCHAR2 (3),
color VARCHAR?2 (20) ,
sound VARCHAR?2 (20) ,
fly VARCHAR2 (10))
/
CREATE OR REPLACE TYPE Mammal T AS OBJECT
(id VARCHAR2 (3) ,
diet VARCHAR?2 (20) ,
m_size VARCHAR2 (10))

/

CREATE OR REPLACE TYPE Fish Mammal T AS OBJECT
(id VARCHAR2 (3) ,
lungs capacity NUMBER)

/

CREATE TABLE Animal OF Animal T
(id NOT NULL,
PRIMARY KEY (id));

CREATE TABLE Fish OF Fish T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Animal
ON DELETE CASCADE) ;

CREATE TABLE Bird OF Bird T
(id NOT NULL,
PRIMARY KEY (id),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

88 Rahayu, Taniar and Pardede

FOREIGN KEY (id) REFERENCES Animal
ON DELETE CASCADE) ;

CREATE TABLE Mammal OF Mammal T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Animal
ON DELETE CASCADE) ;

CREATE TABLE Fish Mammal OF Fish Mammal T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Animal
ON DELETE CASCADE) ;

6. Thediagramand the implementation of the inheritance case described can
be solved by using the Oracle™ inheritance facility.

‘ Technical_Papers ‘

‘ Conference_Papers ‘

‘ 00_Conf_Papers ‘

CREATE OR REPLACE TYPE Technical Papers T AS OBJECT
(title VARCHAR2 (30) ,
authors VARCHAR2 (20)) NOT FINAL

/

CREATE OR REPLACE TYPE Conference Papers T
UNDER Technical Papers T

(conf name VARCHAR?2 (20) ,
conf year NUMBER,
conf venue VARCHAR2 (10))
NOT FINAL

/

CREATE OR REPLACE TYPE OO Conf Papers T
UNDER Conference Papers T

(imp_type VARCHAR?2 (20)) ;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 89

Chapter 1V

Object-Oriented
Methods

We recall that an object-oriented model consists of two major aspects: the
static and dynamic. The former covers the implementation of the data
structure, which includes the object’s attributes and relationships, whereas the
latter isconcerned with the object’s operations, which is the implementation of
object-oriented methods using SQL and PL/SQL.

The staticand dynamic parts of an object model actually form anonseparated
unit since accesses to the attributes of an object must be done through the
available methods. This raises the concept of encapsulation.

Inthe object-relational database environment, there are two possible mecha-
nisms for implementing encapsulation.

» Encapsulationusingstored procedures or functions and the grant mecha-
nism
* Encapsulationusing member procedures or functions

The firstmechanism has been adopted mostly by pure RDB systems. Itallows
information hiding by managing the privileges of each method, as well as
ensuring correctness and consistency of the database by providing specific
methods for accessing the data.

The second mechanism, whichisavailable in object-relational DBMSs suchas
Oracle™ 8 and above, is called the member procedure or function. This

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

90 Rahayu, Taniar and Pardede

mechanism allows us to define object types with their associated procedures
or functions together. Each of the two mechanisms will be described in the
followingsections.

Implementation of Encapsulation Using
Stored Procedures or Functions
and Grant Mechanisms

Encapsulation in the relational world is not common, although it may be
implemented for the sake of security. We normally simulate encapsulationin
RDBsthroughthe use of grants. Figure 4.1 givesan illustration of the overall
implementation of an object model into an object-relational system covering the
staticand dynamic transformation and the use of grants for encapsulation.

Inthe following sections, we especially consider two aspects for achieving
encapsulation using thismechanism, namely, stored procedures or functions for
storing generic methods, and grants for maintaining encapsulation.

Stored Procedures or Functions

Stored procedures or functions are PL/SQL programs that are stored in RDBs
and subsequently can be invoked atany time. The benefit of stored procedures

Figure 4.1. Stored procedures and grants

User
Object-Oriented Conceptual Model Relational Model No Applications

.
/
Object-Relational ’/
Transformation !
(Static)

\
\
\
\
\
) |
\
:
:
|
Stored Stored

- i

part_of assoc. Object-Relational | Procedure Procedure
— Transformation !

(Dynamic)

Stored
Procedure

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 91

orfunctions iswell perceived inaclient-server environmentasacall to astored
procedure or function can be done inasingle call, thereby minimizing network
traffic. Another benefit, which ismore relevant to our transformation business,
isthat methods ofaclassinan object-oriented model can be stored in stored
procedures.

Inthe following sections, we will use the Customer_T object (see Figure 4.2)
as a working example. This object has a number of methods. The detail
implementationand the parameters will depend on whether the firstapproach
(using the grant mechanism) or the second approach (using the member
procedures or functions mechanism) isused.

Section 4.1 shows how to implement methods when a grant mechanism is used
tosimulate encapsulationinan object-relational database. Section 4.2 will
show how the methods are implemented if the member procedures or functions
mechanism s chosen.

The first code in Figure 4.3 shows how we implement the Add_Customer
method. We will need all necessary attributes as the parameters of the method.
Assume that table Customer of type Customer_T has already been created.

Inthe example of Add_Customer, the parameter types are written as “%type”
rather than the usual data types such as number, char, and so forth. When
%type isused, the procedure will copy whatever data types are used for the
associated attributes in the specified table. For example, the parameter
new_ID will use the data type of attribute ID in the Customer table, and so on.

Theexample inFigure 4.4 shows a stored procedure to update a customer’s
total bonus points. The method also handles an exception, where the customer

Figure 4.2. Two implementation techniques for Customer T methods

CUSTOMER T

Implementation of

1D Methods using Grant
last_name Mechanism
first_name ¥ (Section 4.1)

total_ bonus_points

Add_ Customer
Update_ Customer_ Points ™
Delete_ Customer
Check_ Frequent_Customer ..
Bonus _Check [T

Customer _Info | T

Implementation of

A Methods using Member
Functions or Procedures
(Section 4.2)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

92 Rahayu, Taniar and Pardede

Figure 4.3. Stored procedures for Add Customer

CREATE OR REPLACE PROCEDURE Add Customer (

new_id Customer.id%TYPE,

new_last name Customer.last name%TYPE,

new_first name Customer.first name%TYPE) AS
BEGIN

-- When inserting a new customer,
-- the initial default value for total bonus points is 0.

-- The Update_Customer Points method can be used
-- to modify the total bonus points.

INSERT INTO Customer
(id, last_name, first name, total bonus_ points)
VALUES (new_id, new_last name, new first name, 0);
END Add_Customer;

Figure 4.4. Stored procedures for Update Customer Points

General Syntax of Exception:

EXCEPTION
WHEN <Exception name> THEN <statementsx>

Example:

CREATE OR REPLACE PROCEDURE Update Customer Points(
new_id Customer.id%TYPE,
points Customer.total bonus points%TYPE) AS

old bonus points NUMBER;

BEGIN
SELECT total bonus points INTO old bonus points
FROM Customer
WHERE id = new id;

UPDATE Customer
SET total bonus points = old bonus points + points
WHERE id = new id;

EXCEPTION
WHEN NO DATA FOUND THEN
INSERT INTO Customer (id, total bonus points)
VALUES (new_id, points) ;

END Update Customer Points;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 93

ID to be updated is not found in the Customer table, in which case a new
customer record with the specified customer ID is created.

TheexampleinFigure 4.5 demonstrates the use of the delete statement within
astored procedure. When the customer is not found in the database, amessage
will be displayed on the screen. Note that the statement
“DBMS_output.put_line” isused for displaying results on the screen.

Inorderto process an SQL statement, Oracle™ allocates an area of memory
known asthe context area. The context area contains information necessary
to complete the processing, including the number of rows processed by the
statement, a pointer to the parsed representation of the statement, and in the
case of aquery, the active set, which isthe set of rows returned by the query.

A cursorisahandle, or pointer, to the contextarea. Through the cursor,aPL/
SQL program can control the context area and what happens to it as the
statementis processed. The cursor declaration is placed before the procedure
body.

The PL/SQL block inFigure 4.6 illustratesacursor fetch loop, inwhichmultiple
rows of data are returned from a query. Notice that we are using a separate
table, FreqClient, which has to be created first before we can execute the
procedure.

The example in Figure 4.7 shows a stored procedure that produces the output
to the screen rather than updating information in the database. A cursor is used

Figure 4.5. Stored procedures for Delete Customer

CREATE OR REPLACE PROCEDURE Delete Customer (
delete_ id Customer.id%TYPE,
delete last name Customer.last name%TYPE) AS

BEGIN
DELETE FROM Customer
WHERE id = delete_id
AND last name = delete_last name;

EXCEPTION
WHEN NO_ DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('Customer does not exist ..");

END Delete Customer;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

94 Rahayu, Taniar and Pardede

Figure 4.6. Stored procedures for Check Frequent Customer

General Syntax:
CREATE [OR REPLACE] PROCEDURE <procedure name> AS

CURSOR <cursor_name> IS
SELECT <statement>;

BEGIN
FOR <cursor variable> IN <cursor name> LOOP
IF <condition>
THEN <statement>
[ELSEIF <conditions>
THEN <statement>]
END IF;
END LOOP;
END <procedure names;

Example:

CREATE OR REPLACE PROCEDURE Check Frequent Customer AS
-- Procedure to store those customers that have collected
-- more than 100 points (frequent customer) into a separate
-- table (FregClient table)

CURSOR c_customer IS
SELECT id, last name, total bonus_points
FROM Customer;

BEGIN
FOR v_customer_ record IN c_customer LOOP
IF (v_customer record.total bonus points > 100) THEN
INSERT INTO FreqgClient
VALUES
(v_customer record.id || ‘' ||
v_customer record.last name || * ' ||
' Frequent Customer! ');
END IF;
END LOOP;
END Check_Frequent_Customer;
/

to iterate each record in the database table. When the selection predicate is
met, the record will be displayed on the screen.

Onceastored procedure iscreated, itis stored in the database. Hence, we can
retrieve the stored procedure using a normal SQL select statement. For
example, to retrieve the stored procedure Add_Customer, we can invoke the
following selectstatement interactively.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 95

Figure 4.7. Stored procedures for Bonus Check

CREATE OR REPLACE PROCEDURE Bonus_Check(
minbonus NUMBER) AS

CURSOR c_bonus IS
SELECT id, last name, total bonus_points
FROM Customer
WHERE total bonus points < minbonus;

BEGIN

FOR v_bonus_record IN c_bonus LOOP
DBMS OUTPUT.PUT LINE
(v_bonus_record.id||‘' ‘||v_bonus_record.last name| |
‘' ‘| |v_bonus_record.total bonus points) ;
END LOOP;

END Bonus_Check;
/

Figure 4.8. Retrieving stored procedure

General Syntax:

SELECT line, text

FROM user source

WHERE name = (stored procedure name)
[ORDER BY <attributes>];

Example:

SELECT line, text

FROM user_source

WHERE name = ‘Add Customer’
ORDER BY line;

Figure 4.9. Executing stored procedures

EXECUTE Add_ Customer ('92111', ‘John’, ‘Done’) ;

The result of the select statement in Figure 4.8 is a complete listing of the
procedure Add_Customer. Each line beginswithaline number. Users canalso
invoke a stored procedure and function through an execute command from
SQL*Plus (Loney & Koch, 2000, 2002; ORACLE™ 8,1997; Urman, 2000)
asisshown withanexample inFigure 4.9.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

96 Rahayu, Taniar and Pardede

Figure 4.10. Stored functions for Customer_Info

CREATE OR REPLACE FUNCTION Customer Info(
c_id Customer.id%TYPE,
reqg_points NUMBER)

RETURN VARCHAR2 IS

-- Returns ‘'Gold Point’ if the Customer has completed all

-- required bonus points,

-- 'Silver Point’ for over or equal to 75%,

-- 'Bronze Point’ for less than 75% and greater than 50%, and
-- 'No Prize Yet’ if the points are less than or equal to 50%.

v_total current points NUMBER;
v_percent_completion NUMBER;
BEGIN

SELECT total_bonus_points
INTO v_total_current_points
FROM Customer

WHERE id = s_id;

-- Calculate the current percentage.

v_percent_completion :=
v_total_current_points / reqg points * 100;

IF v_percent completion = 100 THEN
RETURN ‘Gold Point’;

ELSIF v_percent_completion >= 75 THEN
RETURN ‘'Silver Point’;

ELSIF v_percent_completion > 50 THEN
RETURN ‘Bronze Point’;

ELSE
RETURN 'No Prize Yet';

END IF;

END Customer Info;

/

Figure 4.11. Retrieving stored functions for Customer Info

SELECT id, last name, first name, Customer Info(id, 100)
FROM Customer;

Apart from stored procedures, we can also create a stored function (see Figure

4.10). The following example isafunction that can be used to get information
aboutacustomer’sbonus points.

With astored function, we can display the output using a query as shown in
Figure4.11. The query will returnalist of all customers in the Customer table

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 97

together with their current bonus-point status. The required number of bonus
pointsto getagold pointis 100.

Grant

Grantisoftenused inconjunction with stored procedures in RDBs, particularly
in the context of data security. In Oracle™, one can restrict the database
operationsthat users can perform by allowing themto access dataonly through
procedures and functions (Loney & Koch, 2000, 2002; ORACLE™ 8, 1997,
Urman, 2000). For example, one can grant users access to a procedure that
updates one table, but not grant them access to the table itself. When a user
invokes the procedure, the procedure executes with the privileges of the
procedure’s owner. Users who have only the privilege of executing the
procedure (butnotthe privilege to query, update, or delete from the underlying
tables) caninvoke the procedure, butthey cannot manipulate the table datain
any other way (Loney & Koch; ORACLE™ 8; Urman).

In Oracle™ we can grantsystem, role, or object privileges to three different
types mentioned below.

* User. The privilege is given to particular users, and the user can then
exercise the privilege.

* Role.Theprivilegeisgivento particularroles, and the user who has been
grantedtherole will be able to exercise the privilege.

» Public. Theprivilegeisgiventoall users.

Agrantonasystemprivilege isthe grantto carry outa basic system operation
such as create table, create procedure, and so forth. A granton arole is the
grantto access the information of the particular role. Finally, agranton an
objectprivilege isthe grantto doaparticularaction to a particular object. Thus,
foragrantonan object privilege, we need to declare the schema of the grant-
object target. The general syntax for the grant statement is shown in Figure
4.12.

The use of grants to simulate object-oriented encapsulation is to grant users
with noaccesstotables, andto grantusers with execute accesses to the stored
procedures where the methods are stored. Therefore, the tables are encapsu-
lated with the stored procedures. For example, we want to granta particular

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

98 Rahayu, Taniar and Pardede

Figure 4.12. Grant general syntax

GRANT [system privilege|role] TO [user|role|PUBLIC];

GRANT [object privilege] <object schema> TO [user|role|PUBLIC] ;

Figure 4.13. Grant object privilege to user

GRANT EXECUTE ON <procedure_name> TO <user>;

user with an object privilege to execute a stored procedure as shown in Figure
4.13.

Implementation of Encapsulation using
Member Procedures or Functions

Asmentioned previously, we canalso implement object operations as member
procedures or functions. The following example demonstrates the implemen-
tation of the Customer_T object together with its member procedures and
functions. We reuse some of the routines defined in the previous section. Note
the changes required for the implementation.

Figure 4.14. Object with member procedures and functions

CREATE OR REPLACE TYPE Customer T AS OBJECT

(id VARCHARZ2 (10) ,
last_name VARCHAR2 (20) ,
first name VARCHAR2 (20) ,
total bonus_ points NUMBER,

MEMBER PROCEDURE
Update Customer Points(c points IN NUMBER) ,

MEMBER FUNCTION
Customer Info(c req points IN NUMBER)
RETURN VARCHAR2

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 99

Figure4.15. Methodimplementation of member procedures and functions

CREATE OR REPLACE TYPE BODY Customer T AS

MEMBER PROCEDURE
Update Customer Points(c_points IN NUMBER) IS

BEGIN
total bonus points := total bonus_points + c_points;
END Update Customer Points;

MEMBER FUNCTION Customer Info(s_req points IN NUMBER)
RETURN VARCHAR2 IS

v_percent_completion NUMBER ;

BEGIN
-- Calculate the current percentage.

v_percent completion :=
total bonus points / s_req points * 100;

IF v_percent_completion = 100 THEN
RETURN ‘Gold Point’;

ELSIF v _percent completion >= 75 THEN
RETURN ‘Silver Point’;

ELSIF v _percent completion > 50 THEN
RETURN ‘Bronze Point’;

ELSE
RETURN 'No Prize Yet';

END IF;

END Customer_ Info;

END;

Figure 4.16. Example of using self keyword

MEMBER PROCEDURE
Update Customer Points(s_points IN NUMBER) IS

BEGIN
self.total bonus points :=
self.total bonus points + s_points;
END Update Customer_ Points;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

100 Rahayu, Taniar and Pardede

Figure 4.17. Syntax to call member procedures or functions

Object name.member procedure name

Object name.member function name

FromthedescriptioninFigure 4.15, itis clear that the main difference between
the normal procedures and functions and the member procedures and functions
is the fact that we do not need to use the working object as a parameter in
member procedures and functions. Itisautomatically referenced by the current
working object, which eliminates the need to search for it first. Hence, the
parameter new_ID, whichis usedto locate the current working object, isno
longer necessary.

We can also use the keyword selfto identify that the object we are referring
is the current working object. For example, the above member procedure
Update_Customer_Points canbe writtenas follows.

Inorder to call or to use the above member functions or procedures, we need
areferencetoaparticular objectinstance (i.e., the current working object). For
example, inthe above case, we need to instantiate a Customer_T objectand
use the object to execute the procedures and functions. The syntax for calling
amember function or procedure is shownin Figure 4.16.

The procedure in Figure 4.17 shows how we can use the previous member
procedures and functions. Declarations after “declare” can be an object,
variables, or other declarations.

The example in Figure 4.18 shows how we can call member procedures and
functions by first constructing asingle object and then calling the methods that
areapplicable tothatobject. The result for the above procedure is shown after
the code.

The examplein Figure 4.18 demonstrates the use of member procedures and
member functions using Option 1inFigure 4.19.

In Option 2, the object is created fromarecord withinarelational table. We
call the table here Customer and it is used to store customer records. The
following procedure shows how we apply the member procedures and
functions as defined earlier for the Customer_T objectto manipulate records
from the Customer table.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 101

Figure 4.18. Member procedure or function call using an object

General Syntax:

DECLARE <declarations>
BEGIN

<procedure body>
END;
/

Example:

DECLARE
-- Construct a Customer object a Customer.
a_Customer Customer T :=
Customer T('980790X’, ‘Smith’, ‘John’, 50);

BEGIN

-- Call procedure to update a Customer total bonus points
a_Customer.Update Customer Points(30);

DBMS OUTPUT.PUT LINE
(‘New total points is ‘|| a_Customer.total bonus points);

-- Call function to display the completion
DBMS OUTPUT.PUT LINE (a_Customer.Customer Info(100));

END;
/

New total points is 50
No Prize Yet

As mentioned previously, there are some differences between the implemen-
tation of stored procedures or functions and member procedures or functions.

» Storedproceduresor functionsare mainly used for pure relational systems
where there isno member-object conceptavailable. Obviously, member
procedures and member functions are used for systems with an object-
oriented feature, such as object-relational database systems.

* We do not need to use the working object as a parameter in member
procedures or functions. Itautomatically refers to the current working
object, which eliminates the need to search for it first.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

102 Rahayu, Taniar and Pardede

Figure 4.19. Member procedure and function implementation options

Construct
Object from a
Procedure

Option 1

Object Type (Class)

Attributes

Member Functions/
Procedures

@ Option 2
\Relational Table

* The%type cannotbe applied to an attribute of an object type directly. It
must be applied to an attribute of an instantiation of an object type (i.e.,
atable). Therefore, for member routines, we need to directly clarify the
datatype of each parameter.

Case Study

The Victorian tourism department stores the data of main touristattractions in
a database that can be accessed from every tourist information centre across
the state. The database contains information about the name of the tourist
destination, location, tourism type, and season. For each destination, the
database providesthe accommodationsavailable around the area. The accom-
modation data includes the name, type, rate, address, and the contact details
of theaccommodation. Currently, the database isstored inapure RDB with the
E/R diagram shown next.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 103

Figure 4.20. Member procedure and function call using a relational table

DECLARE
CURSOR c_customer IS
SELECT id, last_name, first name, total bonus_points

FROM Customer;

-- Construct and initialise a Customer object.
a_Customer Customer T := Customer T (NULL,NULL,NULL,O0) ;

BEGIN
FOR v_customer record IN c customer LOOP

-- Assign values to a Customer object.

a_Customer.id := v_customer record.id;
a_Customer.last name := v_customer record.last name;
a_Customer.first name := v_customer record.first name;

a_Customer.total bonus points:=
v_customer record.total bonus points;

DBMS_ OUTPUT.PUT LINE
(a_Customer.id||’ ’||a_Customer.last name||’ '||
a_Customer.total bonus_points) ;

-- Call Update Customer Points to update a Customer
-- total points with another 30 points.
a_Customer.Update Customer Credit (30);

DBMS_ OUTPUT.PUT LINE
(‘The new total points is ‘||
a_Customer.total bonus_points) ;

-- Call Customer Info function to display whether a Customer
-- achieves a bonus prize. Gold Point is given for points

-- equal to 100.

DBMS_OUTPUT.PUT LINE (a_Customer.Customer Info(100)) ;

END LOOP;

There are two query transactions that are frequently made by the users.

a. GiventhelD, showthe details of atourist destination.

b. Giventheaccommodation ID, show itsdetails including the name and the
location of the tourist destination associated with the accommodation.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

104 Rahayu, Taniar and Pardede

Figure 4.21. E/R diagram of the tourism-department case study

*73

TOURIST
@ DESTINATION ACCOMMODATION |

Due to the expansion of the database size, the department now wants to
transform the database system into an object-relational system, with frequent
proceduresattached to the objects. The design of the object diagramis shown
inFigure4.22.

We need to show the implementation of the databases using both stored
procedures of a pure relational system and member procedures of an object-
relational system.

First, we create the stored procedures for tables Tourist_Destination and
Accommodation. Assume that these tables already exist. The relational schema
isshown in Figure 4.23 along with the stored procedures. Note thatthereisa
foreignkey of ID inthe Accommodation table that references the attribute ID
inthe Tourist_Destinationtable.

The nextstepisto implement the member procedure. For this step, we start
from the method declaration followed by the method implementation (see
Figure 4.24).

Figure 4.22. Object diagram of the tourism-department case study

Tourist_Destination 1 L= Accommodation

id - acc_id

name acc_name

location acc_type

type acc_rate

season acc_address

show_tourist_dest acc_contact
show_accommaodation

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 105

Figure 4.23. Stored-procedures implementation for the tourism-
department case study

Relational Schemas

Tourist Destination (ID, name, location, type, season)

Accommodation (acc_ID, acc _name, acc_type, acc_rate,
acc_address, acc_contact, ID)

Stored Procedures

CREATE OR REPLACE PROCEDURE Show Tourist Dest (
new_id IN Tourist Destination.id%TYPE) AS

new_name Tourist Destination.name%TYPE;
new location Tourist Destination.location%TYPE;
new_type Tourist Destination.type%TYPE;

BEGIN

SELECT name, location, type

INTO new name, new_location, new_type
FROM Tourist Destination

WHERE id = new_id;

DBMS_OUTPUT.PUT_ LINE
(new_name| |' ‘| |new_location||’ ‘||new_type);

END Show_Tourist_ Dest;
/

CREATE OR REPLACE PROCEDURE Show Accommodation (
new_id IN Accommodation.id%TYPE) AS

new_acc_name Accommodation.acc_name$TYPE;

new_acc_address Accommodation.acc_address$TYPE;
new_acc_contact Accommodation.acc_contact%TYPE;
new_destination name Tourist Destination.name%TYPE;
new_destination_ location Tourist Destination.location%TYPE;

BEGIN

SELECT a.acc_name, a.acc_address, a.acc_contact, b.name, b.location
INTO new_acc_name, new_acc_address, new_acc_contact,
new_destination name, new destination location

FROM Accommodation a, Tourist Destination b

WHERE a.id = b.id

AND b.id = new_id;

DBMS_ OUTPUT.PUT LINE

(new_acc name| |’ ‘||new_acc_address||’ ‘||new_acc_contact
||* ‘||new _destination name||’ ‘||new destination location)
END LOOP;

END Show Accommodation;

/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

106 Rahayu, Taniar and Pardede

Figure 4.24. Member-methods implementation for the tourism-department
case study

Methods Declaration

CREATE OR REPLACE TYPE Tourist Destination T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (30) ,
location VARCHAR2 (30) ,
type VARCHAR2 (20) ,
season VARCHAR2 (10) ,

MEMBER PROCEDURE Show_Tourist Dest)
/

CREATE TABLE Tourist Destination OF
Tourist_Destination T
(id NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Accommodation T AS OBJECT

(acc_id VARCHAR2 (10) ,

acc_name VARCHAR?2 (30),

acc_type VARCHAR2 (30) ,

acc_rate NUMBER,

acc_address VARCHAR2 (30) ,

acc_contact VARCHAR2 (10) ,

destination REF Tourist Destination T,

MEMBER PROCEDURE Show_ Accommodation)
/

CREATE TABLE Accommodation OF Accommodation T
(acc_id NOT NULL,
PRIMARY KEY (acc_id)) ;

Methods Implementation
CREATE OR REPLACE TYPE BODY Tourist Destination T AS

MEMBER PROCEDURE Show_ Tourist Dest IS

BEGIN
DBMS_ OUTPUT.PUT LINE
(self.name| | ‘||self.location||* ‘||self.type);
END LOOP;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 107

Figure 4.24. (continued)

END Show_ Tourist Dest;
END;
/

CREATE OR REPLACE TYPE BODY Accommodation T AS
MEMBER PROCEDURE Show Accommodation IS

new_destination name Tourist Destination.name%TYPE;
new destination location Tourist Destination.location%TYPE;

BEGIN

SELECT name, location

INTO new destination name, new destination location
FROM Tourist_ Destination

WHERE destination.id = self.id;

BEGIN
DBMS OUTPUT.PUT LINE
(self.acc _name||' ‘||self.acc_address||‘ ‘||self.acc_contact
||' ‘| |new _destination name||‘' ‘||new_destination location) ;
END Show_ Accommodation;

END;
/

Summary

Inapure RDB system, packages such as stored procedures and functionsare
used to implement operations. With the additional grant mechanism, data
security can be performed with stored procedures and functions sothatonly a
certain user or role is privileged to access the system, role, and object. In
ORDBMS, the concept of data security can be performed by having member
methods. With the encapsulation feature in the object-oriented model, we can
add member procedures and functions inside a class along with the member
attributes. The declaration and implementation of member methods are sepa-
rated as in other programming-language practices.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

108 Rahayu, Taniar and Pardede

References

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. KingElectronicisgoingto have itsend-of-year 2005 sale. Every year the
owner keepsthe record of each itemto be puton sale. The datais placed
onan object-based database and table as follows.

Sale2005_T

item_code

item_name

quantity

price

Sale2005
Item_Code Item_Name Quantity | Price
SV101 VCR 20 150
SD101 DVD Player 20 225
SD102 DVD Player 2 | 10 350
ST101 TV 14 15 400
ST102 TV 21” 20 700
ST103 TV 30” 10 1200
SP101 PS One 40 150
SP102 PS Two 20 450

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 109

a. Writeastored procedure toinsertother sale items into the Sale2005
table.

b. Writeastored procedure to update the quantity of the itemin the table
every time an itemis sold or added to the sale stock.

2. FromQuestion 1, write statements to grant the following.
a. Objectprivilege toexecute Insert_Item to the user name Michael
b. Objectprivilege toexecute Update_Stock tothe role Sales
c. Systemprivilegetocreate the user, type, andtable to the role Admin.

3. TheVictorian Department of Educationand Training has records of every
university in the state with all their details. For the purpose of accessing
statistics quickly, the department developsan object University T that
containsthe main information about the university.

University T
name
campus
no_of_students

University
Name Camp No_of Students

Melbourne University Melbourne 28,000

Monash University Berwick, Caulfield, 45,000
Clayton, Gippsland,
Peninsula

La Trobe University Albury, Beechworth, 22,000
Bundoora, Bendigo,
Mildura,

Deakin University Burwood, Geelong, 31,000
Warrnambool

University of Ballarat Ararat, Ballarat, 18,000
Horsham

Royal Melb. Institute of Bundoora, Brunswick, 54,000

Tech. City

Swinburne University Hawthorn, Lilydale, 10,000
Prahran

Victoria University City, Footscray, Sunbury, 50,000
Sunshine, Werribee

Write astored procedure to retrieve data from the University table so that
the names of those universities with more than 25,000 students are shown
onthescreen.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

110 Rahayu, Taniar and Pardede

4. CinemaClassic wantsto develop an interactive Web site where custom-
erscan query the moviesthatare currently available. The Web developer
uses the movie database that has been used by Cinema Classic. The
database consists of the movie code, title, year, genre, directors, cast, and
rating. The examples of the records on the database are shown below.

Movie
Code Title Year | Genre Director Cast Rating
G01 Gone with 1939 | Drama Cukaor, Leigh, PG
the Wind Fleming Gable
P07 Psycho 1960 | Horror Hitchcock Perkins, | MA
Miles
S23 Star Wars 1977 | Sci_Fi Lucas Hamill, | G
Ford

For this purpose, the Web developer wants to implement an object-
relational database. In the object, he hasamember function that can show
the description of the ratings. The description of the ratings is shown in the
table below. Forexample, calling the member function with parameter G
will returnthe string “Suitable for all viewers.” Write the implementation

of the movie objectand the body.

Rating
Rating Description
G Suitable for all viewers
PG Parental guidance recommended for children under 15 years of age
M Mature, recommended for audiences 15 years and over
MA Mature, accompanied by a parent or adult guardian
R Restricted to adults, no one under 18 may view these
X Restricted to adults, sexually explicit material

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 111

Chapter Solutions

1. d. CREATE TYPE Sale2005_ T AS OBJECT

(item_code VARCHAR2 (10),
item name VARCHAR2 (30) ,
quantity NUMBER,
price NUMBER)

/

CREATE TABLE Sale2005 OF Sale2005_T
(item_code NOT NULL);

CREATE OR REPLACE PROCEDURE Insert Item(
new item code IN Sale2005.item code%TYPE,
new _item name IN Sale2005.item name%TYPE,
new_quantity IN Sale2005.quantity%TYPE,
new price IN Sale2005.price%TYPE) AS

BEGIN
INSERT INTO Sale2005
(item code, item name, quantity, price)
VALUES
(new_item code, new item name, new quantity,
new price) ;
END Insert Item;
/
b. CREATE OR REPLACE PROCEDURE Update_ Stock(
sold item code IN Sale2005.item code%TYPE,
number sold IN NUMBER) AS

old gquantity NUMBER;
new_quantity NUMBER;

BEGIN
SELECT quantity INTO old gquantity
FROM Sale2005
WHERE item code = sold item code

FOR UPDATE OF quantity;
new _quantity := old quantity - number sold;
UPDATE Sale2005
SET quantity = new gquantity
WHERE item code = sold item code;
END Update Stock;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

112 Rahayu, Taniar and Pardede

2. a. GRANT EXECUTE ON Insert Item TO Michael;
D. GRANT EXECUTE ON Update_Stock TO Sales;

C. GRANT CREATE USER, CREATE TABLE, CREATE TYPE TO

Admin;

3. CREATE OR REPLACE PROCEDURE Above 25000 AS

CURSOR c_university IS
SELECT name, no_of students
FROM University T
WHERE no_of students > 25000;

BEGIN
FOR v _uni record IN c_university LOOP
DBMS OUTPUT.PUT LINE
(v_uni record.name]| |
‘| |v_uni record.no of students);

END LOOP;
END Above 25000;
/
4. CREATE OR REPLACE TYPE Movie_T AS OBJECT
(code VARCHAR2 (5) ,
title VARCHAR2 (40) ,
year NUMBER,
genre VARCHAR?2 (20) ,
director VARCHAR2 (20),
cast VARCHAR2 (50) ,
rating VARCHAR2 (3),
MEMBER FUNCTION Rat ing_InfO
(rating code IN VARCHAR2)
RETURN VARCHAR2)
/

CREATE OR REPLACE TYPE BODY Movie T AS

MEMBER FUNCTION Rating Info
(rating code IN VARCHAR2)
RETURN VARCHAR2 IS

BEGIN
IF rating code = ‘G’ THEN
RETURN ‘' Suitable for all viewers ‘;
ELSIF rating code = ‘PG’ THEN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Methods 113

RETURN ‘'Parental guidance recommended for
children under 15 years of age’;
ELSIF rating code = ‘M’ THEN

RETURN ‘'‘Mature, recommended for audiences 15
years and over’;
ELSIF rating code = ‘MA’ THEN

RETURN ‘Mature, accompanied by a parent or
adult guardian’;
ELSIF rating code = ‘R’ THEN

RETURN ‘Restricted to adults, no one under
18 may view these’;
ELSIF rating code = ‘X’ THEN

RETURN ‘Restricted to adults, sexually
explicit material’;
ELSE

RETURN ‘'‘No rating’;
END IF;

END Rating Info;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

114 Rahayu, Taniar and Pardede

ChapterV

Generic Methods

Generic methods are the methods used to access the attributes of an object.
The conceptbehind the need for generic methods is encapsulation, inwhich
attributes associated with an object can be accessed directly only by the
methods within the object itself. Therefore, each time an attribute is created
withinan object, we will need generic methods to access the attribute. This s
the maindifference between the standard relational techniques for implement-
ing operations vs. the object-oriented methods. In relational databases, users
normally candirectly access attributes of atable by running SQL statements to
update, delete, or insert. This may generate problems when certain attributes
withinan object have some constraints applied to them, and therefore the ad
hoc access may violate these constraints.

Asdiscussedin Section 1.3.1, generic methods are tightly related to the update
and delete operations. Therefore, generic methods are associated with the
conceptofreferential integrity. Asin conventional relational systems, for each
update and delete operation, there has to be an identified action to be carried
out (i.e., cascade, restrict, and nullify). The transformation of object structures,
including inheritance, aggregation, and association, involves primary-key and
foreign-key association or object references, depending on the techniques
used to represent the relationships. Therefore, for each object structure,
actions for the update and delete operations have to be identified. In this
section, we will show mainly the application of methods for updating and
deletion, and the actions taken to maintain the referential integrity.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 115

Additionally, the insertand retrieval operations, to some extent, also correlate
withreferential integrity. Aninsertionto aforeign key is known to match with
the associated primary key of another table. A retrieval of acomposite object
will need to form join operations between foreign keys and their matching
primary keys.

Figure5.1showsan overview of the implementation of generic methods. The
process consists of several steps. First, given an object-oriented model, data-
structure mapping iscarried out. Thisbasically applies the static transformation
procedures (Chapter 3). Second, the key elements of each generic method
(operations, parameters, constraints, etc.), which will be used as a basis for the
implementation of the methods, are identified.

Implementation of Methods in
Inheritance Hierarchies

There are some approaches that can be used for inheritance relationships
implementationinto tables. The usage of these approaches can be explored
based on the types of inheritance: union inheritance, mutual-exclusion inherit-
ance, partition inheritance, and multiple inheritance. In this section, we are
going to see the implementation of generic methods in inheritance hierarchies.

Note thatin Chapter 111 we described the two different ways of implementing
inheritance inOracle™. The first method usesashared ID, which ismainly used

Figure 5.1. Generic methods

Relational Table

00 Model Data-
OO0 Class Structure
Impl

/Class h (C‘hapzer3) b -,
.. References
Attributes |
Methods 4
SQL and PL/SQL
Member Methods
and Functions

Methods- 00 Mezhads.

i Implementation
Declaration Chs
and -Execution (Chapter 4,5)

Procedures

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

116 Rahayu, Taniar and Pardede

inearlier versions of Oracle™ (before Oracle™ 9) as well as other standard
relational database systems that do not support inheritance. The second
method uses the keyword under in Oracle™ 9 and above, which defines an
inheritance hierarchy. Inthe following sections we will show the implementation
of methods using both techniques.

Implementation of Methods in Union Inheritance

We recall from Chapter 111 that the first technique for implementing union
inheritance into relational tables is done by creating a separate table for the
superclass and a table for each of the subclasses. A shared ID is used to
preserve the identity of the objects across tables. Suppose Figure 5.2 isaunion
inheritance. Each class, together with its local attributes in the inheritance
schema, ismapped intoatable. Thisway of mapping is often called a vertical
divisionsincethe list of attributes of asubclass isdivided into several classes.

In the example, the declaration of attributes or properties belonging to an
academic (i.e., ID, name, address, department) has to be divided into two
tables, namely, table Customer and table Academic. Thiskind of declaration
followsthe way the classis declared. Since class Customer isalready declared
first, class Academicthatinherits from class Customer merely adds a few more
attributes. Inheritance provides a reuse mechanism whereby the definition ofa
new class is based on some existing classes. Consequently, the creation of new
subclasses from scratch can be avoided; instead, some or all parts of the
existing classes can be reused in the new classes.

Figure 5.3 shows the results of the implementation of this union inheritance
including the methods. Note that we use member methods instead of an

Figure 5.2. Union inheritance

Customer
ID

name
address

I union
[I
Commercial Academic
ACN department

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 117

ordinary stored procedure or function to put into practice the object-oriented
feature in Oracle™. The rules for member methods can be specified as follows.

* Methods Declaration. The declaration of the method is performed
during object type creation. Thus, when we create a type, we have to
know the name of the methods in it, whether it will be aprocedure ora
function, and also the parameters needed.

* Methods Implementation. After the type is created, we will need to
specify the body of the type. Inthe body, the implementation details of the
member methods are specified.

There are a few things to observe from the implementation of the union
inheritance example asshownin Figure 5.3and Figure 5.4.

First is that we provide not only the relational schemas, but also the SQL
statements to create and manipulate the schemas. Some sample records are
alsoprovidedto help readers visualise the implementation of union inheritance.

Second is that attribute ID of the subclass (e.g., class Commercial and
Academic) isalso aforeign key referencing to the superclass. Thisistoensure
thatasubclass OID mustexistasan OID inthe superclass. Notice also that the

Figure 5.3. Implementation of union inheritance relationship

Relational Schemas

Customer (ID, name, address)
Commercial (ID, ACN)
Academic (ID, department)

Methods Declaration

CREATE OR REPLACE TYPE Customer T AS OBJECT
(id VARCHAR2 (10) ,
name VARCHAR2 (30) ,
address VARCHAR2 (30),

MEMBER PROCEDURE Insert Customer (
new_id IN VARCHARZ2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete Customer)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

118 Rahayu, Taniar and Pardede

Figure 5.3. (continued)

CREATE TABLE Customer OF Customer_ T
(id NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Commercial T AS OBJECT
(id VARCHAR2 (10) ,
acn VARCHAR2 (30) ,

MEMBER PROCEDURE Insert Commercial (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

MEMBER PROCEDURE Delete Commercial)
/

CREATE TABLE Commercial OF Commercial T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Customer (id)
ON DELETE CASCADE) ;

CREATE OR REPLACE TYPE Academic_T AS OBJECT
(id VARCHAR2 (10) ,
department VARCHAR2 (30) ,

MEMBER PROCEDURE Insert Academic (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

MEMBER PROCEDURE Delete Academic)
/

CREATE TABLE Academic OF Academic_ T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Customer (id)
ON DELETE CASCADE) ;

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer T AS

MEMBER PROCEDURE Insert_ Customer (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods

Figure 5.3. (continued)

119

BEGIN

INSERT INTO Customer

VALUES (new_id, new name, new_address) ;
END Insert Customer;

MEMBER PROCEDURE Delete_ Customer IS

BEGIN

DELETE FROM Customer

WHERE Customer.id = self.id;
END Delete_ Customer;

END;
/
CREATE OR REPLACE TYPE BODY Commercial T AS

MEMBER PROCEDURE Insert Commercial (
new_id IN VARCHAR2,
new _name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new name, new_address) ;
INSERT INTO Commercial
VALUES (new_id, new_acn);
END Insert_Commercial;

MEMBER PROCEDURE Delete Commercial IS

BEGIN
DELETE FROM Commercial
WHERE Commercial.id = self.id;
DELETE FROM Customer
WHERE
(Customer.id = self.id) AND
(Customer.id NOT IN
(SELECT Academic.id
FROM Academic
WHERE Academic.id = self.id)) AND
(Customer.id NOT IN
(<selection of any other sibling sub-classes>) ;
END Delete_Commercial;

END;
/

CREATE OR REPLACE TYPE BODY Academic T AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

120 Rahayu, Taniar and Pardede

Figure 5.3. (continued)

MEMBER PROCEDURE Insert_Academic(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new name, new_ address);
INSERT INTO Academic
VALUES (new_id, new_department) ;
END Insert Academic;

MEMBER PROCEDURE Delete Academic IS

BEGIN
DELETE FROM Academic
WHERE Academic.id = self.id;
DELETE FROM Customer
WHERE
(Customer.id = self.id) AND
(Customer.id NOT IN
(SELECT Commercial.id
FROM Commercial
WHERE Commercial.id = self.id)) AND
(Customer.id NOT IN
(<selection of any other sibling sub-classess);
END Delete Academic;

END;
/

Methods Execution Example

DECLARE

-- Construct objects, initialize them to null
a_customer Customer T := Customer T (NULL,NULL,NULL) ;
a_commercial Commercial T := Commercial T (NULL,NULL) ;
a_academic Academic T := Academic_ T (NULL, NULL) ;

BEGIN
-- Call member procedures to insert data into
-- Customer, Commercial, and Academic tables.
a_customer.Insert Customer

(*1", ‘Myers Pty Ltd’, Melbourne’) ;
a_commercial.Insert Commercial
(*2", ‘Coles Pty Ltd’, ‘Sydney, ‘443-765');
a_academic.Insert Academic
('3’ ‘La Trobe Univ’, ‘Bundoora’, ‘Comp Sc.’);
END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sample Records:

Generic Methods 121

Figure 5.4 Example of a union inheritance table

Customer
1D Name Address
1 Myer Pty Ltd. | Melbourne
2 Coles Pty Ltd. | Sydney
3 LaTrobe Univ. | Bundoora
4 Monash Univ. | Gippsland
5 RMIT Univ. Melbourne
6 Victoria Univ. | Footscray
7 Holmes Inst. Melbourne
8 Federal Gov. Canberra
Commercial Academic
ID ACN ID Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
7 011-333 5 Comp. Sc.
6 Informatics
7 Info. Studies

referential integrity constraintis “delete cascade.” These imply thatwhen a
superclassrecord is deleted, all matching subclass records are automatically
deleted aswell.

Third isthat union inheritance allows a new object Customer, not belonging to
any of the subclasses, to be inserted. Hence, we provide amember procedure
Insert_Customer that can be used for this purpose, along with Insert_ Commercial
and Insert_Academic for subclass object insertion. Insert_Customer will not
be madeavailable in othertypes of inheritance, especially partition inheritance.
Thiswill be discussed later.

Fourth relatesto insertion. For the insertion of subclass records, insertion to the
superclass has to be made firstas the primary key of the subclass table is also
aforeign key of the superclass table. If this insertion order isnot obeyed, the
insertion operation will fail due to the referential integrity enforced by the notion
of the foreign key in the subclass table. As we use the encapsulation method of
insertion (see Figure 5.3), we canonly insertarecord into one subclass because
the insertion to the superclass is done immediately before insertion to the
subclass. Insertion to another subclass will be restricted because there will be
duplication of the primary key in the superclass. Therefore, if we want to insert
arecord into more than one subclass, after the first subclass, we can only use

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

122 Rahayu, Taniar and Pardede

Figure 5.5. Simple insertion generic method

Customer:

INSERT INTO Customer
VALUES (&new_id, &new_name, &new_address) ;

Commercial:

INSERT INTO Customer

VALUES (&new_id, &new_name, &new_address) ;
INSERT INTO Commercial

VALUES (&new_id, &new_acn) ;

Academic:

INSERT INTO Customer
VALUES (&new_id, &new name, &new_address) ;
INSERT INTO Academic
VALUES (&new_id, &new_department) ;

the usual generic method. Examples of the usual generic methods are shown in
Figure 5.5. Notice that we use an ampersand in front of a user-defined variable.

Fifthisregarding deletion. Deleting customer records is straightforward, and
because delete is cascaded, the deletion will automatically be carried outto the
matching records in the subclasses. However, the deletion of subclass records
(suchasdeletinganacademic object) is rather complex as we cannot apply the
same method as that for customer deletion. Thisis because the deleted subclass
records may still exist in other sibling subclasses in which the matched
superclassrecord should not be deleted. Therefore, we first delete the intended
subclass record, and then we check whether this record does not existin other
sibling subclasstables. If it does not exist, we can delete the root record in the
superclasstable.

Sixth, update methods are not provided because the OID isimmutable and an
update to the OID is not permitted. The update of nonkey attributes is isolated
totherelevanttable only; hence, no complexity arises in an update.

Finally, the sample records show that customer Holmes Institute isacommer-
cialaswellasanacademic customer, and customer Federal Governmentis
neitheracommercial customer nor anacademic customer (both examplesare
printed inbold anditalic). These two objectsillustrate the fact that thisisaunion
inheritance.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 123

The implementation example mentioned in detail (see Figure 5.3) ismade using
the older Oracle™ version, which does not provide the inheritance feature.
However, as mentioned previously, Oracle™ 9 and the newer version have
provided an inheritance relationship (see Figure 5.6).

Toaccommodate union inheritance withthe newer Oracle™ version, we create
the tables for each type. However, we use a supertype table, Customer, only
for datathat do not belong to any of the subtype classes. Inthe sample records
(see Figure 5.4), itwill be the Federal Government. If we know that the data
belongs to any subtype class, we can use subtype member methods straight-
away. The weakness is that there will be repetition of a customer’s common
attributes in each of its subtype tables. Thisrepetitionisatacostnotonly in
insertiontime, butalso in storage space. Nevertheless, ithas benefits compared
with the previous Oracle™ version. We can insert into many subtype tables
using their member methods without having to use asimple generic method

Figure 5.6. Implementation of union inheritance relationship in newer
Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Customer T AS OBJECT
(id VARCHAR2 (10) ,
name VARCHAR2 (30) ,
address VARCHAR2 (30),

MEMBER PROCEDURE Insert_Customer(
new_id IN VARCHARZ2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete Customer) NOT FINAL
/

CREATE TABLE Customer OF Customer T
(id NOT NULL,
PRIMARY KEY (id)):;

CREATE OR REPLACE TYPE Commercial T UNDER Customer T
(acn VARCHAR2 (30) ,

MEMBER PROCEDURE Insert_Commercial(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

124 Rahayu, Taniar and Pardede

Figure 5.6 . (continued)

MEMBER PROCEDURE Delete Commercial)
/

CREATE TABLE Commercial OF Commercial_ T
(id NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Academic_T UNDER Customer T
(department VARCHAR2 (30) ,

MEMBER PROCEDURE Insert Academic (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

MEMBER PROCEDURE Delete Academic)
/

CREATE TABLE Academic OF Academic T
(id NOT NULL,
PRIMARY KEY (id));

Methods Implementation

CREATE OR REPLACE TYPE BODY Commercial T AS

MEMBER PROCEDURE Insert Commercial (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Commercial

VALUES (new_id, new_name, new_address, new_acn) ;
END Insert Commercial;

MEMBER PROCEDURE Delete Commercial IS

BEGIN

DELETE FROM Commercial

WHERE (Commercial.id = self.id);
END Delete Commercial;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.6. (continued)

Generic Methods

125

MEMBER PROCEDURE Insert Academic (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2)IS

BEGIN
INSERT INTO Academic

END Insert Academic;
MEMBER PROCEDURE Delete Academic IS

BEGIN

DELETE FROM Academic

WHERE (Academic.id = self.id);
END DeleteAcademic;

END;
/

Methods Execution Example

VALUES (new_id, new_name, new_address,

CREATE OR REPLACE TYPE BODY Academic T AS

DECLARE
a_customer Customer T := Customer T (NULL,NULL,NULL) ;
a_commercial Commercial T := Commercial T (NULL,NULL,NULL,N
a_academic Academic T := Academic_T (NULL,NULL,NULL, NULL) ;
BEGIN
a_customer.Insert Customer
('8’, ‘Federal Gov’, ‘Canberra’);
a_commercial.Insert_ Commercial
(7", ‘Holmes Inst’, ’'Melbourne’, ‘011-333'");
a_academic.Insert Academic
(7', ‘Holmes Inst’, ’'Melbourne’, ‘Info. Studies’);
END;
/

new_department) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

126 Rahayu, Taniar and Pardede

because the insertion of each table is done without first inserting into the
supertypetable.

Implementation of Methods in Mutual-Exclusion
Inheritance

Handling mutual-exclusion inheritance without losing the semantic of the
relationship is achieved by adding an attribute that reflects the type of the
subclassestothe superclasstable. Instead of union inheritance, suppose Figure
5.2 is of mutual-exclusion inheritance. The table Customer will have an
additional attribute called cust_type to ensure thatevery customer’srecord in
the table has a definite type, either commercial or academic. There are no
customersthat can refer simultaneously to bothacommercial and an academic
customer. The transformation isshown in Figure 5.7. We also show a deletion
example using both the OID and non-OID.

Anumber of observations can be made regarding the above transformation
results. First, attribute cust_type intable Customer isadded, and itincludesa
check constraintinwhichacheck for whether the value of this attribute is either
Commercial or Academic is carried out. Notice also that in the create-table
statement, attribute cust_type does nothave a“notnull” constraintinorder to
allowanoncommercial oracademic customer.

Second, the creation of subclass tables is identical to thatin union inheritance.
In other words, referential integrity constraints are still upheld in this inherit-
ance.

Third, for insertion, an appropriate subclass name is inserted as attribute
cust_type. In the case where a customer has no subtype (e.g., customer
Federal Government of Canberrawith ID 8), anull value is inserted. Notice
alsothatthe order of subclass-recordsinsertion is nontrivial as isthat of union
inheritance.

Fourth, the deletion in mutual exclusion is much simpler than that of union
inheritance due to the fact that a subclass object belongs to only one subclass.
Deleting asubclass object can be done at once by deleting the root objectin
the superclasstable. Since deletion is cascaded, the matching subclass records
will be deleted automatically. Therefore, deletion inmember procedures needs

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 127

Figure 5.7. Implementation of mutual-exclusion inheritance relationship

Relational Schemas

Customer (ID, name, address, cust_type)
Commercial (ID, ACN)
Academic (ID, department)

Methods Declaration

CREATE OR REPLACE TYPE Customer T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (30) ,
address VARCHAR2 (30) ,
cust_type VARCHAR2 (15) ,

MEMBER PROCEDURE Insert_Customer (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete_ Customer OID,

MEMBER PROCEDURE Delete Customer non_ OID (
deleted_attribute IN VARCHAR2)
/

CREATE TABLE Customer OF Customer T
(id NOT NULL,
cust_type CHECK (cust_type in ('Commercial', 'Academic', NULL)),
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Commercial T AS OBJECT
(id VARCHAR2 (10) ,
acn VARCHAR2 (30) ,

MEMBER PROCEDURE Insert_ Commercial (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

MEMBER PROCEDURE Delete_Commercial_ OID,

MEMBER PROCEDURE Delete_Commercial non_OID(
deleted_attribute IN VARCHAR2)

/

CREATE TABLE Commercial OF Commercial T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Customer (id)
ON DELETE CASCADE) ;

CREATE OR REPLACE TYPE Academic_T AS OBJECT
(id VARCHAR2 (10) ,
department VARCHAR2 (30) ,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

128 Rahayu, Taniar and Pardede

Figure 5.7. (continued)

MEMBER PROCEDURE Insert_ Academic (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

MEMBER PROCEDURE Delete_Academic_OID,

MEMBER PROCEDURE Delete_ Academic_non_OID(
deleted_attribute IN VARCHAR2))
/

CREATE TABLE Academic OF Academic T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Customer (id)
ON DELETE CASCADE) ;

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer T AS

MEMBER PROCEDURE Insert_Customer (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

BEGIN

INSERT INTO Customer

VALUES (new_id, new_name, new_address, NULL) ;
END Insert Customer;

MEMBER PROCEDURE Delete Customer OID IS

BEGIN
DELETE FROM Customer
WHERE Customer.id = self.id
AND Customer.cust_ type IS NULL;
END Delete_ Customer_ OID;

MEMBER PROCEDURE Delete_ Customer_non_OID (
deleted_attribute IN VARCHAR2) IS

BEGIN
DELETE FROM Customer
WHERE self.<attribute> = deleted attribute
AND self.cust_type IS NULL;
END Delete_ Customer non OID;

END;
/

CREATE OR REPLACE TYPE BODY Commercial T AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods

Figure 5.7. (continued)

129

MEMBER PROCEDURE Insert Commercial (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new name, new_address, 'Commercial');

INSERT INTO Commercial
VALUES (new_id, new_acn) ;
END Insert_Commercial;

MEMBER PROCEDURE Delete Commercial OID IS

BEGIN

DELETE FROM Customer

WHERE Customer.id = self.id

AND self.cust_type = 'Commercial';
END Delete_Commercial_ OID;

MEMBER PROCEDURE Delete_Commercial_non_ OID (
deleted_attribute IN VARCHAR2) IS

BEGIN
DELETE FROM Customer
WHERE Customer.id IN
(SELECT Commercial.id
FROM Commercial
WHERE self.<attribute> = deleted attribute)
AND self.cust_ type = 'Commercial';
END Delete_Commercial_ non_OID;

END;

/
CREATE OR REPLACE TYPE BODY Academic_ T AS

MEMBER PROCEDURE Insert Academic (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new name, new_address, 'Academic');
INSERT INTO Academic
VALUES (new_id, new_department) ;
END Insert_ Academic;

MEMBER PROCEDURE Delete Academic OID IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

130 Rahayu, Taniar and Pardede

Figure 5.7. (continued)

BEGIN
DELETE FROM Customer
WHERE Customer.id
AND self.cust type =
END Delete Academic_OID;

self.id
'Academic’';

MEMBER PROCEDURE Delete_ Academic_non_OID(
deleted_attribute IN VARCHAR2) IS

BEGIN
DELETE FROM Customer
WHERE Customer.id IN
(SELECT Academic.id
FROM Academic
WHERE self.<attribute> deleted attribute)
AND self.cust type = 'Academic';
END Delete_Academic_non_OID;

END;
/

Figure 5.8. Mutual-exclusion inheritance table example

Sample Records:

Customer
ID Name Address Cust_Type
1 Myer Pty Ltd. | Melbourne Commercial
2 Coles Pty Ltd. | Sydney Commercial
3 La Trobe Bundoora Academic
Univ.
4 Monash Univ. | Gippsland Academic
5 RMIT Univ. Melbourne Academic
6 Victoria Univ. | Footscray Academic
8 Federal Gov. Canberra
Commercial Academic
1D ACN 1D Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
5 Comp. Sc.
6 Informatics

one “delete from” statementand varies the OID type to be deleted. Notice also
thatan optional predicate inwhich the type is checked appears in the “delete
from” statements. Thisadditional predicate is useful to ensure that the OID to
be deleted is of the correct subtype. Other than this, the additional predicate

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 131

imposes an unnecessary overhead. The decision about whether or not to use
the additional predicate in the deletionis at the user’s discretion.

Finally, inthe sample records, as this isa mutual-exclusion example, customer
Holmes Institute of ID 7 (see Figure 5.4) does notexistin Figure 5.8. Thisis
because this customer is not mutually exclusive to a subclass type. A nontype
customer with ID 8 still exists in the above example.

Asinthe unioninheritance section, we also provide the example of implemen-
tation using the newer Oracle ™ version (see Figure 5.9). Notice that we do not
need subtype tables because the records will be kept in supertype table
Customeronly.

Inthisversion, the dataare kept only in the supertype table and there are no
subtype tables created. During insertion, we will need to clarify the type of data
that we wantto insert. To retrieve the data, we cannot access the attribute of
the subtype because there is no column for that attribute in the supertable.
Therefore, to access them, we have to use object references such as value.
These object references will be introduced in the next chapter.

Figure 5.9. Implementation of mutual-exclusion inheritance relationship
in newer Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Customer_ T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR?2 (30) ,
address VARCHAR2 (30) ,
cust_type VARCHAR2 (15) ,

MEMBER PROCEDURE Insert Customer (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete Customer) NOT FINAL
/

CREATE TABLE Customer OF Customer T
(id NOT NULL,
cust_type CHECK (cust_type in ('Commercial', 'Academic’',
NULL)) ,
PRIMARY KEY (id));

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

132 Rahayu, Taniar and Pardede

Figure 5.9. (continued)

Subtypes Commercial T and Customer T are the same as 1in union
inheritance (Figure 5.6). However, unlike 1in wunion inheritance, no
subtype table is needed.

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer T AS

MEMBER PROCEDURE Insert_Customer (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

BEGIN

INSERT INTO Customer

VALUES (Customer T (new_id, new name, new_address, NULL)) ;
END Insert_Customer;

MEMBER PROCEDURE Delete_ Customer IS

BEGIN

DELETE FROM Customer

WHERE Customer.id = self.id;
END Delete Customer;

END;

/

CREATE OR REPLACE TYPE BODY Commercial T AS

MEMBER PROCEDURE Insert Commercial (
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES
(Commercial T(new_id, new_name, new_address,
‘Commercial’, new_acn));
END Insert Commercial;

MEMBER PROCEDURE Delete Commercial IS

BEGIN

DELETE FROM Customer

WHERE Customer.id = self.id;
END Delete Commercial;

END;
/

CREATE OR REPLACE TYPE BODY Academic T AS

MEMBER PROCEDURE Insert Academic (
new_id IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 133

Figure 5.9. (continued)

new name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2)IS

BEGIN
INSERT INTO Customer
VALUES
(Academic_T(new_id, new_name, new_address,
‘Academic’, new_department)) ;
END Insert Academic;

MEMBER PROCEDURE DeleteAcademic IS

BEGIN

DELETE FROM Customer

WHERE Customer.id = self.id;
END DeleteAcademic;

END;
/

Implementation of Methods in Partition Inheritance

Similar to the other types of inheritance, mapping partition inheritance into
tablesinthe previous Oracle™ version is done by having one table for each
superclass and subclass. Like the mutual-exclusion type, an additional type
attribute is added to the superclass table. The difference is that this type
attribute hasa “notnull” constraint. This ensures that each superclass object
belongstoaparticular subclass type. Italso ensures that no superclass object
belongs to more than one subclass. Figure 5.10 shows an example of the
transformation of partition inheritance.

A number of observations for the above example can be made. First, the
relational schemas for partition inheritance are exactly the same as those for
mutual-exclusion inheritance, where anadditional cust_type attribute isadded
to the superclass table Customer.

Second, a“notnull” constraintis added in the cust_type attribute during the
table creation. Other than this, everything regarding the table creation for
partition inheritance is identical to that of mutual exclusion. Thisincludes the
checking of attribute cust_type, and foreign-key referential integrity for the
subclass tables Commercial and Academic.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

134 Rahayu, Taniar and Pardede

Third, as a nonspecialized object does not exist in a partition inheritance,
insertion into table Customer is not available. In other words, there is no
customer object that does not belong to any subclasses. Subclass object
insertion (insertion to subclass tables Commercial and Academic) isthe same
asthat of mutual-exclusioninheritance. For practical reasons, it is better to use
the encapsulation method of insertion because the insertion to the subclass table
isdone immediately after the insertion to the superclass table. In other words,
thereisnorecord thatisinserted only into the superclass table without being
inserted into the subclass as well.

Fourth, like insertion, deletion in partition inheritance is applicable to the
deletion of subclass objects only (e.g., Commercial and Academiconly). The
deletion of pure customer objectsis notavailable.

Finally, the sample records showthat there is no customer record that does not
existinthe subclasstables. Notice that customer Holmes Institute and customer
Federal Government do not exist in the sample records due to the above
reason.

Animplementation example of partition inheritance using the newer Oracle™
versionwill not be shown here because itis very similar to the mutual-exclusion

Figure 5.10. Implementation of partition inheritance relationship

Relational Schemas

Similar to the one in mutual exclusion (Figure 5.6)

Methods Declaration

CREATE OR REPLACE TYPE Customer T AS OBJECT

(id VARCHAR2 (10) ,
name VARCHAR2 (30) ,
address VARCHAR2 (30) ,
cust_type VARCHAR2 (15))

/

CREATE TABLE Customer OF Customer T
(id NOT NULL,
cust_type NOT NULL
CHECK (cust_type in ('Commercial', 'Academic')),
PRIMARY KEY (id));

The creation of commercial and academic subtypes and tables 1is the same
as in mutual-exclusion inheritance (Figure 5.6).

Methods Implementation

Methods implementation for commercial and academic subtypes 1s the same
as in mutual-exclusion inheritance (Figure 5.6).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.11. Partition inheritance table example

Sample Records:

Generic Methods 135

Customer
ID Name Address CustType
1 Myer Pty Ltd. | Melbourne Commercial
2 Coles Pty Ltd. | Sydney Commercial
3 LaTrobe Univ. | Bundoora Academic
4 Monash Univ. | Gippsland Academic
5 RMIT Univ. Melbourne Academic
6 Victoria Univ. | Footscray Academic
Commercial Academic
ID ACN ID Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
5 Comp. Sc.
6 Informatics

implementationin Figure 5.10. The only difference isthe “not null” constraint
forthe cust_type attribute during the table creation.

Implementation of Methods in Multiple Inheritance

Mapping multiple inheritancetotablesissimilarto thatof union inheritance; that
is, noadditional type attribute is necessary. We use the previous example and
assume that a new class Private_Ed inherits from classes Commercial and
Academic. Asaresult, atable for the new class is created. Figure 5.12 shows
anexample of transforming multiple inheritance.

The following are the observations relating to the multiple-inheritance ex-
amples.

First, the relational schemas are identical to those of union inheritance with the
exception that here a new table is created to accommodate the subclass
inheriting from multiple superclasses. Inthis case, table Private_Ed iscreated.

Second, asthe relational schemas for the first three tables are the same as those
inunioninheritance, the table-creation statements for these tables are also the
same. The new table has its own create-table statement. One thing to note is
that the foreign key of thisnew table refers to table Customer only, although in
factithasreferencestotables Commercial and Academic. However, in the
implementation, SQL allows one reference per foreign key.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

136 Rahayu, Taniar and Pardede

Figure 5.12. Implementation of multiple inheritance relationship

Relational Schemas

Customer (ID, name, address)
Commercial (ID, ACN)

Academic (ID, department)
Private_Ed (ID, sponsor_board)

Methods Declaration

The creation of customer, commercial, and academic types 1is the same as
in union inheritance (Figure 5.3).

CREATE OR REPLACE TYPE Private_Ed_T AS OBJECT
(id VARCHAR2 (10),
sponsor_board VARCHAR2 (30),

MEMBER PROCEDURE Insert Private Ed(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2,
new_department IN VARCHAR2,
new_sponsor_board IN VARCHAR2),

MEMBER PROCEDURE Delete Private_ Ed)
/

CREATE TABLE Private_Ed OF Private Ed T
(id NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY (id) REFERENCES Customer (id) ON DELETE CASCADE) ;

Methods Implementation

Methods implementation for customer, commercial, and academic is the
same as in union inheritance (Figure 5.3).

CREATE OR REPLACE TYPE BODY Private Ed T AS

MEMBER PROCEDURE Insert Private Ed(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2,
new_department IN VARCHAR2,
new_sponsor board IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new id, new name, new address) ;
INSERT INTO Commercial B
VALUES (new id, new acn) ;
INSERT INTO Academic
VALUES (new id, new department) ;
INSERT INTO Private Ed
VALUES (new_id, new_sponsor_board) ;
END Insert Private Ed;
MEMBER PROCEDURE Delete Private Ed IS

BEGIN
DELETE FROM Customer
WHERE Customer.id = self.id;
END Delete_ Private_Ed;
END;

i

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 137

Figure 5.13. Multiple inheritance table example

Sample Records:

Customer
ID Name Address
1 Myer Pty Ltd. Melbourne
2 Coles Pty Ltd. Sydney
3 LaTrobe Univ. | Bundoora
4 Monash Univ. Gippsland
5 RMIT Univ. Melbourne
6 Victoria Univ. Footscray
7 Holmes Inst. Melbourne
8 Federal Gov. Canberra
Commercial Academic Private_Ed
ID ACN ID | Department ID | Sponsor_Board
1 123-423 3 Comp. Sc. 7 Pratt Brothers
2 | 443-765 4 Info. Tech
7 | 011-333 5 Comp. Sc.
6 Informatics
7 Info. Studies

Third, the insertion of the first three tables is also identical to that of union
inheritance. The new insertion is applied to the new table. Notice that the
insertion order is top down from the least specialized class (table Customer) to
thetable Private_Ed.

Fourth, like creation and insertion, the deletion of the first three tables is the
same asthatof union inheritance. The deletion of records from the new table
issimplified, however, so asto delete the root record only. The effect is that
matching records of all tables underneath thisroot table will be deleted as well
duetothe foreign-key referential integrity constraint where deletion is cas-
caded.

Finally, the sample records show that customer Holmes Institute appears in the
newtable Private Ed. Itshowsthat Holmes Institute isacommercial customer
as well as an academic customer. It also belongs to the category private
educational institution, where private educational institution is both commercial
and academic.

We do not provide the implementation of multiple inheritance using newer
Oracle™ versions because at the time of thiswriting, there is still no support
formultiple inheritance.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

138 Rahayu, Taniar and Pardede

Implementation of Methods in
Association Relationships

Inthis section, the object-oriented model as described in Chapter I11, Figure
3.35, will be used. We are going to concentrate on the association relationships
between Author_T and Course Manual_T, which represents a many-to-many
association, and between Teaching_Staff_T and Subject_T, whichdepictsa
one-to-many association. Figure 5.14 shows the many-to-many association
relationship.

Inthissection, we focus on the implementation of association methods using the
latest object-relational technology, namely, object references. Please note that
the keyword ref is used to represent object references, as opposed to
references, which is used to represent the traditional way of representing
association using the foreign-key relationship.

Also note that we do notuse theao_ID and ISBN as the composite key inthe
Publishtable. Thisisto distinguish between the two concepts of foreign-key
references (using ID) and the object-references concept where internal refer-
ences are used. One weakness of this practice is that there isno restriction of
duplication of the same record as it would be restricted when we use primary
keysinapure relational system. For example (see Figure 5.15), we cannot
insertthe same record for the Authorand Course_Manual tables, but we can
insertduplication to the Publish table.

Inthe insertion example above, the select statements must return one row only.
Thus, the specified attribute must be unique. Itisrecommended thata unique
ID be used here. The insertion method for encapsulation is also not all
straightforward from the simple generic method. We need to use variablesin
order to be able to insert them into the Publish table.

Figure 5.14. Many-to-many association

publishes
Author_T 1 1 Course_Manual_T
name o o ISBN
address title
year

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 139

Figure 5.15. Implementation of a many-to-many association relationship

Relational Schemas

Author (ao_ID, name, address)
Course_Manual (ISBN, title, year)
Publish (author, course manual)

Methods Declaration

CREATE OR REPLACE TYPE Author_ T AS OBJECT
(aoiid VARCHAR2 (3),
name VARCHAR2 (10),
address VARCHAR2 (20) ,

MEMBER PROCEDURE Insert Author (
new_ao_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete_ Author)

/

CREATE TABLE Author OF Author T
(ao_id NOT NULL,
PRIMARY KEY (ao_id));

CREATE OR REPLACE TYPE Course Manual T AS OBJECT
(isbn VARCHAR2 (10) ,
title VARCHAR2 (20) ,
year NUMBER,

MEMBER PROCEDURE Insert Course Manual (
new_isbn IN VARCHAR2,
newititle IN VARCHAR2,
new_year IN NUMBER),

MEMBER PROCEDURE Delete Course Manual)
/

CREATE TABLE Course_Manual OF Course_Manual T
(isbn NOT NULL,
PRIMARY KEY (isbn)) ;

CREATE TABLE Publish
(author REF Author T,
course_manual REF Course Manual T);

Methods Implementation

CREATE OR REPLACE TYPE BODY Author T AS

MEMBER PROCEDURE Insert Author (
new _ao_id IN VARCHAR2,
new name IN VARCHAR2,
new_address IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

140 Rahayu, Taniar and Pardede

Figure 5.15. (continued)

BEGIN

INSERT INTO Author

VALUES (new_ao_id, new_name, new_address) ;
END Insert Author;

MEMBER PROCEDURE Delete_ Author IS

BEGIN
DELETE FROM Publish
WHERE Publish.author IN
(SELECT REF (a)
FROM Author a
WHERE a.ao_id = self.author_id);

DELETE FROM Author
WHERE Author.ao_id = self.author id;

END Delete Author;

END;

/
CREATE OR REPLACE TYPE BODY Course_Manual T AS

MEMBER PROCEDURE Insert Course_ Manual (
new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER) IS

BEGIN

INSERT INTO Course Manual

VALUES (new_isbn, new_title, new_year);
END Insert_ Course_Manual;

MEMBER PROCEDURE Delete Course Manual IS

BEGIN
DELETE FROM Publish
WHERE Publish.course_manual IN
(SELECT REF (b)
FROM Course_Manual b
WHERE b.isbn = self.course_ id);

DELETE FROM Course_Manual
WHERE Course Manual.isbn = self.course id;

END Delete Course Manual;

END;
/

For the Publish table, we do not have member procedures So we
ordinary stored procedures.

CREATE OR REPLACE PROCEDURE Insert Publish(
new _ao_id IN VARCHAR2,
new_isbn IN VARCHAR2) AS

use

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Generic Methods 141

Figure 5.15. (continued)

author temp REF Author T;
course_temp REF Course_Manual T;

BEGIN
SELECT REF (a) INTO author temp
FROM Author a
WHERE a.ao_id = new_ao_id;

SELECT REF (b) INTO course_temp
FROM Course_Manual b
WHERE b.isbn = new_isbn;

INSERT INTO Publish
VALUES (author temp, course_temp) ;
END Insert_ Publish;

/

CREATE OR REPLACE PROCEDURE Delete Publish(
deleted_ao_id IN VARCHAR2,
deleted_isbn IN VARCHAR2) AS

BEGIN
DELETE FROM Publish
WHERE
Publish.author IN
(SELECT REF (a)
FROM Author a
WHERE a.ao_id = deleted _ao_id) AND
Publish.course manual IN
(SELECT REF (b)
FROM Course_Manual b
WHERE b.isbn = deleted isbn);
END Delete Publish;
/

Methods Execution Example

For this method we use member procedures for the Author and Course Manual
tables, and use stored procedure for the Publish table.

DECLARE
a_author Author T := Author_ T (NULL,NULL,NULL) ;

a_course_manual Course_ Manual T :=
Course_Manual T (NULL,NULL, NULL) ;

BEGIN
a_author.Insert Author ('S2’, ‘Smith’, ‘Sydney’);
a_course _manual.Insert Course Manual
(*1234’, ‘Database System’, 2002);

END;

/

EXECUTE Insert Publish('S2’, '1234');

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

142 Rahayu, Taniar and Pardede

Figure 5.16. Example of a many-to-many association-relationship table

Sample Records:

Author Course_Manual
a0_id | name | address isbn title year
S2 Smith | Sydney 1234 | Database System | 2002

Publish
ao_id isbn
S2 1234

Figure 5.17. One-to-many association

Teaching_Staff T 1 1 Subject T
total_hour | code
contact_no: sub_name
<varray> venue

The next example is the one-to-many association relationship (see Figure
5.17). The maindifference in the implementation between this and the many-
to-many association is the fact that the ref attribute that forms the object
referencesis placed in the object that holds the many side. Inthe Figure 5.17
example, Subject_T will hold the object reference to Teaching_Staff T.The
implementation of thisassociation isshown in Figure5.18.

Implementation of Methods in
Aggregation Relationships

Inthis section, we will concentrate on the aggregation relationship between
Course_Manual_T and Chapter_T of the object-oriented model described in
Figure5.19.

As mentioned previously, there are two ways of implementing aggregation
relationshipsin Oracle™: the clustering technique and the nesting technique.
The associated methods to be implemented for each aggregation relationship
will be dependent on the technique used to represent the aggregation link.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 143

Figure 5.18. Implementation of a one-to-many association relationship

Relational Schemas

Teaching Staff (ao_ID, total hour, contact no)
Subject (code, sub_name, venue, lecturer)

Methods Declaration

CREATE OR REPLACE TYPE Contacts AS VARRAY (3) OF NUMBER

/

CREATE OR REPLACE TYPE Teaching Staff T AS OBJECT
(ao_id VARCHAR2 (3) ,
total hour NUMBER,
contact_no CONTACTS,

MEMBER PROCEDURE Insert Teaching Staff(
new_ao_id IN VARCHAR2,
new_ttl hour IN NUMBER,
new numberl IN NUMBER,
new_number2 IN NUMBER,
new_number3 IN NUMBER),

MEMBER PROCEDURE Delete Teaching Staff)

/

CREATE OR REPLACE TYPE Subject_T AS OBJECT
(code VARCHAR2 (10) ,
sub_name VARCHAR?2 (20) ,
venue VARCHAR2 (10) ,

lecturer REF teaching staff T,

MEMBER PROCEDURE Insert Subject (
new _code IN VARCHAR2,
new_sub_name IN VARCHAR2,
new_venue IN VARCHAR2,
teach ao id IN VARCHAR2),

MEMBER PROCEDURE Delete_Subject)
/

CREATE TABLE Teaching Staff OF Teaching Staff T
(ao_id NOT NULL,
PRIMARY KEY (ao_id));

CREATE TABLE Subject OF Subject_T
(code NOT NULL,
PRIMARY KEY (code)) ;

Methods Implementation

CREATE OR REPLACE TYPE BODY Teaching Staff T AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

144 Rahayu, Taniar and Pardede

Figure 5.18. (continued)

MEMBER PROCEDURE Insert Teaching Staff(
new_ao_id IN VARCHAR2,
new ttl hour IN NUMBER,
new_numberl IN NUMBER,
new number2 IN NUMBER,
new number3 IN NUMBER) IS

BEGIN
INSERT INTO Teaching_Staff
VALUES (new_ao_id, new_ttl_hour, Contacts
(new_numberl, new number2, new number3)) ;
END Insert Teaching Staff;

MEMBER PROCEDURE Delete Teaching Staff IS

BEGIN
DELETE FROM Subject b
WHERE b.lecturer.ao_id = self.ao_id;
DELETE FROM Teaching Staff a
WHERE a.ao _id = self.ao_id;
END Delete Teaching Staff;

END;
/

CREATE OR REPLACE TYPE BODY Subject T AS

MEMBER PROCEDURE Insert Subject (
new code IN VARCHAR2,
new_sub_name IN VARCHAR2,
new_venue IN VARCHAR2,
teach ao id IN VARCHAR2) IS

new_ lecturer REF Teaching Staff T;

BEGIN
SELECT REF (a) INTO new_lecturer
FROM Teaching Staff a
WHERE ao_id = teach _ao id;

INSERT INTO Subject
VALUES (new _code, new_sub name, new_venue,
new_lecturer) ;
END Insert Subject;

MEMBER PROCEDURE Delete Subject IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 145

Figure 5.18. (continued)

BEGIN
DELETE FROM Subject b
WHERE b.code = self.code;
END Delete Subject;

END;

Figure 5.19. Aggregation relationship

Course_Manual_T
ISBN

title
year

A

Chapter_T
chapter_no
chapter_title
page_no

Implementation of Methods in Aggregation
Relationships Using the Clustering Technique

Inthe clustering technique, the primary key of the whole table is specified asthe
cluster key. This key will be the one that groups the part tables together.
Physically, thiskey is stored only once, and connected to it will be all the part
recordsthatare associated with it. The implementation of Figure 5.19 using the
clustering technique is described in Figure 5.20.

The relational schemas for the clustering technique show that the cluster key,
ISBN (the primary key of the whole table), will be carried by each of the part
tables. If we have more than one parttable in the example, then each of them
will have ISBN as one of the attributes. Note thatc_no by itself isnotaprimary
key (notunique) for the Chapter table; however,c_nocombined with ISBN is
unique within the Chaptertable.

The generic method of implementation in relational tables using the clustering
technique isnot different from that of the standard insert, delete, and update

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

146 Rahayu, Taniar and Pardede

procedures. We can simply ignore the cluster when we perform the data
manipulation as a cluster key is an internal structure needed to make data
storage and retrieval more efficientwhen aparticular model isimplemented.

Implementation of Methods in Aggregation
Relationships Using the Nesting Technique

Figure5.22 shows the nested-table technique. The attribute chapter within the
Course_Manual table isan object reference that is referencing to anested table
called Chapter. We cannot place the attribute of Chapter (e.g., ¢_no) in
Course_Manual aswe usually do inaforeign-key relationship. Thisis because
c_noisnotaprimary key of Chapter. There may be course manuals with the
same chapter numbers but entirely different contents. In addition, the link
between Course_Manual and Chapter is established through object references

Figure 5.20. Implementation of an aggregation relationship using the
clustering technique

Relational Schemas

Course Manual (ISBN, title, year)
Chapter (ISBN, c_no, c_title, c_page no)

SQL Create Statements

The following create statements show how we create the
cluster, tables, and index. It has been explained in
Section 3.3.

CREATE CLUSTER CM Cluster
(isbn VARCHAR2 (10)) ;

CREATE TABLE Course Manual
(isbn VARCHAR2 (10) NOT NULL,
title VARCHAR2 (20),
year NUMBER,
PRIMARY KEY (isbn))
CLUSTER CM Cluster (isbn) ;

CREATE TABLE Chapter

(isbn VARCHAR2 (10) NOT NULL,
c_no VARCHAR2 (10) NOT NULL,
c title VARCHAR?2 (25) ,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 147

Figure 5.20. (continued)

c_page_no NUMBER,

PRIMARY KEY (isbn, ¢ no),

FOREIGN KEY (isbn) REFERENCES Course Manual (isbn))
CLUSTER CM_Cluster (isbn) ;

CREATE INDEX CM Cluster_ Index
ON CLUSTER CM_Cluster;

Methods Implementation

CREATE OR REPLACE PROCEDURE Insert Course_ Manual (
new_isbn IN VARCHAR2,
new _title IN VARCHAR2,
new_year IN NUMBER) AS

BEGIN

INSERT INTO Course_Manual

VALUES (new_isbn, new_title, new_year);
END Insert Course_Manual;

/

CREATE OR REPLACE PROCEDURE Insert Chapter(
new_isbn IN VARCHAR2,
new_c_no IN NUMBER,
new c_title IN VARCHAR2,
new_c_page _no IN NUMBER) AS

BEGIN
INSERT INTO CHAPTER
VALUES (new_isbn, new c no, new_c_title,
new_c_page no) ;
END Insert_Chapter;

CREATE OR REPLACE PROCEDURE Delete Course_ Manual (
deleted_isbn IN VARCHAR2) AS

BEGIN
DELETE FROM Course_ Manual
WHERE isbn = deleted isbn;
END Delete Course Manual;

/

CREATE OR REPLACE PROCEDURE Delete_ Chapter (
deleted ¢ no IN NUMBER) AS

BEGIN
DELETE FROM Chapter
WHERE c no = deleted c no;
END Delete_ Chapter;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

148 Rahayu, Taniar and Pardede

Figure 5.20. (continued)

Methods Execution Example

As using the clustering technique, we do not have member procedures; to
execute the procedures we just use execute statements.

EXECUTE Insert_Course_Manual (‘'1234’, ’'Database System’, 2002);
EXECUTE Insert Chapter ('1234’, 1, ‘Introduction’, 10);

EXECUTE Insert Chapter (‘'1234’, 2, ‘Database Concepts’, 30);

Figure 5.21. Clustering aggregation-relationship table example

Sample Records:

Course_Manual
ISBN Title Year
1234 Database System 2002

Chapter
ISBN C_No C_Title Page No
1234 1 Introduction 20
1234 2 Database Concepts | 50

(the internal reference of each individual chapter) rather than through the
attribute value. Note also that there isno primary key in the Chapter table.

From the implementation above, note that we cannot insert new chapters
withoutan associating course manual. Thisenforces the existence-dependent
concept, where the existence of each part object is dependent on its associated
whole object.

The keyword the inthe above insert statement is used to represent the nested
table Chapter. Since Chapter isnotastandard table, we cannot use its name
in order to populate it. The use of the (we can also use table instead) also
ensuresthateach record within the nested table has an associated record from
the wholetable, inthis case the Course_Manual table. Note also that the select
statement must return one row only; otherwise, the query will returnanerror.
Toavoidthisproblem, we usually use a primary key as the selection attribute
to ensure uniqueness.

Figure 5.23 describes the relationship between the whole table and its nested
table (parttable).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 149

Figure 5.22. Implementation of an aggregation relationship using the
nesting technique

Relational Schemas

Course Manual (ISBN, title, year, chapter)
Chapter (c_no, c_title, page no)

Methods Declaration

CREATE OR REPLACE TYPE Chapter T AS OBJECT

(c_no NUMBER,
c_title VARCHAR?2 (20) ,
c_page _no NUMBER)
/
CREATE OR REPLACE TYPE Chapter Table T AS TABLE OF Chapter T
/
CREATE OR REPLACE TYPE Course_Manual_T AS OBJECT
(isbn VARCHAR2 (10) ,
title VARCHAR2 (20) ,
year NUMBER,
chapter Chapter Table T,

MEMBER PROCEDURE Insert Course Manual (
new_ isbn IN VARCHAR2,
new _title IN VARCHAR2,
new_year IN NUMBER,
new_c_no IN NUMBER,
new c_title IN VARCHAR2,
new c_page no IN NUMBER),

MEMBER PROCEDURE Delete Course_Manual,

MEMBER PROCEDURE Insert Chapter (
new_isbn IN VARCHAR2Z,
new_c no IN NUMBER,
new _c_title IN VARCHAR2,
new_c_page _no IN NUMBER),

MEMBER PROCEDURE Delete Chapter)

/

CREATE TABLE Course Manual OF Course Manual T
(isbn NOT NULL,
PRIMARY KEY (isbn))
NESTED TABLE chapter STORE AS chapter tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Course Manual T AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

150 Rahayu, Taniar and Pardede

Figure 5.22. (continued)

MEMBER PROCEDURE Insert Course Manual (
new isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER,
new_c_no IN NUMBER,
new _c title IN VARCHAR2,
new_c page no IN NUMBER) IS

BEGIN
INSERT INTO Course Manual
VALUES (new_isbn, new_title, new_year,
Chapter Table T(Chapter T(new c no, new c title,
new_c_page no))) ;
END Insert Course Manual;

MEMBER PROCEDURE Delete_ Course_ Manual

BEGIN
DELETE FROM Course Manual a
WHERE a.isbn = self.isbn;
END Delete Course Manual;

MEMBER PROCEDURE Insert Chapter(
new isbn IN VARCHAR2,
new_c_no IN NUMBER,
new _c title IN VARCHAR2,
new_c page no IN NUMBER) IS

BEGIN
INSERT INTO THE
(SELECT c.chapter
FROM Course Manual c
WHERE c.isbn = new_isbn)
VALUES (new _c no, new c title, new c page no);
END Insert Chapter;

MEMBER PROCEDURE Delete Chapter IS

BEGIN
DELETE FROM THE
(SELECT c.chapter
FROM Course Manual c
WHERE c.isbn = self.isbn);
END Delete Chapter;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 151

Figure 5.23. “The” table

COURSE_MANUAL Table
(Whole Table)

~" CHAPTER Nested Table
(Part Table)
- called The table in queries -

Case Study

Recall the AEU case study in Chapter 1. The union wants to add generic
methodsinits object-relational database. However, only objects with frequent
changeswill have member procedures attached to them. Figure 5.24 shows the
partition of the AEU database diagram with the object attributes and object
methods.

Toimplementthe object-oriented model, we will follow the systematic steps
thatfollow.

+ Type and table. For this case, we need the types Employee T,
Office_Staff T, Organizer_T, Teacher_T,and School_T. Foreach of
them, we will create the table respectively. For this case study, we will use
anestedtable; thus, we need to add type Area_T and its table, and also
the Suburb_T typeand Suburb_Table_T for the aggregation relationship.

» Inheritancerelationship. There isone mutual-exclusion inheritance rela-
tionship between Employee_T and its subclasses. We have to add another
attribute in the Employee_T class, emp_type, to perform the mutual-
exclusive feature.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

152 Rahayu, Taniar and Pardede

Figure 5.24. AEU case study with generic-method implementation

Employee T
emp_ID teaches in
emp_name
emp_address 1... 1.
e ETT— Teacher T School T
_emp Teacher 1D 1. IsAD
delete_emp teacher_name sch_type
represenfts teacher_address sch_name
mutuallexclusive insert_teacher sch_address
| | 1 delete_teacher insert_sch
delete_sch
Office_Staff’ T Organizer_T/
emp_ID emp_ID 7 ioned in
skills length_service >r*g\
insert_off INSert_org 1 Area T
delete_off delete_org area_ID
area_name
insert_area
delete_area
Y
1...
Suburb_ T
SUb_1D
sub_name
insert_sub
delete_sub

Associationrelationship. There are three association relationships from
this model. Firstisthe one-to-many association between Organizer_T
and Teacher_T. Arefofthe oneside, Organizer_T, isneeded inthe many
side. Next, the association is many to many between Teacher_T and
School_T. For this association relationship, we need to add a table to
keep the ref to both classes. Finally, there is a one-to-one association
between Organizer_T and Area_T. We will use the object reference of
Organizer_Tin Area_T because Area_T hastotal participation.

Aggregation relationship. There is one homogeneous aggregation rela-
tionship inthismodel. We will use anested table, so we have to create the
type and type table for the part class, and the type and table for the whole
class.

Complete solution. The complete solution is shown in Figure 5.25.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 153

Figure 5.25. Implementation of the case study in Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Employee T AS OBJECT

(emp_id VARCHAR2 (10) ,
emp_name VARCHAR?2 (30) ,
emp_address VARCHAR?2 (30),
emp_type VARCHAR2 (15) ,

MEMBER PROCEDURE Insert Emp (
new_emp_id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp address IN VARCHAR2),

MEMBER PROCEDURE Delete Emp) NOT FINAL
/

CREATE TABLE Employee OF Employee T
(emp id NOT NULL,
emp type CHECK (emp type IN (‘Office Staff’, ‘Organizer’, NULL)),
PRIMARY KEY (emp id));

CREATE OR REPLACE TYPE Office Staff T UNDER Employee T
(skills VARCHAR2 (50),

MEMBER PROCEDURE Insert Off (
new_emp_id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp address IN VARCHAR2Z,
new skills IN VARCHAR2),

MEMBER PROCEDURE Delete Off)
/

CREATE OR REPLACE TYPE Organizer T UNDER Employee T
(length_service VARCHAR2 (10) ,

MEMBER PROCEDURE Insert_ Org(
new_emp_id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_length service IN VARCHAR2),

MEMBER PROCEDURE Delete Org)

/

CREATE OR REPLACE TYPE Teacher_T AS OBJECT
(teacher_id VARCHAR2 (10) ,
teacher name VARCHAR2 (20) ,
teacher address VARCHAR2 (10) ,

representation REF Organizer T,

MEMBER PROCEDURE Insert Teacher (
new_teacher id IN VARCHAR2,
new_teacher name IN VARCHAR2,
new_teacher address IN VARCHAR2,
representation emp id IN VARCHAR2),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

154 Rahayu, Taniar and Pardede

Figure 5.25. (continued)

MEMBER PROCEDURE Delete Teacher)
/

CREATE TABLE Teacher OF Teacher T
(teacher id NOT NULL,
PRIMARY KEY (teacher id));

CREATE OR REPLACE TYPE School T AS OBJECT

(sch_id VARCHAR2 (10) ,
sch name VARCHAR?2 (20) ,
sch _address VARCHAR2 (30) ,
sch_type VARCHAR2 (15) ,

MEMBER PROCEDURE Insert Sch(
new_sch id IN VARCHAR2,
new_sch _name IN VARCHAR2,
new_sch_address IN VARCHAR2,
new sch type IN VARCHAR2),

MEMBER PROCEDURE Delete Sch)
/

CREATE TABLE School OF School T
(sch_id NOT NULL,
sch type CHECK (sch type IN (‘Primary’, ‘Secondary’, ‘TechC’)),
PRIMARY KEY (sch _id));

CREATE TABLE Teach_In
(teacher REF Teacher T,
school REF School T);

CREATE OR REPLACE TYPE Suburb_T AS OBJECT
(Sub_id VARCHAR2 (10) ,
sub_name VARCHAR2 (20))

/

CREATE OR REPLACE TYPE Suburb_Table T AS TABLE OF Suburb T
/

CREATE OR REPLACE TYPE Area T AS OBJECT

(area_id VARCHAR2 (10) ,
area_name VARCHAR2 (20) ,
suburb Suburb_Table T,

assigned org REF Organizer T,

MEMBER PROCEDURE Insert Area(
new_area id IN VARCHAR2,
new_area_name IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2,
assigned org id IN VARCHAR2),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 155

Figure 5.25. (continued)

MEMBER PROCEDURE Delete Area,

MEMBER PROCEDURE Insert Suburb (
new_area_id IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub _name IN VARCHAR2),

MEMBER PROCEDURE Delete Suburb
/

CREATE TABLE Area OF Area T
(area_id NOT NULL,
PRIMARY KEY (area_id))
NESTED TABLE suburb STORE AS suburb tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Employee T AS

MEMBER PROCEDURE Insert Emp (
new_emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_address IN VARCHAR2) IS

BEGIN

INSERT INTO Employee

VALUES (new_emp_id, new_emp_name, new_emp_address, NULL);
END Insert Emp;

MEMBER PROCEDURE Delete Emp IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp_id = self.emp_ id
AND Employee.emp_type IS NULL;

END Delete Emp;

END;
/

CREATE OR REPLACE TYPE BODY Office Staff T AS

MEMBER PROCEDURE Insert Off (
new_emp_id IN VARCHAR2,
new_emp name IN VARCHARZ2,
new_emp_address IN VARCHAR2,
new skills IN VARCHAR2) IS

BEGIN
INSERT INTO Employee
VALUES Office Staff T (new emp id, new _emp name, new emp address,
'Office Staff', new skills);
END Insert Off;

MEMBER PROCEDURE Delete Off IS

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

156 Rahayu, Taniar and Pardede

Figure 5.25. (continued)

DELETE FROM Employee
WHERE Employee.emp_ id = self.emp_ id;
END Delete Off;

END;
/

CREATE OR REPLACE TYPE BODY Organizer T AS

MEMBER PROCEDURE Insert Org(
new_emp_ id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp address IN VARCHAR2,
new length service IN VARCHAR2) IS

BEGIN
INSERT INTO Employee
VALUES (new_emp id, new_emp name,
new_emp_ address, 'Organizer', new length service);
END Insert Org;

MEMBER PROCEDURE Delete Org IS

BEGIN

DELETE FROM Employee

WHERE Employee.emp_ id = self.emp_ id;
END Delete Org;

END;
/
CREATE OR REPLACE TYPE BODY Teacher T AS

MEMBER PROCEDURE Insert Teacher (
new_teacher id IN VARCHARZ,
new_teacher name IN VARCHAR2,
new_teacher address IN VARCHAR2,
representation emp id IN VARCHAR2) IS

new organizer REF Organizer T;

BEGIN
SELECT REF (a) INTO new organizer
FROM Organizer a
WHERE emp id = representation emp id;

INSERT INTO Teacher
VALUES (new_teacher id, new_teacher name,
new_teacher address, new_organizer) ;
END Insert_ Teacher;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 157

Figure 5.25. (continued)

MEMBER PROCEDURE Delete_ Teacher IS

BEGIN

DELETE FROM Teacher

WHERE Teacher.teacher id = self.teacher_id;
END Delete Teacher;

END;
/

CREATE OR REPLACE TYPE BODY School T AS

MEMBER PROCEDURE Insert Sch(
new_sch id IN VARCHAR2,
new_sch name IN VARCHAR2,
new_sch address IN VARCHAR2,
new_sch type IN VARCHAR2) IS

BEGIN

INSERT INTO School

VALUES (new_sch id, new_sch name, new sch address, new_sch type);
END Insert_Sch;

MEMBER PROCEDURE Delete_Sch IS

BEGIN
DELETE FROM Teach In
WHERE Teach In.school IN
(SELECT REF (a)
FROM School a
WHERE a.sch _id = self.sch id);

DELETE FROM School
WHERE School.sch id = self.sch_id;
END Delete Sch;

END;
/

CREATE OR REPLACE PROCEDURE Insert Teach In(
new_teacher id IN VARCHAR2,
new _sch id IN VARCHAR2) AS

teacher temp REF Teacher T;
school temp REF School T;

BEGIN
SELECT REF (a) INTO teacher temp
FROM Teacher a
WHERE a.teacher id = new_teacher id;

SELECT REF (b) INTO school temp
FROM School b
WHERE b.sch id = new_sch id;

INSERT INTO Teach In
VALUES (teacher temp, school temp) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

158 Rahayu, Taniar and Pardede

Figure 5.25. (continued)

END Insert Teach In;
/

CREATE OR REPLACE PROCEDURE Delete Teach In(
deleted_teacher_id IN VARCHAR2,
deleted sch id IN VARCHAR2) AS

BEGIN
DELETE FROM Teach In
WHERE -
Teach In.teacher IN
(SELECT REF (a)
FROM Teacher a
WHERE a.teacher id = deleted teacher id) AND
Teach In.school IN
(SELECT REF (b)
FROM School b
WHERE b.sch id = deleted_sch_id);
END Delete Teach In;
/

CREATE OR REPLACE TYPE BODY Area T AS

MEMBER PROCEDURE Insert Area (
new_area_id IN VARCHAR2,
new_area name IN VARCHAR2,
new_sub id IN VARCHAR2,
new_sub name IN VARCHAR2,
assigned org id IN VARCHAR2) IS

new_organizer REF Organizer T;

BEGIN
SELECT REF (a) INTO new_organizer
FROM Organizer a
WHERE emp id = assigned org id;

INSERT INTO Area
VALUES (new _area id, new_area name,
Suburb Table T (Suburb T (new_ sub_id,
new_sub name)) ,new_organizer) ;
END Insert Area;

MEMBER PROCEDURE Delete Area IS

BEGIN

DELETE FROM Area a

WHERE a.area_id = self.area_id;
END Delete Area;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 159

Figure 5.25. (continued)

MEMBER PROCEDURE Insert_ Suburb(
new area_id IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2) IS

BEGIN
INSERT INTO THE
(SELECT a.Suburb
FROM Area a
WHERE a.area_id = new_area_id)
VALUES (new_sub_id, new_sub_name) ;
END Insert_ Suburb;

MEMBER PROCEDURE Delete_ Suburb IS

BEGIN
DELETE FROM THE
(SELECT a.Suburb
FROM Area a
WHERE a.area_id = self.area_id);
END Delete_Suburb;

END ;
/

Summary

Onetype of dynamic aspectimplemented in an object-relational systemisthe
generic method. Generic methods are basically simple methods that are needed
for operations such as retrieval, update, deletion, and insertion. For these
methods, the concept of referential integrity is crucial and thus they need to be
considered and designed accurately before implementation. Inaddition, differ-
enttypesof object structures or relationships (inheritance, association, and
aggregation) will resultin differenttypes of generic-method implementations as
well.

Chapter Problems

1. GiantTravelisawell-known travel agency that operates guided tours.
With offices around the world, they maintain accurate and detailed

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

160 Rahayu, Taniar and Pardede

employee data. Theemployee dataare keptinanobject Employee_T and
can be divided into two child objects: Guide_T and Admin_T. An
employee can be categorized asaguide or an administration staff, but he
or she canalso be both. Thisisimportant because in the peak season, an
administration worker might be needed to guide the toursand vice versa.
The objects and the attributes are shown below.

Employee_T

1D

name

address

salary
insert_employee
delete_employee

ZP‘ union

[I

Guide_T Admin_T

1D 1D

language comp_skills
country office_skills
insert_guide insert_admin
delete_guide delete_admin

Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Guide.

2. Continuingthe case of Giant Travel in Question 1, managementnow wants
employees’ roles to become more specialized based on their major
potentials. Since one employee can be only aguide or anadministration
staff, for that purpose, another attribute emp_type must be added to the
Employee_T object. However, there are some records in the Employee
table thatare not categorized into the Guide or Admin object, that s, the
managers.

Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Admin.

3. Continuingthe case of Giant Travel in the previous questions, management
now wants to create another object under the Employee_T object named
Management_T,which obviously containsall the data of the managers. All
employees must be categorized in one, and only one, child type.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Employee_T

1D

name

address

salary

| Tnsert_employee |
delete_employee

Guide_T Admin_T Management_T
D D 1D

language comp_skills department
country office_skills year_service
insert_guide insert_admin insert_manag
delete_guide delete_admin delete_manag

Generic Methods 161

Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Management. Note that we want to delete the managers’ records from the
finance department.

4. Thefollowing figure showsthe relationshipamong objects Supervisor_T,
Student_T, and Subject_T in a university. A student can take many
subjects, and asubject can be taken by many students. For every subject
astudent takes, there isamark given.

Inanother relationship, astudent can be supervised by only one supervi-
sor, butasupervisor can supervise many students. Assume that objects
have been created and the tables from these objects are shown.

supervised_by enrolls_in
Supervisor_T Student_T - Subject_T
spv_ID 1 1..I"student_ID 1./ subject_ID
Spv_name student_name subject_name
INSErt_spv [Insert_student INSert_subject
delete_spv delete_student delete_subject

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

162 Rahayu, Taniar and Pardede

a.
b.

Supervisor Student
Spv_ID Spv_Name Student_ID Student_Name
1001 Steve Donaldson 11013876 Robert Tan
1003 Erin Goldsmith 11014832 Julio Fernandez
1007 Tony Wibowo 11014990 Colin Brown
Subject
Subject ID Subject Name
CSE31DB Database System
CSE31UIE User Interface Engineering
CSE42ADB Advanced Database
Enrolls_In
Student_ID Subject_Code Mark
11013876 CSE31DB 86
11013876 CSE31UIE 90
11014832 CSE31ADB 78
11014990 CSE31DB 74
11014990 CSE31UIE 70

Supervisor.

table inside the artist object.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of ldea Group |

Artist

code
name

residence
contract_no

del

del

insert_artist

insert_album

lete_artist

lete_album

=

Album

album_code
album_no

album_title
album_year

nc. is prohibited.

Write generic methods to insert into and delete from table Enrolls_In.
Write generic member methods to insert into and delete from table

Village Records’ database keeps its artists as objects. Every artist has
recorded andreleased at least one album. Thisalbum is kept asa nesting

Generic Methods 163

Assume that the tables are created already.

a. Write the member procedures to insert into and delete from the
nested table Album.

b. Write the stored procedure that takes one parameter, the artist’s
name, and shows the album name and years that he or she has
recorded.

6. Iftheimplementation forthe aggregationrelationship of Village Records
inthe previous question is done by using the clustering technique, and
assuming that the cluster, tables, and index have been created, complete

thefollowing.

a. Writethe stored procedurestoinsertinto and delete from the whole
table Artist.

b. Write the stored proceduresto insert into and delete from the part
table Album.

Chapter Solutions

1. CREATE OR REPLACE TYPE BODY Employee T AS

MEMBER PROCEDURE Insert Employee (
new_id IN VARCHAR?2,
new_name IN VARCHAR2,
new_address IN VARCHARZ2,
new_salary IN NUMBER) IS

BEGIN
INSERT INTO Employee

VALUES (new_id, new name, new address, new_salary) ;
END Insert Employee;

MEMBER PROCEDURE Delete Employee IS
BEGIN
DELETE FROM Employee
WHERE Employee.id = self.id;
END Delete Employee;
END;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

164 Rahayu, Taniar and Pardede

/
CREATE OR REPLACE TYPE BODY Guide T AS

MEMBER PROCEDURE Insert Guide(
new_id IN VARCHAR?2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN VARCHAR2,
new_language IN VARCHAR2,
new_country IN VARCHAR2) IS

BEGIN
INSERT INTO Guide
VALUES (new_id, new name, new address, new_ salary,
new_language, new_country) ;
END Insert Guide;

MEMBER PROCEDURE Delete Guide IS

BEGIN
DELETE FROM Guide

WHERE Guide.id = self.id;
END Delete Guide;

END;
/

2. CREATE OR REPLACE TYPE BODY Employee T AS

MEMBER PROCEDURE Insert Employee (
new_id IN VARCHAR?2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN NUMBER) IS

BEGIN

INSERT INTO Employee
VALUES (new_id, new name, new address, new_salary,
NULL) ;

END Insert Employee;

MEMBER PROCEDURE Delete Employee IS

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 165

DELETE FROM Employee

WHERE Employee.ID = self.id

AND Employee.employee type IS NULL;
END Delete Employee;

END;
/

CREATE OR REPLACE TYPE BODY Admin T AS

MEMBER PROCEDURE Insert_Admin(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHARZ2,
new_salary IN VARCHAR2,
new comp skills IN VARCHAR2,
new office skills IN VARCHAR2) IS

BEGIN
INSERT INTO Employee
VALUES (new_id, new name, new address, new_salary,
‘Admin’) ;
INSERT INTO Admin
VALUES (new_id, new comp skills, new office skills) ;
END Insert Admin;

MEMBER PROCEDURE Delete Admin IS

BEGIN

DELETE FROM Employee

WHERE Employee.id = self.id

AND Employee.employee type = ‘Admin’;
END Delete Admin;

END;
/

3. CREATE OR REPLACE TYPE BODY Management T AS

MEMBER PROCEDURE Insert Manag(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN VARCHAR2,
new_department IN VARCHAR2,
new_year service IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

166 Rahayu, Taniar and Pardede

BEGIN
INSERT INTO Management
VALUES (new_id, new name, new address, new_ salary,
new department, new year service);
END Insert Manag;

MEMBER PROCEDURE Delete Manag IS

BEGIN
DELETE FROM Management

WHERE Management.id = self.id;
END Delete Manag;

END;
/

4. a. CREATE OR REPLACE PROCEDURE Insert_Enrolls_M(

new_student id IN VARCHAR2,
new subject id IN VARCHAR2) AS

student temp REF Student T;
subject temp REF Subject T;

BEGIN
SELECT REF (a) INTO student temp
FROM Student a
WHERE a.student id = new student id;

SELECT REF (b) INTO subject temp
FROM Subject b
WHERE b.subject id = new subject id;

INSERT INTO Enrolls In
VALUES (student temp, subject temp) ;
END Insert Enrolls In;
/

CREATE OR REPLACE PROCEDURE Delete Enrolls In(
deleted student id IN VARCHAR2,
deleted subject id IN VARCHAR2) AS

BEGIN
DELETE FROM Enrolls In
WHERE
Enrolls In.student IN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 167

(SELECT REF (a)

FROM Student a

WHERE a.student id = deleted student id) AND
Enrolls In.subject IN

(SELECT REF (b)

FROM Subject b

WHERE b.subject id = deleted subject id);

END Delete Enrolls In;

/
b. CREATE OR REPLACE TYPE BODY Supervisor T AS

MEMBER PROCEDURE insert spv(
new spv_id IN VARCHAR2,
new_spv_name IN NUMBER) IS

BEGIN

INSERT INTO Supervisor

VALUES (new_spv_id, new_spv_name) ;
END insert spv;

MEMBER PROCEDURE delete spv IS

BEGIN
— Supervised by is the ref of Supervisor in the
Student T object.
DELETE FROM Student b
WHERE b.supervised by.spv_id = self.spv_id;
DELETE FROM Supervisor a
WHERE a.spv_id = self.spv_id;

END delete spv;

END;
/

5. @. CREATE OR REPLACE TYPE BODY Artist T AS

MEMBER PROCEDURE Insert Album(
new_code IN VARCHAR2,
new_album code IN VARCHAR2,
new_album no IN NUMBER,
new_album title IN VARCHAR2,
new_album year IN NUMBER),

BEGIN

INSERT INTO THE

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

168 Rahayu, Taniar and Pardede

(SELECT a.album
FROM Artist a
WHERE a.code = new_code)
VALUES (new_album code, new_album no,
new_album_title, new album year) ;
END Insert Album;

— This procedure deletes all albums of the artist.
MEMBER PROCEDURE Delete Album IS

BEGIN
DELETE FROM THE
(SELECT a.Album
FROM Artist a
WHERE a.code = self.code);
END Delete Album;

END;
/
b. CREATE OR REPLACE PROCEDURE Show_Album (
new_artist name IN VACRHAR2) AS

CURSOR c_album IS
SELECT album title, album_ year

FROM THE

(SELECT album
FROM Artist
WHERE artist name = new_artist name);

BEGIN
FOR v_curs IN c_album LOOP
DBMS OUTPUT.PUT LINE
(v_curs.album title||' ‘||v_curs.album year) ;
END LOOP;
END Show_ Album;

6. 4. CREATE OR REPLACE PROCEDURE Insert Album(

new_code IN VARCHAR2,
new_album code IN VARCHAR2,
new_album_no IN NUMBER,
new_album title IN VARCHAR2,
new_album_year IN VARCHAR2) AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generic Methods 169

BEGIN
INSERT INTO Album
VALUES (new_code, new_album code, new album no,
new_album _title, new album year) ;
END Insert Album;
/

CREATE OR REPLACE PROCEDURE Delete Album(
deleted album code IN NUMBER) AS

BEGIN
DELETE FROM Album
WHERE album_ code = deleted album code;
END Delete Album;
/
D. CREATE OR REPLACE PROCEDURE Insert_ArtiSt(
new_code IN VARCHAR2,
new_name IN VARCHAR2,
new residence IN VARCHAR2,
new_contract no IN VARCHAR2) AS

BEGIN

INSERT INTO Artist
VALUES (new_code, new_name, new_residence,
new_contract no) ;
END Insert Artist;
/

CREATE OR REPLACE PROCEDURE Delete Artist(
deleted code IN VARCHAR2) AS

BEGIN

DELETE FROM Artist
WHERE code = deleted code;
END Delete Artist;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

170 Rahayu, Taniar and Pardede

Chapter VI

User-Defined Queries

This chapter describes object-based user-defined queriesin Oracle™. The
queries will vary based on the hierarchy of the object model. We will show
different categories of queries along the object-oriented relationships of
inheritance, association, and aggregation.

These queries can be performed as ad hoc queries or implemented as methods.
User-defined methods are methods whereby users define algorithms or the
processes to be carried out by the methods. Since these methods involve
operations specified by the users, they are called user-defined methods. Asan
example, we will use the case study of the authorship of the course manual in
Chapter I11asaworking example for this chapter. Some queries discussed here
are based on the DDL specified in Figure 3.36.

User-Defined Queries in
Inheritance Hierarchies

Inthis section, different queriesalong inheritance hierarchieswill be described.
User-defined queries along inheritance hierarchies can be divided into two
categories: subclass queries and superclass queries. Note that because there
are two ways of implementing inheritance, using the shared ID between the

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 171

primary key and foreign key or using the “under” keyword, we will show user-
defined queries for both techniques in the following sections.

Subclass Query

User-defined queries in an inheritance hierarchy are queries that involve
attributes of the class where the methods reside and attributes of their
superclasses. Since a number of classes (at least two) are involved, a join
operationto link all of these classes becomes necessary. The general format for
the representation of user-defined queries in an inheritance hierarchy is as
follows.

In the From clause, a list of tables is produced. These tables include all
intermediate tables between asubclass (table,) and asuper-class (table). The
inheritancejoin expression can be ajoin predicate to join all tables listed if
the shared ID technique is used. Alternatively, if the latest Oracle™ isused,
then it can be a treat expression to cast the selection from one class type to
another withinthe inheritance hierarchy.

Asubclass query isaquery that retrieves information from the subclass(es),
where the selection predicates are originated at the superclass. Figure 6.2
shows the flow of aquery inasubclass query.

The query representation for asubclass query isshown in Figure 6.3, while
Figure 6.4 shows the example of a subclass query and the results.

The subclass-query representation (see Figure 6.3) isapplicable if we imple-
ment the superclass and subclass as two different tables. If we use the under
features provided by Oracle™ 9 and above, we can use the treat keyword in
the query. The general syntax of such atype of query isas follows.

Figure 6.1. User-defined inheritance query representation

SELECT <function or expressions

FROM <table,, table,, .., tabley, .., table,>
WHERE <inheritance join expressions

AND <tablex.OID = &input OID>

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

172 Rahayu, Taniar and Pardede

Figure 6.2. Subclass query flow

Selection Predicate

o
Superclass
. Subclass
v V\ Queries
14

’Subclass ‘ ’Subclass ‘

Figure 6.3. Subclass-query representation (using shared ID)

SELECT <sub-class attributes>

FROM <table;, table,,..... ,tablen,>

WHERE <join predicates>

AND <tabley.attr = &input super-class_selection predicates>

where: Table;, .., table ,.1 are subclass tables, and
table, is a superclass table.

Superclass Query

Asuperclass query retrieves information from the superclass(es), where the

selection predicates are originated ata subclass (see Figure 6.7).

The query representation for asuperclass query using the shared ID is shown
inFigure 6.8, while Figure 6.9 shows the example of a superclass query.

Itisimportantto note that in inheritance queries, join operations have to be
performedto link the superclass to the subclasses. When the hierarchy is deep,
anumber of join operations may be needed to performaquery. The fact that
all of the join operations are carried out on primary keys of the tables makes

the operations inexpensive interms of performance cost.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

User-Defined Queries 173

Figure 6.4. Subclass-query example (using shared ID)

Example 1:
Find the contact number(s) of an author whose name is David Taniar.

SELECT contact_no

FROM Author a, Teaching Staff b
WHERE a.ao_id = b.ao_id

AND a.name = ‘David Taniar;

The above query shows that we only need to join based on the common
shared ID, which is ao_ID. Since the contact number is a varray, the above
query will show the following result:

CONTACT_NO

CONTACTS (99059693, 94793060)

Figure 6.5. Query representation (using treat)

SELECT TREAT (VALUE (<alias>) AS <sub-type name>).<sub-class attribute>

FROM <table name>
WHERE <table.attr = &input_ super-class_selection predicatess>;

Figure 6.6. Subclass-query example (using treat)

Example 2:
Find the institution of an author whose name is David Taniar.

SELECT TREAT (VALUE (a) as Academic_T) .i name
FROM Author a

WHERE a.name = ’'David Taniar’;

The above query shows the following result:

Monash University

With Oracle™ 9and above, we canimplementan inheritance relationship using
onetable only. The table will be of the supertype, inthis case, Author. Thus,
neither the subclass query nor the superclass query needs a join operation.

Another possibility of asuperclass query in Oracle™ 9and above is the use of
“isof.” This type of predicate tests object instances for the level of specializa-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

174 Rahayu, Taniar and Pardede

Figure 6.7. Superclass-query flow

Selection Predicate e
¢ Superclass

o Queries
a

X/

“a
|Subclass | |Subclass |

Figure 6.8. Superclass-query representation (using shared ID)

SELECT <super-class attributess
FROM <table;, table;, .., tablep>
WHERE <join predicates>
AND <sub-class table.attr =
&input sub-class_selection predicates>

where: Table:, .., table ,.1 are subclass tables, and
table, is a superclass table.

Figure 6.9. Superclass-query example

Example 3:
Find the details of the author(s) whose institution name is Monash

University.

SELECT a.name, a.address

FROM Author a, Academic b

WHERE a.ao_id = b.ao_id

AND b.i_name = ‘Monash University’;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 175

Figure 6.10. Superclass-query example (using treat)

SELECT a.name, a.address
FROM Author a
WHERE TREAT (VALUE (a) as Academic) .i name = ‘Monash University’;

Figure 6.11. Superclass-query representation (using “is of”’)

SELECT <super-class attributes
FROM <table name>
WHERE VALUE (<alias>) IS OF (Sub-class name) ;

Figure 6.12. Superclass-query example (using “is of”’)

Example 4:
Find the details of authors who belong to the industry-based type.

SELECT a.name, a.address
FROM Author a
WHERE VALUE (a) IS OF (Industry Based T)

tion of its type along with any other further subclasses of the subclass. The
general syntax of suchaquery isas follows.

User-Defined Queries in
Association Relationships

Inthissection, different queriesalongassociation relationships will be de-
scribed. They can be divided into two categories: referencing queries and
dereferencing queries. Each of these types will be discussed in the following
sections.

Referencing Query

Avreferencing query isaquery fromaclass thatholds the object reference (ref)
toaclassthatisbeingreferenced. The classthatis being referenced isthe class

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

176 Rahayu, Taniar and Pardede

Figure 6.13. Referencing-query flow

Selection Predicate Selection Predicate
4 v
Class X Class Y
1 1.
A\ :

Referencing Query

Figure 6.14. Referencing-query representation

SELECT <referencing class attributes>

FROM <referencing table>

WHERE <referencing table path expression>

[AND <class table.attr = &input class_selection predicatess>]

where: The referencing table or class is the one that holds the many side in an
association relationship.

Figure 6.15. Referencing-query Example 1

Example 5:

SELECT b.lecturer.total_hour
FROM Subject b

WHERE b.sub_name = ‘Databases’;

that holds the one side in a one-to-many relationship. Figure 6.13 depicts a
referencing query.

The query representation for referencing aquery isshowninFigure 6.14, while
Figure 6.15 shows an example of this query type.

In the previous example, no join is performed. Rather, we are using object
referencing from Teaching Staff to Subject through the lecturer attribute, which
isof ref data type.

Example 6 (Figure 6.16) also shows areferencing type of query whereby a path

traversal through the object references is used rather than the usual join
operation. Withoutthe facility of objectreferences (ref) in Oracle™, we would

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 177

Figure 6.16. Referencing-query Example 2

Example 6:

Display all subject details along with the teaching staff responsible for
the subject, showing only those subjects in which the teaching staff’s
total contact hours is more than 5.

SELECT b.code, b.subname, b.venue, b.lecturer.name
FROM Subject b
WHERE b.lecturer.TotalHour > 5;

haveto use ajoinoperation between Subjectand Teaching Staff to performthe
above queries.

Dereferencing Query

Adereferencing query isaquery fromthe referred classto a class that holds
the objectreference (ref). Inamany-to-many relationship, both classes thatare
connected are the referred classes. Figure 6.17 below shows two types of
dereferencing queries.

Figure 6.17. Dereferencing-query flow

Selection Predicate _~Selection Predicate
4 »
Class X Class Y
1 1.

a. Dereferencing query in a one-to-many relationship

Selection Predicate Selection Predicate
Class X Class XY Class Y
e v

Dereferencing Query

b. Dereferencing query in a many-to-many relationship with a virtual class XY

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

178 Rahayu, Taniar and Pardede

Figure 6.18. Dereferencing-query representation

SELECT <class table attributes>

FROM <referring table>, <referred table>

WHERE <referencing join>

[AND <class table.attr = &input class_selection predicates>]

where:
The referencing join takes the form of
<referring class attribute = REF (referred class)>.

Figure 6.19. Dereferencing-query Example 1

Example 7:

In the relationship between Course Manual and Author, display all course
manuals written by John Smith.

SELECT a.title

FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)

AND c.author = REF (b)

AND b.name = ‘John Smith’;

The query representation for a dereferencing query isshown in Figure 6.18,
while Figure 6.19 shows an example of this query type.

Similar to the previous dereferencing example, the above example also
performs linking through object referencing rather thanajoin operation.

Note that in the previous example, both links are performed through object
references. The Publish table holds two object references, one to
Course_Manual_T andanotheroneto Author_T. Thissituation isestablished
inamany-to-many association relationship.

User-Defined Queries in
Ag_gregation Hierarchies

Inthissection, we will describe differentqueries along aggregation hierarchies.
These queries can be divided into two categories: part queries and whole
queries. Each of the above types will be discussed in the following sections.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 179

Figure 6.20. Dereferencing-query Example 2

Example 8:
In the relationship between Course Manual and Author, display all course
manuals along with the names of the author(s), showing only those authors

who live in Melbourne.

SELECT a.title, b.name

FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)

AND c.author = REF (b)

AND b.address LIKE ‘$Melbourne’;

Figure 6.21. Dereferencing-query Example 3

Example 9:
In the relationship between Course Manual and Author, display all course
manuals along with the name(s) and address(es) of the author(s).

SELECT a.title, b.name, b.address

FROM Course_Manual a, Author b, Publish c
WHERE c.course manual = REF(a)

AND c.author = REF (b);

Part Query

Apartqueryisanaggregation-hierarchy query used to retrieve information of
part classes, where the selection predicates are originated at the whole class.
Figure 6.22 shows a part-query flow in a nesting technique.

The query representation forapart query isshown in Figure 6.23, while Figure
6.24 shows the example of a part query.

Inthe nesting technique, as mentioned in Chapter 5, we use the keyword “the”
for querying the nested tables. Figure 6.24 shows that the selection predicate
is located inthe whole table Course_Manual.

Partqueries canalso appear inaggregation relationships implemented using the
clustering technique. Figure 6.25 shows the query representation for a part
query using the clustering technique, while Figure 6.26 shows an example of the
query.

Note that when a clustering technique is used, the queries to access the data
along the aggregation hierarchy are simply standard queries to join the whole
table with itsassociated parts. However, the cluster index actually causes the
queriesto perform much better than those without it.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

180 Rahayu, Taniar and Pardede

Figure 6.22. Part-query flow

Selection Predicate

_ Part Query
‘
Whole i
Class Al Part
Nested table

Figure 6.23. Part-query representation using the nesting technique

SELECT <‘“part” class attributes>
FROM THE (SELECT “whole” class nested table attribute
FROM <“whole” class table>
WHERE <”whole” class table.attr =

&input class_selection predicates>)

Figure 6.24. Part-query example using the nesting technique

Example 10:

In the relationship between Course Manual and Chapter implemented using the
nesting technique, display the chapter number and chapter title
course-manual titled Object-Relational Databases.

SELECT c_no, c_title
FROM THE (SELECT a.chapter

FROM Course_Manual a

WHERE a.title = ‘Object-Relational Databases’) ;

of a

Figure 6.25. Part-query representation using the clustering technique

SELECT <“part” class attributess
FROM <table;, table,, .., table,>
WHERE <join predicatess>

AND <”whole” class table.attr = &input class_selection predicates>

where: Tablei, .., table,: are part-class tables,
and table, is a whole-class table.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 181

Figure 6.26. Part-query example in the clustering technique

Example 11:

In the relationship between Course Manual and Chapter implemented using the
clustering technique, display the chapter number and chapter title of a
course manual titled Object-Relational Databases.

SELECT a.c_no, a.c_title

FROM Chapter a, Course_Manual b

WHERE a.isbn = b.isbn

AND b.title = ‘Object-Relational Databases’;

Whole Query

Awhole queryisthe aggregation-hierarchy query to retrieve information from
the whole class, where the selection predicates are originated at the part class.
Figure 6.27 shows awhole-query flow inanesting technique.

Thetechnique we are using for solving awhole query inanesting technique is
called unnesting. It is because the nested table cannot be accessed except
through the whole class, and yet we want to be able to access a selection
predicate inthe nestedtable (i.e., the parttable). Inthis case, we need to unnest
the nesting structure.

Figure 6.28 showsthe query representation for awhole query using the nesting
technique, while Figure 6.29 shows the example of the query.

Figure 6.29 shows how we can unnest a nested table structure in order to
access its attributes directly. Figure 6.30 shows how we can run a query to
retrieve the whole information withinanested structure.

Obviously, theabove resultis not very easy to interpret. In order to come up
with a better display, we can also use the unnesting technique for the above

Figure 6.27. Whole-query flow

Whole Query Selection Predicate

Whole Class 4 e .
Part

Nested table

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

182 Rahayu, Taniar and Pardede

Figure 6.28. Whole-query representation using the nesting technique

SELECT <“whole” class attributes>

FROM < “whole” class table, TABLE (“whole” class nested table
attribute) >

WHERE <”part” class table.attr = &input class_selection predicates>

Figure 6.29. Whole-query example using the nesting technique

Example 12:

In the relationship between Course Manual and Chapter implemented using the
nesting technique, display the course-manual ISBN and course-manual title
that has an associated chapter-number 1 entitled “Introduction to Object-
Relational.”

SELECT a.isbn, a.title

FROM Course_ Manual a, TABLE (a.chapter) b

WHERE b.c_no = 1

AND b.c_title = ‘Introduction to Object-Relational’;

Figure 6.30. Query for whole information in the table using the nesting
technique

Example 13:
In the relationship between Course Manual and Chapter implemented using the
nesting technique, display all course manuals together with their

associated chapters.

SELECT *
FROM Course_Manual;

This example will give the following result:
ISBN TITLE YEAR CHAPTER(C_NO, C_TITLE, PAGE_NO)

11lxx Databases 1993 CHAPTER_TABLE_T (CHAPTER_T (1, 'OODB', 1)

query. Nevertheless, the query will show arepetition of whole-table attributes
ifithasanumber of parts (see Figure 6.31).

Inthe clustering technique, whole queriesare implemented inavery similar
manner as that of part queries. Figure 6.32 shows the query representation for
awhole query using the nesting technique, while Figure 6.33 shows an example
ofthe query.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 183

Figure 6.31. Query for whole information using the nesting technique by
unnesting

SELECT a.isbn, a.title, a.year, b.c no, b.c_title,
b.page_no
FROM Course Manual a, TABLE (a.chapter) b;

The above query will give the following result:
ISBN TITLE YEAR C_NO C TITLE PAGE_NO

111xx Databases 1993 1 OODB 1

Figure 6.32. Whole-query representation using the clustering technique

SELECT <“whole” class attributes>

FROM <table;, table;, .., tablen>

WHERE <join predicates>

AND <”part” class table.attr = &input_class_selection predicates>

where: Table; is a whole-class table,
and table,, .., table, are part-class tables.

Figure 6.33. Whole-query example using the clustering technique

Example 14:

In the relationship between Course Manual and Chapter implemented using the
clustering technique, display the course-manual ISBN and course-manual
title that has an associated chapter-number 1 entitled “Introduction to
Object-Relational.”

SELECT a.isbn, a.title
FROM Course_Manual a, Chapter b
WHERE a.isbn = b.isbn
AND b.c_no = 1
AND b.c_title = ‘Introduction to Object-Relational’;

There isone limitation of the nesting-technique query that can be solved by
using the clustering technique. With the nesting technique, during DML opera-
tion, the nested table locks the parent row. Thus, only one modification can be
made to the particular nested table atatime. It shows that the part query in the
nesting technique is not optimum compared with the clustering technique.
Nevertheless, the whole query of the nesting technique can performas good as
inthe clustering technique. Itisshown in the following example.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

184 Rahayu, Taniar and Pardede

Figure 6.34. Whole query from multiple part tables

Example 15:

Assume there 1is another nested table Preface under Course Manual. Display
the course-manual ISBN and course-manual title that has an associated
chapter-number 1 entitled “Introduction to Object-Relational” and a preface
entitled “Acknowledgement.”

SELECT a.isbn, a.title

FROM Course Manual a, TABLE (a.chapter) b, TABLE (a.preface) c
WHERE b.c no = 1

AND b.c_title
AND c.p_title

‘Introduction to Object-Relational’
‘Acknowledgement’ ;

User-Defined Queries Using
Multiple Collection Types

Oracle™ hasalso introduced collection types as alternative datatypes. They
are other features of an object-oriented database that need to be adopted by
RDBMSs. One of the types, which is the nested table, has been mentioned
previously whenwe discussed aggregationrelationships. Inthis section, we will
discuss multiple collection types that can increase the power of ORDBMS
application.

Varray Collection Type

One of the new collection types introduced by Oracle™ isanarray type called
varray. Thistype can be stored in database tables. When used as an attribute
typeinatable, varray isstored in line with the other attributes within the table.

Example 1 (see Section 6.1.1) demonstrates a subclass query that retrievesan
array type of attribute. Retrieving the whole array can be done through SQL
queries. The following example shows how we canretrieve information when
the selection predicate is of the varray type.

Itisnotpossible toaccessanindividual element of an array type usingan SQL
query only. As shown above, we need to use a procedure whereby we can
retrieve and manipulate the array elements. Furthermore, we have to make sure
thatduring the insertion of the varray in the above example, there are three
valuesto input. If there are only two contact numbers, the third value, null,
should be inserted. Itis needed to avoid error during the query process. The

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 185

Figure 6.35. Varray collection-type example

Example 16:
Find the details of authors whose contact numbers include 94793060.

DECLARE

CURSOR c_contact IS
SELECT a.name, a.address, b.contact_no
FROM Author a, Teaching Staff b
WHERE a.ao_id = b.ao_id;

BEGIN

FOR v_contactrec IN c_contact LOOP
IF (v_contactrec.contact_no(l) = 94793060) OR
(v_contactrec.contact_no(2) 94793060) OR
(v_contactrec.contact no(3) = 94793060) THEN

DBMS_OUTPUT.PUT_LINE (‘AuthorName: ' | |
v_contactrec.name| | 'Author Address:’ ||
v contactrec.address) ;
END IF;
END LOOP;

END;
/

Figure 6.36. Example of a varray collection-type manipulation

Example 17:
Update one of the contact numbers of an author whose ao ID is 123

94793060 to 94793000.

from

DECLARE
Contacts Teaching Staff.contact_no%TYPE;

BEGIN
SELECT b.contact_no
INTO contacts
FROM Author a, Teaching Staff b
WHERE a.ao_id = b.ao_id
AND a.ao_id = '123’;

FOR i IN 1..3 LOOP

IF (contacts(i) = 94793060) THEN
contacts (i) := 94793000;
END IF;
DBMS_OUTPUT.PUT_LINE (‘New Contact Number ‘||i]]
":'||contacts (1)) ;
END LOOP;
END ;

/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

186 Rahayu, Taniar and Pardede

following example shows how we can selectastored varray inavariable so that
itcanbe manipulated.

Note that because the main purpose of this section isto demonstrate collection
types, we will assume that each table that is needed for the examples has
already been created. Whenever access to an inheritance hierarchy is used in
the examples, we will assume the implementation method usesashared ID. For
example, inthe defined cursor of Figure 6.35, we will need to use treat if we
only implementone superclasstable for the inheritance hierarchy (asshownin
Figure6.5).

Varray has several methods that can be used for accessing elements. Some of
the methods are shown below.

First, Last returns the index of the first (or last) element within the array

Next, Prior returnsthe index of the next (or prior) elementwithinanarray,
relative toaspecified element

Exists returns true” if the entry exists in the array

Count returns the total number of elements withinanarray
Limit returns the maximum number of elements of anarray
Extend addselementstoan array

Trim removes elements fromthe end of an array

Delete removes specified elements froman array

The following example shows how we can display the lastelement of anarray
using the “last” keyword for collection types. Note that the last element may not
necessarily be the upper boundary of the varray. For example, we may define
avarray of three elements, but since there are only two elements loaded inan
array, the lastelement will be element number 2.

Nested-Table Collection Type

In Section 6.3, we have seen how we can manipulate a nested table using SQL
queries asone of the methods for an aggregation relationship. Another way of
manipulating a nested-table structure is by retrieving the whole nested table into

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 187

Figure 6.37. Varray collection-type method example

Example 18:
Find the last contact number of an author whose ao ID is 123

DECLARE
Contacts Teaching Staff.contact_ no%TYPE;

BEGIN
SELECT b.contact_no
INTO contacts
FROM Author a, Teaching Staff b
WHERE a.ao_id = b.ao_id
AND a.ao_id = ‘123';

DBMS_OUTPUT.PUT LINE (‘Last Contact No:' ||
Contacts (contacts.LAST)) ;

avariable, and then manipulating the values within a procedure. The following
example shows how we can manipulate a nested table.

Note that we use the method Last in the above example to check for the last
record withinthe nested table. All the methods thatare applicable for varray
areapplicable for the nested table except for Limit. Thismethod will return null
inanested table because there isno explicit maximum size for anested table.

Unlike varray that retains the ordering of its elements when stored, a nested
table does not preserve its ordering in the database storage. This is because
varray maintains itselementin line withinthe maintable, whereas a nested table
is stored independently of the associated main table.

User-Defined Queries with
Object References

So far we have seen how we can create association relationships with object
references using REF. REF is notthe only object references feature available.
Oracle™ also provides other operators that will allow us to navigate object
references. The operators include VALUE, DEREF, and ISDANGLING. We
will consider each operator in the following section:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

188 Rahayu, Taniar and Pardede

Figure 6.38. Example of a nested-table manipulation

Example 19:
Find the total number of chapters in a course manual published by an author
with ao_ID 123.

DECLARE
v_chapters Course_Manual.chapter3TYPE;

BEGIN

SELECT a.chapter

INTO v_chapters

FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)

AND c.author = REF (b)

AND b.ao id = ‘123';

IF v_chapters IS NOT NULL THEN

DBMS OUTPUT.PUT LINE

(*The number of chapters is:’||v_chapters.LAST) ;
END IF;

END;
/

Figure 6.39. Value example

Example 20:
using value to compare the return value of a query

SELECT a.sub_name, a.venue
FROM Subject a, Teaching Staff b
WHERE a.lecturer = REF (b)
AND VALUE (a) =
(SELECT VALUE (c)
FROM Subject c
WHERE c.code = ‘CSE42ADB’') ;

VALUE

Valueisusedtoretrieve the value of row objects. Itisonly applicable to object
type, and thusitwill be invalid to use for retrieving row tables. This operator
might be useful to compare objects and find whether they have the same values.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries

Figure 6.40. Deref example

189

Example 21:

SELECT DEREF (a.lecturer) FROM Subject a;
The above query returns the following results:

DEREF (LECTURER) (AO_ID, TOTAL HOUR, CONTACT_ NO)

TEACHING_STAFF T('pl', 20, CONTACTS (94675810, 93452341, NULL))
TEACHING_STAFF T('p5', 30, CONTACTS (92318406, 93510365, NULL))
TEACHING STAFF_T('p8', 35, CONTACTS (92638475, 92345678, NULL))

Retrieve the information about the teaching staff using a deref to Subject.

Figure 6.41. “Is dangling” example

Example 22:
Check whether or not there is any dangling reference from Subject to
Teaching Staff (notice that Subject has an attribute called lecturer,

is of type ref).

SELECT s.sub_name, s.venue
FROM Subject s
WHERE s.lecturer IS DANGLING;

which

Figure 6.42. Example of “is dangling”

Example 23:
ELT2.

DECLARE
S1 Subject T;

BEGIN
SELECT VALUE (s) INTO S1
FROM Subject s, Teaching Staff t
WHERE s.lecturer = REF(t);

AND s.code = ‘MAT42’
AND s.venue = ‘ELT2';
END;

/

Copy a subject into a new subject if the code is CSE42ADB and the venue is

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without
permission of Idea Group Inc. is prohibited.

written

190 Rahayu, Taniar and Pardede

DEREF

Derefisusedtoreturnthe objectof an object reference. Note thata Deref of
arefisthe sameasavalue.

IS DANGLING

Whenever an object hasan object reference (ref) pointing to it, this object is
notsupposed to be deleted. Ifitis deleted, the reference is said to be dangling
or pointingto nothing. “Isdangling” is used to check whether or nota particular
reference is pointing to an existing object.

Unfortunately, inthe implementation of object references, there isno implicit
referential integrity checking such as the one found in primary-key and foreign-
key relationships. The ref operator does not automatically avoid any deletion
of the referenced objects in the earlier version of Oracle™. However, new
releasesafter Oracle™ 8 provide referential integrity checking with object
references.

Figure 6.43. Object-table example

Example 24a:
Create an object table Author with all the attributes
as specified in Chapter 3 (Case Study) .

CREATE OR REPLACE TYPE Author T AS OBJECT
(ao_id VARCHAR2 (3),
name VARCHAR2 (10) ,
address VARCHAR2 (20))

/

CREATE TABLE Author OF Author T
(ao_id NOT NULL,
PRIMARY KEY (ac_id));

Object Type Object Table
Author Table
Author /-\ oD = po—
ao_ID

name
address

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 191

Figure 6.44. Object attribute

Example 24b:
Create an object attribute Author within the table Course_Manual.

CREATE TABLE Course_Manual

(isbn VARCHAR?2 (10) ,

title VARCHAR?2 (20) ,

year NUMBER,

course_author AUTHOR T);

Object Type . .

1 P Object Attribute
Course_Manual Table
Author ISBN | Title Year Course_Author

ao_ID
name
address

Figure 6.45. Object-attribute query example

Example 25:
Find all information about course-manual ISBN number 1268-9000.

SELECT *
FROM Course_Manual;

The query will return the following result:

ISBN TITLE YEAR COURSE_AUTHOR (AOID, NAME, ADDRESS)
1268-9000 Parallel Database 1998 AUTHOR T('123', 'D Taniar',
'Clayton')

Object Table vs. Object Attribute

We have seen in most of our examples how to create and manipulate an object
table. Anobjecttable (or often called arow object) is a database table created
based onanobjecttype. Thus, each rowwithin the table actually represents the
values of an object.

Another technique of making an object persistentin object-relational data-
basesis by creating an object attribute (or often called acolumn object). An
objectattribute isactually an attribute of arelational table thatis of object type.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

192 Rahayu, Taniar and Pardede

Figure 6.46. Varray inside object-attribute example

Example 26:
Create a varray of object attributes Authors within the Course Manual
table.

CREATE OR REPLACE TYPE Authors AS VARRAY(3) OF Author T
/

CREATE TABLE Course_ Manual

(isbn VARCHAR2 (10) ,
title VARCHAR2 (20) ,
year NUMBER,

course_author Authors) ;

By running the following query to display the new contents of
Course_Manual, we will get results like it is shown in the following
display.

SELECT *
FROM Course_Manual;

ISBN TITLE YEAR COURSE_AUTHOR (AOID,
NAME, ADDRESS)

1268-9000 Parallel Database 1998 AUTHORS (AUTHOR_T('123"',
'D Taniar', 'Clayton'), AUTHOR_T('567', 'W Rahayu', 'Bundoora'))

The following examples 24aand 24b show the differences between an object
table and objectattribute.

Example 24b shows how we can have an attribute of an object type in our
relational table. Thisnotion of object attributes canalso be usedto link atable
with an object, for example, to link Course_Manual and Author. However,
when using objectattributes, there isno table created for the object attribute.
Therefore, we can only retrieve the author information through the
Course_Manual table. If we need to be able to index and manipulate author
information independently, then we need to create a separate table for
Author_T and define alink between the tables.

Although we cannot manipulate the Author object attribute within the
Course_Manual table, we still can display the value of the objectattribute using
asimple SQL query as shown below.

We canalso haveacollection of objectattributes. In other words, we can have
anattribute whose value isacollection of objects instead of justasingle object.
Example 26 shows how we can create a varray of Authors objects.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 193

Figure 6.47. Index-organization table example

Example 27:
using index organization to implement an aggregation hierarchy between
Course_Manual_T and Chapter T.

CREATE TABLE Course_ Manual

(isbn VARCHAR2 (10) NOT NULL,
title VARCHAR2 (20) ,
year NUMBER,

PRIMARY KEY (isbn));

CREATE TABLE Chapter

(isbn VARCHAR2 (10) NOT NULL,

c_no VARCHAR2 (10) NOT NULL,

c_title VARCHAR2 (25) ,

page_no NUMBER,

PRIMARY KEY (isbn, c_no),

FOREIGN KEY (isbn) REFERENCES Course_Manual (isbn)) ORGANIZATION
INDEX;

Clustering Technique vs.
Index-Organization Table

We have introduced the use of clusters in the previous chapters, mainly in the
context of the implementation of aggregation hierarchies. The clustering tech-
nique, as opposed to the nesting technique, is more of a physical mechanismin
which the database engine will cluster together rows that are connected using
the same cluster key.

While the clustering technique can be very useful inimplementing aggregation
hierarchies, Oracle™ actually supports another physical mechanismof cluster-
ing rows together called an index-organization table. Itallows us to physically
clusterand order atable based onits primary key. The main difference between
clusteringand index organizationisthat clustering allows multiple table clusters,
whereas the index-organization table allows only asingle table cluster.

This difference is the main reason why index-organization tables may not be
suitable for the implementation of aggregation hierarchies. In mostsituations,
aggregation hierarchies consist of many different parts connected toawhole
object. However, if what we have isahomogenous aggregation, with one whole
objectand one part object, then the following index-organization structure can
be used.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

194 Rahayu, Taniar and Pardede

In the Chapter 3 case study, we have a homogenous aggregation between
Course_Manual_T and Chapter_T. We will see here how we can also
implement the aggregation hierarchy using index organization.

Inexample 27, each row of the Chapter table is physically stored together with
the associated Course_Manual row as specified in the primary key of Chapter.
This certainly increases performance in accessing the records of the tables
whenever they need to be accessed together. However, in cases where we
have homogenous aggregation with a possible future extension of the model,
where we may extend the aggregation with one or more part objects, then the
index-organization table may not be a suitable solution. When deciding which
structure to use, we need to also carefully consider any possible future
extension of the model. For example, inthe above Course_Manual_T whole
object, we may want to add the Preface_T objectand Bibliography_T object
aspartobjects. The aggregation hierarchy isno longer ahomogenous aggre-
gation.

Case Study

Recall the AEU case study in Chapters 1and 5. The union now wants to add
some user-defined methods for several queries that are often made. These
queries will be implemented as member methods of the classes. The user-
defined queries that will be implemented are listed as follows.

* Querytoshowthe price, date of purchase, and the brand of a vehicle. It
isasuperclass query and will be implemented asa member method inthe
subclass Vehicle_T.

* Querytoshowthedetailsofaproperty building. Itisasubclass query and
will be implemented as a member method in the superclass Property_T.

* Querytofindthe organizer’snameand her or hisaddress for aparticular
teacher. Itisareferencing query and will be implemented as amember
method inthe class that holds the object reference, Teacher_T.

* Querytofindthe details of the union where a particular employee works.
Itisareferencing query and will be implemented asa member method in
the class that holds the object reference, Employee_T.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 195

Figure 6.48. AEU case study with user-defined method implementation

works has
1 1
Employee_T Union_T Property T
emp_ID 1... union_ID 1... [prop_TD
emp_name union_state prop_price
emp_address union_head prop_date
Show_union_emp show_ttl_prop show_building
mutua? exclusive mutual|exclusive
Office_Staff_T Organizer_T Vehicle_T Building_ T
emp_ID emp_ID prop_ID prop_ID
skills length_service brand bld name
show_teacher_org show_vehicle_detail || bld_address
. / 1 1 show_room
assignedin
represents 1
- N
1
Area_T Teacher T Room_T
area_ID teacher_ID prop_ID
area_name teacher_name room_no
show_sub_area teacher_address room_occupant
1 show_org_teacher
ﬁ>1 1.
Suburb_T
sub_ID 1
sub_name
School T
sch_ID
sch_type
sch_name
sch_address

Figure 6.49. Implementation of the case study in Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Union T AS OBJECT

(union_id VARCHAR2 (10) ,
union state VARCHAR2 (20) ,
union_head VARCHAR2 (30) ,

MEMBER PROCEDURE show ttl prop)
/

CREATE TABLE Union_Table OF Union T
(union_id NOT NULL,
PRIMARY KEY (union id));

CREATE OR REPLACE TYPE Employee T AS OBJECT

(emp_id VARCHAR2 (10) ,
emp_name VARCHAR?2 (30) ,
emp_address VARCHAR2 (30) ,
emp_type VARCHAR2 (15) ,

work_in REF Union T,

MEMBER PROCEDURE show_union_ emp) NOT FINAL

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

196 Rahayu, Taniar and Pardede

Figure 6.49. (continued)

CREATE TABLE Employee OF Employee T
(emp_id NOT NULL,
emp type CHECK (emp_ type IN
(*Office Staff’, ‘Organizer’, NULL)),
PRIMARY KEY (emp_ id)) ;

CREATE OR REPLACE TYPE Office Staff T UNDER Employee T
(skills VARCHAR2 (50))
/

CREATE OR REPLACE TYPE Organizer T UNDER Employee T
(length _service VARCHAR2 (10) ,

MEMBER PROCEDURE show_ teacher org)

/

CREATE OR REPLACE TYPE Teacher_T AS OBJECT
(teacher id VARCHAR2 (10) ,
teacher name VARCHAR?2 (20) ,
teacher address VARCHAR2 (10) ,

representation REF Organizer T,

MEMBER PROCEDURE show_org_teacher)
/

CREATE TABLE Teacher OF Teacher T
(teacher id NOT NULL,
PRIMARY KEY (teacher id));

CREATE OR REPLACE TYPE Schools T AS OBJECT

(sch_id VARCHAR2 (10) ,
sch _name VARCHAR?2 (20) ,
sch_address VARCHAR?2 (30) ,
sch_type VARCHAR?2 (15))

/

CREATE TABLE Schools OF Schools T
(sch _id NOT NULL,

sch type CHECK (sch type IN (‘Primary’, ‘Secondary’, ‘TAFE’)),
PRIMARY KEY (sch id));

CREATE TABLE Teach In
(teacher REF Teacher T,
school REF Schools T);

CREATE OR REPLACE TYPE Suburb T AS OBJECT
(sub_id VARCHAR2 (10) ,
sub_name VARCHAR2 (20))

/

CREATE OR REPLACE TYPE Suburb Table T AS TABLE OF Suburb T
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 197

Figure 6.49. (continued)

CREATE OR REPLACE TYPE Area T AS OBJECT
(area_id VARCHAR2 (10) ,
area_name VARCHAR2 (20),
suburb Suburb_ Table T,
assigned org REF Organizer T,

MEMBER PROCEDURE show_sub area)
/

CREATE TABLE Area OF Area T
(area id NOT NULL,
PRIMARY KEY (area_id))
NESTED TABLE suburb STORE AS suburb_tab;

CREATE OR REPLACE TYPE Property T AS OBJECT

(prop_id VARCHAR2 (10) ,
prop_price NUMBER,
prop_date DATE,
prop_type VARCHAR2 (15) ,

in union REF Union T,

MEMBER PROCEDURE show building)
/

CREATE TABLE Property OF Property T
(prop_id NOT NULL,
prop_type CHECK (prop type IN (‘Vehicle’, ‘Building’, NULL)),
PRIMARY KEY (prop id));

CREATE OR REPLACE TYPE Vehicle_T AS OBJECT
(prop_id VARCHAR2 (10) ,
brand VARCHAR2 (20) ,

MEMBER PROCEDURE show_ vehicle detail)
/

CREATE TABLE Vehicle OF Vehicle T
(prop_id NOT NULL,
PRIMARY KEY (prop id),
FOREIGN KEY (prop id) REFERENCES Property (prop_id)
ON DELETE CASCADE) ;

CREATE OR REPLACE TYPE Buildings T AS OBJECT

(prop_id VARCHAR2 (10) ,
bld name VARCHAR?2 (20) ,
bld address VARCHAR2 (30) ,

MEMBER PROCEDURE show_ room)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

198 Rahayu, Taniar and Pardede

Figure 6.49. (continued)

CREATE CLUSTER Buildings_ Cluster
(prop_id VARCHAR2 (10)) ;

CREATE TABLE Buildings OF Buildings_T
(prop_id NOT NULL,
PRIMARY KEY (prop id),
FOREIGN KEY (prop id) REFERENCES Property (prop_ id))
CLUSTER Buildings Cluster (prop_id) ;

CREATE OR REPLACE TYPE Room T AS OBJECT

(prop_id VARCHAR2 (10) ,
room_no VARCHAR2 (10) ,
room_occupant VARCHAR2 (30))

/

CREATE TABLE Room OF Room T
(prop_id NOT NULL,
room no NOT NULL,
PRIMARY KEY (prop id, room no),
FOREIGN KEY (prop id) REFERENCES Property (prop id))
CLUSTER Buildings Cluster (prop_id) ;

CREATE INDEX Buildings Cluster Index
ON CLUSTER Buildings_Cluster;

Methods Implementation

CREATE OR REPLACE TYPE BODY Union T AS
MEMBER PROCEDURE show_ttl prop IS

v_total NUMBER;

BEGIN
SELECT SUM(b.prop _price) INTO v_total
FROM Union Table a, Property b
WHERE b.in union = REF(a)
AND a.union id = self.union_ id;
END show_ttl prop;

END;

/

CREATE OR REPLACE TYPE BODY Employee T AS
MEMBER PROCEDURE show_union_emp IS

v_state VARCHAR2(20) ;

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries

Figure 6.49. (continued)

199

SELECT a.union_state INTO v_state
FROM Union Table a, Employee b
WHERE b.work in = REF(a)
AND b.emp id = self.emp_ id;

END show union_ emp;

END;
/
CREATE OR REPLACE TYPE BODY Organizer T AS

MEMBER PROCEDURE show_teacher_ org IS

CURSOR c_show_teacher_org IS
SELECT TREAT (VALUE (a) AS Organizer) .emp name, d.sch name
FROM Employee a, Teacher b, Teach In c, Schools d
WHERE b.representation = REF(a)
AND c.teacher = REF (b)
AND c.school = REF(d)
AND a.emp_id = self.emp_ id;

BEGIN
FOR v_show teacher org IN c_ show_ teacher org LOOP
DBMS_OUTPUT.PUT LINE
(v_show teacher org.emp name||' ‘||
v_show teacher org.sch name) ;
END LOOP;
END show_ teacher org;

END ;

/

CREATE OR REPLACE TYPE BODY Teacher T AS
MEMBER PROCEDURE show org teacher IS

CURSOR c_show_org teacher IS

Organizer) .emp address

FROM Employee a, Teacher b
WHERE b.representation = REF(a)
AND b.teacher id = self.emp_ id;

BEGIN
FOR v_show org teacher IN c show org teacher LOOP
DBMS OUTPUT.PUT LINE
(v_show _org teacher.emp name||' ‘||
v_show org teacher.emp_address) ;
END LOOP;
END show org_ teacher;

SELECT TREAT (VALUE (a) AS Organizer) .emp_name, TREAT (VAL

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

200 Rahayu, Taniar and Pardede

Figure 6.49. (continued)

END;
/

CREATE OR REPLACE TYPE BODY Area T AS
MEMBER PROCEDURE show_sub_area IS

CURSOR c_show_sub_area IS
SELECT b.sub_id, b.sub_name
FROM Area a, TABLE (a.suburb) b
WHERE a.area name = self.area name

BEGIN
FOR v_show_sub area IN c_show_sub_area LOOP
DBMS OUTPUT.PUT_ LINE
(v_show_sub_area.sub_id||‘ ‘||
v_show_sub_area.sub_name) ;
END LOOP;
END show sub_ area;

END;
/
CREATE OR REPLACE TYPE BODY Property T AS

MEMBER PROCEDURE show building IS

CURSOR c_show_building IS
SELECT b.bld name, b.bld address
FROM Property a, Buildings b
AND a.prop id = b.prop_ id;

BEGIN
FOR v_show building IN c_show building LOOP
DBMS OUTPUT.PUT LINE B
(v_show building.bld name||‘ ‘||
v_show_building.bld_address) ;
END LOOP;
END show building;

END;
/

CREATE OR REPLACE TYPE BODY Vehicle T AS
MEMBER PROCEDURE show price date IS
CURSOR c_show_price date IS

SELECT a.prop_price, a.prop_date
FROM Property a, Vehicle b

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 201

Figure 6.49. (continued)

WHERE a.prop id = b.prop id
AND a.prop id = self.prop id;

BEGIN
FOR v_show price date IN c show price date LOOP
DBMS OUPUT.PUT LINE
(v_show price date.prop price||‘ ‘||
v_show price date.prop date||' ‘||
v_show price date.brand) ;
END LOOP;
END show_vehicle detail;

END;
/

CREATE OR REPLACE TYPE BODY Buildings T AS
MEMBER PROCEDURE show room IS

CURSOR c_show_room IS
SELECT room no, room_ occupant
FROM Room
WHERE prop id = self.bld id;

BEGIN
FOR v_show room IN c_show_room LOOP
DBMS OUTPUT.PUT LINE
(v_show room.room no||‘ ‘||
v_show_room.room_occupant) ;
END LOOP;
END show_room;

END;
/

Query to show the name of the teachers that are represented by an
organizer. Itwill also need to show the school where those teachers are
working. Itisadereferencing, subclass query and will be implemented as
amember method inthe class that is referenced, Organizer_T.

Query to show the total property value of a particular state union. Itisa
dereferencing query and will be implemented asamember method inthe
classthatisreferred, Union_T.

Querytoshow all the suburb names for a particular area. Itisa part query
that will be implemented asamember method inthe whole class Area_T.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

202 Rahayu, Taniar and Pardede

* Querytoshowthedetails ofanorganizer whoisinchargeinaparticular
suburb. Itis awhole query combined with a dereferencing query and
superclass query at the same time. It will be implemented as a member
method inthe partclass Suburb_T.

* Querytoshow the roomnumberand itsoccupantgivenabuilding ID as
the parameter. Itisapart query that will be implemented as a member
method insuperclass Building_T.

Figure 6.48 shows the AEU database diagram with the attributes and methods.
Forsimplicity, we ignore the generic methods implemented in Chapter 5.

For the implementation section, we will re-create the class and tables so that
we can see the user-defined methods declarations. Inthis case, the declarations
will notinclude the generic member methods as shown in the Chapter 5 case
study. Figure 6.49 shows the whole implementation for the user-defined
methods in this case study.

Summary

Another type of dynamicaspectin ORDBMSs s user-defined methods. While
generic methods are used for the simple operations of retrieval, updating,
deletion, and insertion, user-defined methods are used for performing defined
algorithms specified by the users. For this method, issues to be considered
include the structure of the relationships, the data types, and also the referenc-
ing methods implemented inside the classes.

Chapter Problems

1. Theanimal pound (AP) has always maintained records of every animal
they have had. They keep the recordsinahierarchical relationship. Some
examples of the data kept in the tables are shown below.

a. Create a superclass query to retrieve the date_in of all big dogs
(heightis more than 35cm).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries

203

b. Createasub-andsuperclass query toretrieve the age of the small

dogs (heightis lessthan 25 cmor weightis less than 10 kg).

Cats
breed
muffual
Pet_Animal excibisive Dogs
diet breed
Animal K Jayon age height
1D weight
sex Wild_Animal
date_in diet
habitat
Animal
ID Sex Date_In
a243 M 7/12/01
a244 M 9/12/01
a245 F 3/1/02
a246 F 3/1/02
a247 F 3/1/02
a248 M 10/1/02
Pet Animal
ID Diet | Age | Pet Type Breed Height Weight
a243 meat 1 dogs Labrador 40 10
retriever
a244 meat 5 dogs Pugs 30 8
a246 meat 7 dogs German 60 25
shepherd
a247 meat 2 dogs Fox terrier 20 8
a248 grain 1 null

Ryan Bookstore keeps arecord of their books in three different object
tables: Author, Book, and Publisher. The objectdiagram and sample of
the records are shown below.

a. Createareferencing query toretrieve the name and the city of the

publisherthat publishes Les Miserables.

b. Createadereferencing querytoretrieve the title and the publishing

year of the books published by Harper Collins, New York.

c. Createadereferencingquerytoretrieve thetitles, authors, and prices
of the books that were published after 1985.

Copyright © 2006,

Publisher - Book
D ublished by b_ID
p_name b_title
p_city b_year
b_price

written by

Author

a_ID
a_name
a_residence

Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

204 Rahayu, Taniar and Pardede

Publish Author

P_ID P_Name P_City A_ID A_Name A_Resid
HO1 | Harper Collins NYC A23 | Allende, Isabel Spain

K02 | Knopf London B35 Bronte, Charlotte UK

L.02 | Little, Brown, & Co | Boston B36 Bronte, Emily UK

P02 | Penguin Classic London C28 | Courtenay, Bryce Australia
P04 | Penguin Australia Sydney H09 | Hugo, Victor France

S02 | Simon and Schuster | NYC K04 | King, Stephen USA

Book Written_By
B ID B_Title B _Year | B Price | Publish Book Author
F123 | The Complete Story 1980 16 P02 F123 B35
F342 | The Potato Factory 1998 18 P04 F123 B36
F345 | Dreamcatcher 2000 15 S02 F342 C28
F453 | Les Miserables 1980 12 P02 F345 K04
F488 | The House of the| 1985 12 K02 F453 H09
Spirits
F499 | Daughter of Fortune 1999 19 HO1 F488 A23
F560 | Solomon’s Songs 1999 19 P04 F499 A23
F560 C28

3. Village Records, as mentioned in the sample questions for Chapter 5, uses
the following object diagram to keep their artistand alboum records, and
they use the nesting technique for the implementation. Some of the records

are shown below.

a. Createapartquerytoretrieve thealobumnumber, title, and year of the

artist Bryan King.

b. Createawholequerytoretrieve the namesand the contract numbers

of the artists who have recorded more than two albums.

Artist 1 Album

code album_code

name % album_no

residence 1 album_title

contract_no o year

Artist

Code Name Residence | Contract No | Album
BK Bryan King Tamworth | 13576345 | | >
PA Paige Alexander | Sydney 14534321
R Rogue Melbourne | 12093722 I
B Tim Ball Melbourne | 12092834 e >
VQ Valerie Quinton | Melbourne | 12098546 | = |oiooooig >

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

aas wN e

User-Defined Queries 205

Artist
Album_Code | Album_No Album_Title Year
Qmmmemeo > BK1 1 Bryan King 1999
U > PA1 1 Paige Alexander 1999
PA2 2 Paige 2001
3 icicimea > R1 1 Rogue 2001
L > TBL 1 Tim Ball Vol 1 1997
TB2 2 Tim Ball Vol 2 1999
5 TB3 3 Tim Ball Vol 3 2002
e > Vo1 1 Valerie 2002

4. Village Records wants to expand their stock by selling videos of the artists.
Therefore, they want to use a clustering technique instead of a nesting table.
Below are the new tables.

Artist
Code Name Residence Contract No
BK Bryan King Tamworth 13576345
PA Paige Sydney 14534321
Alexander
R Rogue Melbourne 12093722
B Tim Ball Melbourne 12092834
VQ Valerie Quinton | Melbourne 12098546

Album
Artist Code Album_Code | Album_No Album_Title Year
BK BK1 1 Bryan King 1999
PA PA1 1 Paige Alexander | 1999
PA PA2 2 Paige 2001
R R1 1 Rogue 2001
B TB1 1 Tim Ball Vol 1 1997
B TB2 2 Tim Ball Vol 2 1999
VQ VQ1l 1 Valerie 2002
Video
Artist Code | Video Code | Video No Video_Title
BK VBK1 1 Bryan King in Concert
PA VPA1 1 Paige
R VR1 1 Rogue in Rod Laver Arena
R VR2 2 Rogue World
B VTB1 1 Sydney Concert Tim Ball
B VTB2 2 Tim Acoustic

a. Createapartquerytoretrievethealbumtitle and video of the artist
with contract number 12093722.

b. Createawhole querytoretrieve the details of the artists for whom
there are both an album and a video in stock

5. A real-estate agency keeps records of its tenants, which include the
tenant_number, tenant_name, tenant_address, tenant_co_number, and
ref_list. Ref_listisatype of varray of two references of the tenants.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

206 Rahayu, Taniar and Pardede

a. Createthe objectsand tables of Tenantand Reference.

b. Create aprocedure to show the details of the tenants who have at
least one reference fromalandlord.

6. Following Question5above, the real-estate company wants to extend its
ref_listattribute of the tenant object. Ref_listisavarray of areference
object. The reference object has the attributes of reference_number,
reference_name, relationship, reference_contact_no, and reference_date.
Create the new objectand table for the tenants and references.

7. Show the difference between an object table and object attribute by
implementing the relation between two objects, Person and Land. A
person can own more than one piece of land, but one piece of land can be
owned by only one person. The details of these two objects are shown
below.

Person Land
p_ID L_ID
p_name |_address
p_address I_price
p_contact_no

Chapter Solutions

1. a. SELECT a.id, a.date in
FROM Animal a
WHERE TREAT (VALUE (a) AS dog t).height > 35;
b. SELECT p.id, p.age
FROM Pet Animal p
WHERE TREAT (VALUE (p) AS dog t).height < 25 OR
TREAT (VALUE (p) AS dog_t).weight < 10);

2. a. SELECT b.pub by.p name, b.pub by.p city

FROM Book b

WHERE b.b_title = ‘Les Miserables’;

b. SELECT b.b title, b.b year

FROM Book b

WHERE b.pub by.p id = ‘P04’;
C. SELECT b.b title, a.a name, b.b price
FROM Author a, Book b, Written By w

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries

WHERE w.author = REF(a)
AND w.book = REF(b)
AND b.b year > 1985;

3. a. SELECT album no, album title, year
FROM THE (SELECT album
FROM Artist
WHERE name = ‘Bryan King’);
b. SELECT DISTINCT a.name, a.contract no

FROM Artist a, TABLE (a.album) b
WHERE b.album no > 2;

4. a. SELECT b.album title, c.video title
FROM Artist a, Album b, Video c¢

WHERE a.code = b.artist code
AND a.code = c.artist code
AND a.contract no = 12093722;

b. sELECT ~*
FROM Artist
WHERE code IN (SELECT artist code
FROM Album)
AND code IN (SELECT artist code
FROM Video) ;

5. a. CREATE OR REPLACE TYPE References AS VARRAY(2) OF

VARCHAR2 (20)

/
CREATE OR REPLACE TYPE Tenants T AS OBJECT
(tenant number VARCHAR2 (3),
tenant name VARCHAR?2 (20) ,
tenant address VARCHAR?2 (30),
tenant contact no NUMBER,
ref list References)

CREATE TABLE Tenants OF Tenants T
(tenant number NOT NULL,
PRIMARY KEY (tenant number)) ;

b. DECLARE

CURSOR c_tenants IS

207

SELECT tenant number, tenant name, tenant address,

tenant contact no, ref list
FROM Tenants;

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

208 Rahayu, Taniar and Pardede

FOR v_tenants IN c_tenants LOOP
IF (v_tenants.ref 1list (1) = ‘Landlord’) OR
(v_tenants.ref 1list(2) = ‘Landlord’) THEN
DBMS OUTPUT.PUT LINE
(v_tenants.tenant number||’’]|]

v_tenants.tenant name||’’ ||
v_tenants.tenant address||’’||
v_tenants.tenant contact no) ;

END IF;
END LOOP;
END;
/
6. CREATE OR REPLACE TYPE Reference T AS OBJECT
(reference number VARCHAR2 (3),
reference name VARCHAR?2 (20) ,
relationship VARCHAR2 (20) ,
reference contact no NUMBER,
reference date DATE)
/

CREATE OR REPLACE TYPE References AS VARRAY(2) OF
Reference T

/
CREATE OR REPLACE TYPE Tenants T AS OBJECT
(tenant number VARCHAR2 (3),
tenant name VARCHAR?2 (20) ,
tenant address VARCHAR?2 (30),
tenant contact no NUMBER,
ref list References)

CREATE TABLE Tenants OF Tenants T
(tenant number NOT NULL,
PRIMARY KEY (tenant number)) ;
7. Object Table: Two tables are created from objects Person_T and
Land_T. Therefore, we have to create the object first, followed by the
tables. Notice that we use ref in connecting the two objects.

CREATE OR REPLACE TYPE Person T AS OBJECT

(p_id VARCHAR2 (3) ,
p_name VARCHAR?2 (10),
p_address VARCHAR?2 (20) ,

p_contact _no NUMBER)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries 209

CREATE OR REPLACE TYPE Land T AS OBJECT

(1_id VARCHAR2 (3) ,
1 address VARCHAR?2 (20) ,
1 price NUMBER,

owner REF Person T)

CREATE TABLE Person OF Person T
(p_id NOT NULL,
PRIMARY KEY (p_id));

CREATE TABLE Land OF Land T
(1 id NOT NULL,
PRIMARY KEY (1 id));

Object Attribute: We create only one table. Inthis case, asthere is only
one person who owns each piece of land, we create an object attribute of
Person_T inside the Land table. Notice we are not using ref in connecting
the object.

CREATE OR REPLACE TYPE Person T AS OBJECT

(p_id VARCHAR2 (3) ,
p_name VARCHAR?2 (10),
p_address VARCHAR?2 (20) ,
p_contact _no NUMBER)
/
CREATE OR REPLACE TYPE Land T AS OBJECT
(1_id VARCHAR2 (3) ,
1 address VARCHAR?2 (20) ,
1 price NUMBER,
owner Person T)

/

CREATE TABLE Land OF Land T
(1 id NOT NULL,
PRIMARY KEY (1 _id));

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

210 Rahayu, Taniar and Pardede

Chapter VII

University Case Study

Our intention inthe previous chapters was to give some understanding of the
ORDB concept and its implementation using Oracle™. Examples, case
studies, and questions based on these chapters have beenrelatively simplified
inorderto explain one conceptatatime. However, in the real world, often we
find far more complex cases that may involve the integration of every concept
that we have already discussed. Inthis chapter, we will consider abigger case
study that uses most of the ORDB concepts.

Inaddition, we will also demonstrate the implementation of abig case study into
one application that can be more user friendly. For this purpose, we will use a
package thatisalso provided by Oracle™.

Problem Description

City University (CU) keeps an extensive database for daily operational
purposes. The database includes information pertaining to the campuses,
faculties, buildings, personnel, degrees, and subjects offered, and other data
derived fromthem. Information Technology Services (ITS), responsible for
maintaining the database systemwithin the university, decidedtousean ORDB
and Oracle™ for the database implementation.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 211

CU has eight campuses around the state of Victoria. The Campus database is
linked to the Building and Person databases. Although each campus offers
differentdegree courses and has different faculties, at this stage, thereisno
directlink from these data to the Campus table. Figure 7.1 shows the sample
dataforthistable.

CU hasfivefaculties, each of which isan aggregation of adifferent department,
school, and research centre. Each of them isimplemented as a separate object
and has derived object tables. As we do not need to access the data of the
departments, schools, and research centres directly for this database system,
the data isimplemented using a nested table. Figure 7.2 shows the sample for
the Faculty table and its nested tables. Note that the attributes school_profand
dept_profare themselves objects. Thus, they have their own attributes includ-
ing name, contact, and year of inauguration. An attribute unit in the
Research_Centre nested table will have more than one value and thus needs to
be implemented using collectiontypes.

Each campus has several buildings, each of which isan aggregation of different
rooms such as offices, classrooms, and labs. The faculty can occupy many
buildings. However, one building can only be allocated to one faculty. Note that
there isan attribute bld_location, which isthe location of the building on the
particular campus map.

Asmentioned previously, abuilding can be divided into offices, classrooms,
and labs, each with its own attributes. Figure 7.4 shows the sample for the
Office, Classroom, and Lab tables. Note that the attribute lab_equipmentin
Labs hasto be implemented using collection types. For thisaggregation, weare
using the clustering technique instead of a nested table because there will be
association relationships needed between the part table Office and another
table to show the staff who occupies the office.

Figure 7.1. Campus table

Campus
Campus_Location | Campus_Address | Campus Phone | Campus Fax Campus_Head
Albury/Wodonga Parkers Road 61260583700 620260583777 John Hill
Wodonga VIC
3690
City 215 Franklin St. 61392855100 6103 92855111 Michael A.
Melb VIC 3000 O’Leary
Mildura Benetook Ave. 61350223757 61350223646 Ron Broadhead
Mildura VVIC 3502

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

212 Rahayu, Taniar and Pardede

Figure 7.2. Faculty table and the nested tables

Faculty
Fac_I Fac_Name Fac_Dean Department | School | Research_Centre
D
1 Health Sciences S. Duckett
2 Humanity & Social Sc. | J. A. Salmond
3 Law & Management G. C. O’Brien Nested Tables
4 Science, Tech. & Eng. | D. Finlay
5 Regional Department L. Kilmartin
School (Nested Table)
School _ID School Name School Head School_Prof
1-1 Human Chris Handley | Chris Handley
Biosciences
1-2 Human Comm. Elizabeth Sheena Reilly, Alison Perry, Jan
Sciences Lavender Branson
Department (Nested Table)
Dept_ID Dept_Name Dept_Head Dept_Prof
4-1 Agricultural Mark
Sciences Sandeman
4-2 Biochemistry Nick Nick Hoogenraad, Robin Anders,
Hoogenraad Claude Bernard, Bruce Stone
Research_Centre (Nested Table)
RC_ID RC Name RC Head RC_Unit
1-1 Australian Marian Pitts SSAY Projects
Research Centre HIV Futures
in Sex, Health & Australian Study of Health and
Society Relationships
1-2 Australian Hal Swerissen | Centre for Dev. and Innovation in
Institute for Health
Primary Care Centre for Quality in Health &
Community Svc.
Lincoln Gerontology Centre

Figure 7.3. Building table

Building
Bld_ID Bld_Name Bld_Location | Bld Level | Campus _Location | Fac ID

BB1 Beth Gleeson D5 4 Bundoora 4

BB2 Martin F5 4 Bundoora 3
Building

BB3 | Thomas D4 4 Bundoora 1
Cherry

BB4 Physical D5 3 Bundoora 4
Science 1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 213

Figure 7.4. Office, Classroom, and Lab tables

Office Classroom
Bld_ID | Off No | Off Phone Bld ID | Class No | Class_Capacity
BB4 BG207 94791118 BB3 TCLT 50
BB4 BS208 94792393 BB3 TCO1 30
Lab
Bld_ID Lab_No | Lab_Capacity | Lab_Equipment
BB1 BG113 25 25 PC, 1 Printer
BB1 BG114 20 21 PC

Figure 7.5. Degree table

Degree
Deg ID Deg Name Deg_Length Deg Prereq Fac ID
D100 | Bachelor of Comp. Sci 3 Year 12 or equivalent 4
D101 | Master of Comp. Sci 2 Bach of Comp. Sci 4
Figure 7.6. Person table
Person
Pers_ID Pers_ Pers_ | Pers_ Pers_Address Pers_Phone Pers_ Campus_
Surname | Fname| Title Postcode | Location
01234234 | Grant Felix Mr 2 Boadle Rd 0398548753 3083 Bundoora
Bundoora VIC
10008895 | Xin Harry Mr 6 Kelley St 0398875542 3088 Bundoora
Kew VIC
10002935 | Jones Felicity Ms 14 Rennie St 0398722001 3071 Bundoora
Thornbury VIC

Every faculty offers studentsanumber of degrees. The information about the
degree isstored inthe Degree table (see Figure 7.5). Obviously, one particular
degree can be offered by only one faculty.

One substantial part of the database is the personnel data. The university
personnel can be categorized into two major types: staff and student. A staff
can be categorized in more detail into administrator, technician, lecturer, and
tutor. A lecturer can further be categorized into senior lecturer and associate
lecturer. Atutor, on the other hand, can also be a studentand, thus, has to be
implemented inamultiple inheritance relationship.

While Figure 7.6 shows the Person table, Figure 7.7 shows the tables for its
subclasses. Empty fields show that the attribute can be null.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

214 Rahayu, Taniar and Pardede

Figure 7.7. Person’s subclass tables

Staff Student
Pers_ID Bld_ID Off No Staff Type Pers_ID Year
10008895 BB1 BG212 Lecturer 01234234 2000
10002935 BB4 BG210 Admin 01958652 2000
Admin
Pers ID Admin_Title Comp_Skills Office_Skills
10002935 | Office Manager Managerial
10008957 Receptionist MS Office Customer Service, Phone
Technician
Pers 1D Tech_Title Tech_SKkills
10005825 | Network Officer UNIX, NT
10015826 | Photocopy Technician Electrician
Lecturer
Pers_ID Area Lect_Type
10008895 | Software Engineering | Associate
10000255 | Business Information | Senior
Senior Lecturer
Pers ID | No Phd | No Master | No Honours
10000255 2 5 7
10000258 1 5
Associate Lecturer Tutor
Pers 1D No_Honours Year Join Pers 1D No_Hours Rate
10008895 2 1999 01234234 10 20.00
10006935 2001 01958652 30 35.00
Figure 7.8. Subject table
Subject
Subj_ID Subj Name Subj Credit | Subj Prereq Pers_ID
CSE2INET Networking 10 CSE11IS 10008895
CSE42ADB | Advanced Database 15 CSE21DB 10006935
Figure 7.9. Enrolls _In and Takes tables
Enrolls In Takes
Student Degree Student Subject Marks
01234234 D101 01234234 | CSE42ADB 70
10012568 D101 10012568 | CSE42ADB 80

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 215

The Student_T class is linked to the Degree_T class. One student can take
morethanone degree atatime. The Student_T class isalso linked to another
class, Subject_T. It contains the information about the subject ID, subject
name, subject credit, subject prerequisite, and its description. On the other
hand, the Subject_T classis linked to the Lecturer_T class, which obviously
shows the lecturer in charge of the subject. Figure 7.8 shows the Subject table

Figure 7.9 showsthe tablesassociated with the Student table: respectively, the
Enrolls_Intablethatis formed by the association to the Degree table, and the
Takestable thatis formed by the association to the Subjecttable. Note that the
tables do not exactly store only the ID, for example, student_ID in the
Enrolls_Intable. The whole object with the particular ID is being referenced
because of the implementation of object references.

ITSimplementsthe generic methods inside the classes, whichwill need a lot of
updates. They include Subject_T, Degree_T, and all the classes derived from
Person_T. There are also generic stored procedures for insertion and deletion
into tablesthatare notderived from objects, that s, table Enrolls_Inandtable
Takes.

Beside the generic methods, there are some user-defined queries that are
frequently made for this database. These user-defined queries will be imple-
mented as user-defined methods, listed below.

» Methodto show the names and the heads of the schools, departments, and
research centres of a faculty. Thismethod isimplemented in Faculty_T.

* Method to insert the data of a building into a new table, namely,
Building_Details. Thismethod will be implemented in Building_T.

* Method to display the details of the offices and their occupants. This
method will be implemented inthe Office_T class.

* Methodtosaveintoanewtable, namely, Degree_Records, whichwill
store the degree details and the number of students enrolled init. This
method will be implemented inthe Degree_T class.

» Methodtoshow the details of the lecturer that will be implemented in the
Lecturer_T class

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

216 Rahayu, Taniar and Pardede

f CU

ragram o

Figure 7.10. Object-oriented d.

Jeakjoud

youeasas joud
10'3U09 Joud

103[gnsa19|9p
108[gns_uasul

121N}03| 31B100SSE 919]9p
194N103]91eI00SSe Lasul

131n)03|101UdS 813I9p
19Jn323]J0IUaS Lasul

utol seak
sinouoy ou

sinouoy ou ‘Jaisew” ou
pyd ou

1 121Ny 91e100SSY

1 JaInpoa Joluss

aweu joid _ 11 AW uonyivd
al"joud baseid Tans T ulwpe s18|ep
1 Jossajoid :nwbhﬁ:m 1oy el9[ap JETIDBE]] UeIdIuYaa) al8|ep uIwpeJasul
= = aweu”gns Jojn_asul “Mmoys UBIDIUYD3Y Hasul SIS 99110
al”_fans arel adA1 109) SIS 4oa} S||s dwod
T 1 p10aa1 Bap Mots 17109lans sinoyou eale a1y Yo} A uIWpe
Hun 21 — — 9a16apa1919p T = = =
peay o1 Joidydep J01d”j00yds a01Bap Lasul saypy 1 Joint 1 Jaunpa 1 ueIdluyos L 1 ulupy
wEmcHo_ umm_ﬁawﬁ umwsw_oo:om . . _ _ [[
d1L sureu”jdep 8WEU|ooyds basaid Bap ! N/ _uoyiind
_L 8ausp ___Qidsp dl_looyos bus| Bap JuapnIs”ajajep
Yoseasay 1 swyredag 1 [00UdS awreuBap Juspnis Viasul
al hap . Jeak
! ! T ealbaq oo adA1"yers
Tt 1 Iuepms = T
T AV [|
— juawdinbaqe| 9911J0_MOYs Aw uomun
10ssej0.d”mous Anoedes qe| Anoedes ssejo auoyd 3o
813U3d " U2Jeasal ouqe| oU"ssEp o110 uossad ajejap
Juswiredap uostad uasul
J00Yds = = =
ueap ey 1 qeq 1 woousse|d 1 99130 apooisod™ssad
alueu ey 1] 1] [T auoydsied
al e} peay”sndwed ssaippe”siad
1 Aynoe4 [— T O xe}~sndwed EED]
— auoyd sndwed awreuy siad
T SIIEIP ﬂ_m,m_,»ﬂ_m mmm_uwm\w:QEmo mEmE:m\mEa
uoreao[g co:moo_ungemo m__|28
mEmc\u_.n‘d_\u_n 1 sndwed 1 uoslad
L buippng LI T
1

forms without written

ing in print or electronic

Copyright © 2006, Idea Group Inc. Copying or distribut

hibited.

. is pro

f ldea Group Inc

permission 0

University Case Study 217

Problem Solution

The first thing to do in solving this problem is to design the database. We
provide the design inan object-oriented diagram (see Figure 7.10). Note that
the diagram does not indicate the number of tables that we need to create. We
have toalso consider the cardinality of the relationships before determining the
number of tables. The diagram shows two aggregation relationships. We use
the clustering technique for the Building_T-class aggregation because there is
anassociation relationship needed to the part class, inthis case, the Office_ T
class to the Lecturer_T class. On the other side, we will use the nested
technique for the Faculty_T class.

To ensure a clearer step-by-step development, the solution will be imple-
mented for one classatatime. It starts with the object creation, then progresses
tothetable creationandthen, where applicable, the method creation. Note that
the table for the many-to-many relationship will be implemented along with the
implementation of the second class.

Campus_T Table

The implementation of the Campus_T classand the table derived fromthe class
isshown below. There are no generic methods needed for this class because
insertion or deletion of acampus database is not a frequent operation.

Relational Schemas
Faculty (campus location, campus_address,
campus_phone,
campus_fax, campus_head)

Class and Table Declaration
CREATE OR REPLACE TYPE Campus T AS OBJECT

(campus_location VARCHAR2 (20) ,
campus_address VARCHAR2 (50) ,
campus_phone VARCHAR2 (12) ,
campus_fax VARCHAR2 (12),
campus_head VARCHAR2 (20))

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

218 Rahayu, Taniar and Pardede

CREATE TABLE Campus OF Campus T
(campus_location NOT NULL,
PRIMARY KEY (campus_ location)) ;

Faculty T Class and Part Classes

The Faculty table contains three nested tables, and thus the classes for each of
them have to be created first. The attributes school_prof, dept_prof, and
rc_unitare collection typesandwill be implemented using varray. In addition,
the first two are varrays of Professor_T. Therefore, we have to create this
objectfirst before creating the object of the collection types.

It is the same with the Campus_T class; we do not use generic methods
frequently for these classes, so there will be no generic member methods
implemented. However, asitisrequired, auser-defined method isimplemented
to show the names and the heads of the schools, departments, and research
centres, given the faculty ID.

Relational Schemas
Faculty (fac_ID, fac _name, fac_dean, school,
department,
research centre)
School (school ID, school name, school head,
school prof)
Dept (dept ID, dept name, dept head, dept prof)
Research Centre (rc ID, rc_name, rc_head, rc_unit)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Professor T AS OBJECT

(prof id VARCHAR2 (10) ,
prof name VARCHAR2 (20) ,
prof contact VARCHAR2(12),
prof year NUMBER)

/

CREATE OR REPLACE TYPE Professors AS VARRAY(5) OF
Professor T

/

CREATE OR REPLACE TYPE Units AS VARRAY(5) OF
VARCHAR2 (50)
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 219

CREATE OR REPLACE TYPE School T AS OBJECT
(school id VARCHAR2 (12),
school name VARCHAR2(20),
school head VARCHAR2(20),
school prof Professors)

/
CREATE OR REPLACE TYPE School Table T AS TABLE OF
School T
/
CREATE OR REPLACE TYPE Department T AS OBJECT
(dept_id VARCHAR2 (12) ,
dept name VARCHAR2 (20) ,
dept_head VARCHAR2 (20) ,
dept prof Professors)

/

CREATE OR REPLACE TYPE Department Table T AS TABLE OF
Department T
/

CREATE OR REPLACE TYPE Research Centre T AS OBJECT
(rc_id VARCHAR2 (12),
rc_name VARCHAR2 (20) ,
rc_head VARCHAR2 (20) ,
rc_unit Units)

/

CREATE OR REPLACE TYPE Research Centre Table T AS
TABLE OF Research Centre T

/
CREATE OR REPLACE TYPE Faculty T AS OBJECT
(fac_id VARCHAR2 (10) ,

fac_name VARCHAR2 (20) ,
fac_dean VARCHAR2 (20) ,
school School Table T,
department Department Table T,
research centre Research Centre Table T,

MEMBER PROCEDURE show parts)
/

CREATE TABLE Faculty OF Faculty T
(fac_id NOT NULL,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

220 Rahayu, Taniar and Pardede

PRIMARY KEY (fac_ id))

NESTED TABLE school STORE AS school tab
NESTED TABLE department STORE AS dept tab
NESTED TABLE research centre STORE AS rc_tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Faculty T AS

— We need three different cursors for the
different nested tables.

MEMBER PROCEDURE show parts IS

CURSOR c_school IS
SELECT school name, school head

FROM THE
(SELECT school FROM Faculty
WHERE fac id = self.fac_ id);

CURSOR c_dept IS
SELECT dept name, dept head

FROM THE
(SELECT department FROM Faculty
WHERE fac id = self.fac_id);

CURSOR ¢ rc IS
SELECT rc_name, rc_head
FROM THE
(SELECT research centre FROM Faculty
WHERE fac_ id self.fac_id);

BEGIN
DBMS OUTPUT.PUT LINE
(‘Part Name’]||’ ‘|| "Head Name'’) ;
DBMS OUTPUT.PUT LINE
¢ K
FOR v_school IN c_school LOOP
DBMS OUTPUT.PUT LINE
(v_school.school name] |’
‘| |v_school.school head) ;
END LOOP;

FOR v _dept IN c_dept LOOP
DBMS OUTPUT.PUT LINE

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 221

(v_dept.dept name] |’
‘| |v_dept.dept head) ;
END LOOP;

FOR v_rc IN c _rc LOOP
DBMS OUTPUT.PUT LINE
(v_rc.rc_name]| |’ ‘| |v_rc.rc_head) ;
END LOOP;
END show parts;

END;
/

Building T Class and Part Classes

Forthe Building_T classand the part classes, we use the clustering technique,
soineachparttable, there isawhole-class primary key included. Again, there
iIsno generic member method required in this class. Nevertheless, we still need
auser-defined method to save into the new table, namely, Building_Details. We
need to create this table first before being able to implement the member-
method body.

Relational Schemas
— Note that the first primary key in each part class
is also a foreign
— key to the whole class. The relationship from
Building T to other
— classes is made using object references in in campus
and
— for faculty respectively for the Campus T class and
Faculty T class.

Buildings (bld ID, bld name, bld location,
bld level,
in campus, for faculty)
Office (bld ID, off no, off phone)
Classroom (bld ID, class no, class capacity)
Lab (bld ID, 1lab no, 1lab capacity, lab equipment)

Class, Table, and Method Declaration
— Equipments is a collection type of array to store
— the attribute lab equipment of Lab T.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

222 Rahayu, Taniar and Pardede

CREATE OR REPLACE TYPE Equipments AS VARRAY(3) OF
VARCHAR2 (20)

/
CREATE OR REPLACE TYPE Building_T AS OBJECT
(bld id VARCHAR2 (10) ,
bld name VARCHAR2 (20) ,
bld location VARCHAR2 (10),
bld level NUMBER,

in campus REF Campus T,
for faculty REF Faculty T,

MEMBER PROCEDURE show bld details)
/

CREATE CLUSTER Building Cluster
(bld id VARCHAR2 (10)) ;

CREATE TABLE Building OF Building T
(bld id NOT NULL,
PRIMARY KEY (bld id))
CLUSTER Building Cluster (bld id) ;

CREATE OR REPLACE TYPE Office T AS OBJECT

(bld id VARCHAR2 (10) ,
off no VARCHAR2 (10),
off phone VARCHAR2 (12),

MEMBER PROCEDURE show office)
/

CREATE TABLE Office OF Office T
(bld_id NOT NULL,
off no NOT NULL,
PRIMARY KEY (bld id, off no),
FOREIGN KEY (bld id) REFERENCES
Building(bld_id))
CLUSTER Building Cluster(bld id) ;

CREATE OR REPLACE TYPE Classroom T AS OBJECT

(bld id VARCHAR2 (10) ,
class_no VARCHAR2 (10),
class capacity NUMBER)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 223

CREATE TABLE Classroom OF Classroom T
(bld _id NOT NULL,
class no NOT NULL,
PRIMARY KEY (bld id, class no),
FOREIGN KEY (bld id) REFERENCES
Building(bld_id))
CLUSTER Building Cluster (bld id) ;

CREATE OR REPLACE TYPE Lab T AS OBJECT
(bld id VARCHAR2 (10) ,
lab no VARCHAR2 (10),
lab capacity NUMBER,
lab_equipment Equipments)

/

CREATE TABLE Lab OF Lab T
(bld _id NOT NULL,
lab no NOT NULL,
PRIMARY KEY (bld id, lab no),
FOREIGN KEY (bld id) REFERENCES
Building(bld_id))
CLUSTER Building Cluster(bld id) ;

CREATE INDEX Building Cluster Index
ON CLUSTER Building Cluster;

— The Building Details table has to be created before
we
— create the implementation of show bld details.

CREATE TABLE Building Details
(Building Name VARCHAR2 (20) ,
Building Location VARCHAR2(10));

Method Implementation
CREATE OR REPLACE TYPE BODY Building T AS

MEMBER PROCEDURE show bld details IS

BEGIN

INSERT INTO Building Details

VALUES (self.bld name, self.bld location);
END show bld details;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

224 Rahayu, Taniar and Pardede

— Before implementing this method, we need to create

the
— tables for Person and Staff first. Otherwise, there

will
— be a warning message during the procedure compilation.

CREATE OR REPLACE TYPE BODY Office T AS
MEMBER PROCEDURE show office IS
CURSOR c_office IS

SELECT c.pers_surname, b.off no, b.off phone
FROM Building a, Office b, Person c¢, Staff d

WHERE a.bld id = self.bld id AND a.bld id =
b.bld id

AND c.pers_id = d.pers_id AND d.in office = REF
(b) ;
BEGIN

DBMS OUTPUT.PUT LINE

(‘Surname’ | |’ ‘||'0Office no’ ||’ ‘||‘0Office
Phone'’) ;

DBMS OUTPUT.PUT LINE
¢ N
FOR v office IN c office LOOP
DBMS OUTPUT.PUT LINE
(v_office.pers surname||’ ‘|
v _office.off nol |’ !
v_office.off phone);
END LOOP;
END show office;

END;
/

Degree_T Class

Forthe Degree_T class, we will need the generic member method. In addition,
there isalso auser-defined method to store the data into the new table every
time anew student has enrolled. For this purpose, we need to create a table
named Degree_Records beforehand.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 225

Relational Schemas
— The relationship from Degree T to Faculty T 1is
made
— using object references on attribute in faculty.

Degree (deg ID, deg name, deg length, deg prereq,
in faculty)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Degree T AS OBJECT
(deg_id VARCHAR2 (10) ,
deg name VARCHAR2 (30),
deg length VARCHAR2 (10) ,
deg prereq VARCHAR2 (50) ,
in faculty REF Faculty T,

MEMBER PROCEDURE insert degree (
new deg id IN VARCHAR2,
new_deg name IN VARCHAR2,
new_deg length IN VARCHAR2,
new_deg prereq IN VARCHAR2,
new _fac id IN VARCHAR2),

MEMBER PROCEDURE delete degree,
MEMBER PROCEDURE show deg record)

CREATE TABLE Degree OF Degree T
(deg _id NOT NULL,
PRIMARY KEY (deg id));

— The Degree Records table has to be created before
we
— create the implementation of show degree records.

CREATE TABLE Degree Records
(deg_name VARCHAR2 (30),
deg length VARCHAR2 (10) ,
deg prereq VARCHAR2 (50) ,
total student NUMBER) ;

Method Implementation

— Before implementing this method, we need to create
the

— table for Person and Staff first.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

226 Rahayu, Taniar and Pardede

CREATE OR REPLACE TYPE BODY Degree T AS

MEMBER PROCEDURE insert degree (
new deg id IN VARCHAR2,
new_deg name IN VARCHAR2,
new_deg length IN VARCHAR2,
new_deg prereq IN VARCHAR2,
new _fac id IN VARCHAR2) IS

faculty temp REF Faculty T;

BEGIN
SELECT REF (a) INTO faculty temp
FROM Faculty a
WHERE a.fac _id = new fac id;

INSERT INTO Degree
VALUES (new deg id, new deg name, new deg length,
new_deg prereq, faculty temp) ;
END insert degree;

MEMBER PROCEDURE delete degree IS

BEGIN
DELETE FROM Degree
WHERE deg id = self.deg id;

END delete degree;
MEMBER PROCEDURE show deg record IS
v_total INTEGER;

SELECT COUNT (*) AS Total Student
INTO v_total

FROM Degree a, Enrolls In b
WHERE b.degree = REF(a)

GROUP BY a.deg id;

BEGIN
INSERT INTO Degree Records
VALUES (self.deg name, self.deg length,
self.deg prereq, vVv_total);
END show deg record;

END;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 227

Person_T Class, the Subclasses, and the Enrolls In
Table

The database for personal details is the biggest database needed for this case
study. Thisismainly because itinvolves multilevel inheritance. Person_T has
union inheritance to its subclasses because a person can be amember of more
than one subclass. Staff_T has partition inheritance to its subclasses because
astaff can be the member of one, and only one, subclass. Finally, the inheritance
type for Lecturer_T isalsoapartition type of inheritance.

Below isthe implementation of these classes and their tables. Obviously, we
will need the member method for insertion and deletion to most of these classes.
In addition, according to the requirements, we need to add a user-defined
method to display the details of the lecturers, their type, and their campusinside
the Lecturer_T class.

Relational Schemas
— Note that the association relationship between
Person T and Campus_ T
— and between Staff T to Office T is made wusing
object references
— respectively in attributes in campus and
in office.

Person (pers ID, pers surname, pers fname, pers title,
pers address, pers phone, pers postcode, in campus)
Staff (pers ID, in office, staff type)

Student (pers_ID, vyear)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Person T AS OBJECT
(pers_id VARCHAR2 (10) ,

pers_surname VARCHAR2 (20
pers_fname VARCHAR2 (

pers title VARCHAR2 (

(

(

)
)
)
pers_address VARCHAR2)
pers_phone VARCHAR2)
pers_postcode NUMBER,
in campus REF Campus T,

1

20
10
50
12

1

MEMBER PROCEDURE insert person (
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

228 Rahayu, Taniar and Pardede

new_pers_fname IN VARCHAR2,

new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,

new campus_location IN VARCHAR2),

MEMBER PROCEDURE delete person) NOT FINAL

CREATE TABLE Person OF Person T
(pers_id NOT NULL,
PRIMARY KEY (pers id));

— There is no generic method in Staff T since it has
partition

— inheritance. Insertion and deletion have to be done
from the

— the subclasses.

CREATE OR REPLACE TYPE Staff T UNDER Person T
(in office REF Office T,
staff type VARCHAR2 (20)) NOT FINAL

/

CREATE TABLE Staff OF Staff_T
(pers_id NOT NULL,
staff type NOT NULL
CHECK (staff type 1IN ‘Admin’, ‘Technician’,
‘Senior Lecturer’, ‘Associate Lecturer’, ‘Tutor’)),
PRIMARY KEY (pers id));

CREATE OR REPLACE TYPE Student_T UNDER Person T
(year NUMBER,

MEMBER PROCEDURE insert student (
new pers id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 229

MEMBER PROCEDURE delete student)
/

CREATE TABLE Student OF Student_T
(pers_id NOT NULL,
PRIMARY KEY (pers id));

CREATE OR REPLACE TYPE Admin_T UNDER Staff_T
(admin title VARCHAR2 (10) ,
comp skills VARCHAR2(50),
office skills VARCHAR2 (50),

MEMBER PROCEDURE insert admin (
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_admin title IN VARCHAR2,
new comp skills IN VARCHAR2,
new office skills IN VARCHAR2),

MEMBER PROCEDURE delete admin)
/

CREATE OR REPLACE TYPE Technician_T UNDER Staff_T
(tech_title VARCHAR2 (10),
tech skills VARCHAR2(50),

MEMBER PROCEDURE insert technician (
new _pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_tech title IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

230 Rahayu, Taniar and Pardede

new _tech skills IN VARCHAR2),

MEMBER PROCEDURE delete technician)
/

— There is no generic method in Lecturer T because
it has partition

— inheritance. Update operations are done through the
subclasses.

CREATE OR REPLACE TYPE Lecturer T UNDER Staff T
(area VARCHAR2 (50) ,
lect type VARCHAR2 (20) ,

MEMBER PROCEDURE show_ lecturer) NOT FINAL

CREATE OR REPLACE TYPE Senior Lecturer T UNDER
Lecturer T

(no_phd NUMBER,

no master NUMBER,

no_honours NUMBER,

MEMBER PROCEDURE insert senior lecturer(
new pers id IN VARCHAR2,
new pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_phd IN NUMBER,
new no master IN NUMBER,
new_no_honours IN NUMBER),

MEMBER PROCEDURE delete senior lecturer)
/

CREATE OR REPLACE TYPE Associate Lecturer T UNDER
Lecturer T

(no_honours NUMBER,

year join NUMBER,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 231

MEMBER PROCEDURE insert associate lecturer (
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_honours IN NUMBER,
new _year join IN NUMBER),

MEMBER PROCEDURE delete associate lecturer)

/

CREATE OR REPLACE TYPE Tutor T UNDER Staff_T
(no_hours NUMBER,
rate NUMBER,

MEMBER PROCEDURE insert tutor(
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_year IN NUMBER, — from Student T class
new_no_hours IN NUMBER,
new_rate IN NUMBER),

MEMBER PROCEDURE delete tutor)
/

— The Enrolls In table is derived from the relationship
— between the Student T and Degree T classes.

CREATE TABLE Enrolls In
(student REF Student T,
degree REF Degree T);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

232 Rahayu, Taniar and Pardede

Methods Implementation
CREATE OR REPLACE TYPE BODY Person T AS

MEMBER PROCEDURE insert person (
new pers id IN VARCHAR2,
new pers surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2) IS

campus_temp REF Campus T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

INSERT INTO Person
VALUES (new pers id, new pers_ surname,
new pers fname, new pers title,
new_pers_address, new_pers_phone,
new_pers_postcode, campus_temp) ;
END insert person;

MEMBER PROCEDURE delete person IS

BEGIN
DELETE FROM Person
WHERE pers id = self.pers id;

END delete person;

END;
/

CREATE OR REPLACE TYPE BODY Student T AS

MEMBER PROCEDURE insert student (
new pers id IN VARCHAR2,
new pers surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 233

new campus_location IN VARCHAR2,
new_year IN NUMBER) IS

campus_temp REF Campus T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

INSERT INTO Student
VALUES (new pers id, new_pers_ surname,
new pers fname, new pers title,
new_pers_address, new_pers_phone,
new pers postcode, campus_temp, new_year) ;
END insert student;

MEMBER PROCEDURE delete student IS

BEGIN

DELETE FROM Student

WHERE pers id = self.pers id;
END delete student;

END;
/

CREATE OR REPLACE TYPE BODY Admin T AS

MEMBER PROCEDURE insert admin(
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_admin title IN VARCHAR2,
new comp skills IN VARCHAR2,
new office skills IN VARCHAR2) IS

campus_temp REF Campus T;
office temp REF Office T;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

234 Rahayu, Taniar and Pardede

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF (b) INTO office temp
FROM Office b

WHERE b.bld id = new bld id
AND Db.off no = new off no;

INSERT INTO Staff

VALUES (Admin T (new pers id, new pers_ surname,
new pers fname, new pers title,
new_pers_address, new_pers_phone,

new_pers_ postcode, campus temp,
office temp, ‘Admin’,
new_admin title, new comp skills,

new office skills));
END insert admin;

MEMBER PROCEDURE delete admin IS

BEGIN
DELETE FROM Staff
WHERE pers id = self.pers id;

END delete admin;

END;
/

CREATE OR REPLACE TYPE BODY Technician T AS

MEMBER PROCEDURE insert technician(
new pers id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new _tech title IN VARCHAR2,
new_tech skills IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 235

campus_temp REF Campus T;
office temp REF Office T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF (b) INTO office temp
FROM Office b

WHERE b.bld id = new bld id
AND Db.off no = new off no;

INSERT INTO Staff

VALUES (Technician T (new pers id,
new_pers_surname,
new pers fname, new pers title,
new_pers_address, new_pers_phone,
new_pers_ postcode, campus_ temp,

office temp, ‘Technician’,
new _tech title, new tech skills));
END insert technician;

MEMBER PROCEDURE delete technician IS

BEGIN
DELETE FROM Staff
WHERE pers id = self.pers id;

END delete technician;

END;
/

CREATE OR REPLACE TYPE BODY Lecturer T AS

MEMBER PROCEDURE show lecturer IS

BEGIN
DBMS OUTPUT.PUT LINE
(self.pers surname||’ ‘||self.pers fname] |’
N
self.pers address||’ ‘||self.lect type||’ ‘||
self.areal||’ ‘||self.lect type);

END show lecturer;

END;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

236 Rahayu, Taniar and Pardede

/
CREATE OR REPLACE TYPE BODY Senior Lecturer T AS

MEMBER PROCEDURE insert senior lecturer(
new pers id IN VARCHAR2,
new pers surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_phd IN NUMBER,
new no master IN NUMBER,
new_no_honours IN NUMBER) IS

campus_temp REF Campus T;
office temp REF Office T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF (b) INTO office temp
FROM Office b

WHERE b.bld id = new bld id
AND Db.off no = new off no;

INSERT INTO Staff

VALUES (Senior Lecturer T (new_ pers id,
new_pers_surname,
new_pers_ fname, new_pers title,
new_pers_address,
new_pers_ phone, new_pers postcode,

campus_temp,
office temp, ‘Lecturer’, new area, ‘Senior
Lecturer’,
new_no_phd, new_no_master,
new_no_honours) ;
END insert senior lecturer;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 237

MEMBER PROCEDURE delete senior lecturer IS

BEGIN
DELETE FROM Staff
WHERE pers id = self.pers id;

END delete senior lecturer;

END;
/

CREATE OR REPLACE TYPE BODY Associate lecturer T AS

MEMBER PROCEDURE insert associate lecturer(
new pers_id IN VARCHAR2,
new_pers_ surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_honours IN NUMBER,
new_year join IN NUMBER) IS

campus_temp REF Campus T;
office temp REF Office T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF (b) INTO office temp
FROM Office b

WHERE b.bld id = new bld id
AND Db.off no = new off no;

INSERT INTO Staff

VALUES (Associate Lecturer T (new_pers_ id,
new_pers_surname,
new_pers_ fname, new_pers title,

new_pers_address,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

238 Rahayu, Taniar and Pardede

new_pers_ phone, new pers postcode,
campus_temp,
office temp, ‘Lecturer’, new_area,

‘Associate Lecturer’
new no_honours, new_year join));
END insert associate lecturer;

MEMBER PROCEDURE delete associate lecturer IS

BEGIN
DELETE FROM Staff
WHERE pers id = self.pers id;

END delete associate lecturer;

END;
/

CREATE OR REPLACE TYPE BODY Tutor T AS

MEMBER PROCEDURE insert tutor(
new pers id IN VARCHAR2,
new pers surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new pers title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new bld id IN VARCHAR2,
new_off no IN VARCHAR2,
new _year IN NUMBER,
new_no_hours IN NUMBER,
new_rate IN NUMBER) IS

campus_temp REF Campus T;
office temp REF Office T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF (b) INTO office temp
FROM Office b

WHERE b.bld id = new bld id
AND Db.off no = new off no;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 239

INSERT INTO Staff

VALUES (Tutor T(new pers id, new _pers_ surname,
new pers fname, new pers title,
new_pers_address, new_pers_phone,

new_pers_ postcode, campus_ temp,
office temp, ‘Tutor’,
new_no_hours, new_rate));
END insert tutor;

MEMBER PROCEDURE delete tutor IS

BEGIN
DELETE FROM Staff
WHERE pers id = self.pers id;

END delete tutor;

END;
/

— Beside member methods, we also need to provide the
— stored procedures for the Enrolls In table.

CREATE OR REPLACE PROCEDURE Insert Enrolls In(
new pers id IN Person.pers id$TYPE,
new deg id IN Degree.deg id%$TYPE) AS

student temp REF Student T;
degree _temp REF Degree T;

BEGIN
SELECT REF(a) INTO student temp
FROM Student a
WHERE a.pers id = new pers id;

SELECT REF (b) INTO degree temp
FROM Degree Db
WHERE b.deg id = new deg id;

INSERT INTO Enrolls In

VALUES (student temp, degree temp) ;
END Insert Enrolls In;
/

CREATE OR REPLACE PROCEDURE Delete Enrolls In(
deleted pers id IN Person.pers id%TYPE,
deleted deg id IN Degree.deg id%TYPE) AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

240 Rahayu, Taniar and Pardede

BEGIN
DELETE FROM Enrolls In
WHERE Enrolls In.student IN
(SELECT REF (a)
FROM Student a
WHERE a.pers id = deleted pers id)
AND Enrolls In.degree IN
(SELECT REF (b)
FROM Degree Db
WHERE b.deg id = deleted deg id);
END Delete Enrolls In;
/

Subject_T Class and Takes Table

The next class to be implemented is Subject_T, which has an association
relationship with Student_T. However, as both are of equal importance, we
cannotuse aforeign key or object reference in either of them. Thus, another
table Takes needsto be created that includes the object references to previous
classesand an additional attribute, in this case, Marks.

Relational Schemas
— The relationship between Subject T and
Lecturer T is made using the object
— reference Teach. The attributes inside the Takes
table are also
— 1implemented using object references Subject and
Lecturer.

Subject (subj ID, subj name, subj credit,
subj prereq, teach)
Takes (subject, 1lecturer, marks)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Subject_T AS OBJECT
(subj_id VARCHAR2 (10) ,
subj name VARCHAR2 (30) ,
subj credit VARCHAR2(10),
subj prereq VARCHAR2 (50)
teach REF Lecturer T,

1

MEMBER PROCEDURE insert subject (
new_subj id IN VARCHAR2,
new_subj name IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 241

new_subj credit IN VARCHAR2,
new_subj prereq IN VARCHAR2,
new pers id IN VARCHAR2),

MEMBER PROCEDURE delete subject)
/

CREATE TABLE Subject OF Subject T
(subj id NOT NULL,
PRIMARY KEY (subj id));

CREATE TABLE Takes
(student REF Student T,
subject REF Subject T,
marks NUMBER) ;

Methods Implementation
CREATE OR REPLACE TYPE BODY Subject T AS

MEMBER PROCEDURE insert subject (
new_subj id IN VARCHAR2,
new_subj name IN VARCHAR2,
new_subj credit IN VARCHAR2,
new_subj prereq IN VARCHAR2,
new pers id IN VARCHAR2) IS

lecturer temp REF Lecturer T;

BEGIN
SELECT REF (a) INTO lecturer_ temp
FROM Lecturer a
WHERE a.pers id = new pers id;

INSERT INTO Subject
VALUES (new_subj id, new_subj name,
new_subj credit,
new subj prereq, lecturer temp) ;
END insert subject;

MEMBER PROCEDURE delete subject IS

BEGIN
DELETE FROM Subject
WHERE subj id = self.subj id;

END delete subject;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

242 Rahayu, Taniar and Pardede

END;
/

CREATE OR REPLACE PROCEDURE Insert Takes(
new pers_id IN Person.pers id$TYPE,
new subj id IN Subject.subj id%TYPE,
new_marks IN NUMBER) AS

student temp REF Student T;
subject temp REF Subject T;

BEGIN
SELECT REF(a) INTO student temp
FROM Student a
WHERE a.pers id = new pers id;

SELECT REF (b) INTO subject temp
FROM Subject b
WHERE b.subj id = new subj id;

INSERT INTO Takes

VALUES (student temp, subject temp, new marks);
END Insert Takes;
/

CREATE OR REPLACE PROCEDURE Delete Takes(
deleted pers _id IN Person.pers id%TYPE,
deleted subj id IN Subject.subj id%TYPE) AS

BEGIN
DELETE FROM Takes
WHERE Takes.student IN
(SELECT REF (a)
FROM Student a
WHERE a.pers id = deleted pers id)
AND Takes.subject IN
(SELECT REF (b)
FROM Subject b
WHERE b.subj id = deleted subj id);
END Delete Takes;
/

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 243

Sample Database Execution

In this section, we will demonstrate the execution of the created database.
Therewill be asimple example on how to use the generic and the user-defined
methods for some classes. We will also try to display the results of some of the
retrieval methods. Unlike the section of Problem Solutions, we will not divide
this section based onthe classes but rather on the type of member methods, that
IS, generic methods and user-defined methods.

Generic Methods Sample

Most classesin this case study have generic member methods attached to them.
The methods are used for insertion into, and deletion from, the object tables.
Besides the generic member methods, there are also generic methods thatare
implemented as stored procedures. The two tables with these stored proce-
duresare Enrolls_Inand Takes.

Notice thatthe order of action will be very important because arecord inatable
mightrefer to another record in another table or object. The wrong order of
deletion, forexample, mightresultin having dangling objectreferences. It might
happen because the ORDB has not preserved acomplete integrity constraint
checking.

The first class where data needs to be inserted is Campus_T. As there are
neither generic member methods nor generic stored procedures implemented,
we have to use an ad hoc query to insert data into the Campus table.

INSERT INTO Campus
VALUES (‘Albury/Wodonga’, ‘Parkers Road Wodonga VIC 3690,
'61260583700’, '620260583777', ‘John Hill’);

INSERT INTO Campus
VALUES (‘'City’, ‘215 Franklin St. Melb VIC 3000,
‘61392855100, '61392855111’, ‘Michael A. Leary’);

INSERT INTO Campus
VALUES (‘Mildura’, ‘Benetook Ave. Mildura VIC 3502',
‘61350223757’, '61350223646’, ‘Ron Broadhead’) ;

INSERT INTO Campus

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

244 Rahayu, Taniar and Pardede

VALUES (‘Bundoora’, ‘Kingsbury Dv Bundoora VIC 3083',
'61395485410’, '61398520148’, ‘Michael Osborne’) ;

We can check the records by retrieving the data. Theretrieval query ontable
Campuswill display the result shown below.

SELECT campus_location, campus_ address
FROM Campus;

CAMPUS_ LOCATION CAMPUS_ ADDRESS

Albury/Wodonga Parkers Road Wodonga VIC 3690
City 215 Franklin St. Melb VIC 3000
Mildura Benetook Ave. Mildura VIC 3502
Bundoora Kingsbury Dv Bundoora VIC 3083

The next class to be implemented is Faculty_T and its nested tables. These
classes also do not have generic member methods and thus, we need to use an
ad hoc query like that for the Campus table. We will show the sample to
demonstrate the application for nested tables.

INSERT INTO Faculty

VALUES ('1’, ‘Health Sciences’, ‘S.Duckett’,
School Table T(School T (NULL,NULL,NULL,NULL)),
Department Table T (Department T (NULL, NULL,NULL,NULL)),
Research Centre Table T(Research Centre T (NULL,NULL,NULL,NULL))) ;

INSERT INTO Faculty

VALUES (‘'4’, ‘Science, Tech, Eng.’, ‘D.Finlay’,
School Table T (School T (NULL,NULL,NULL,NULL)),
Department Table T (Department T (NULL, NULL,NULL,NULL)),
Research Centre Table T(Research Centre T (NULL,NULL,NULL,NULL))) ;

Note that we need a constructor for each nested table. It is a requirement
before we are able to insert the values in these nested tables. The insertion
example isshown below.

INSERT INTO THE
(SELECT a.school
FROM Faculty a
WHERE a.fac id = '1')

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 245

VALUES (‘'1-1’, ‘Human Biosciences’, ‘Chris Handley’,
Professors (Professor T('110’, ‘Chris Handley’,
'0394584521', 1980)));

INSERT INTO THE
(SELECT a.school
FROM Faculty a

WHERE a.fac id = '1')
VALUES ('1-2’, ‘Human Comm. Sci.’, ‘Elizabeth
Lavender’, Professors(Professor T('120’, ‘'Sheena
Reiley’, '0395420001’, 1991), Professor T('130’',
‘Alison Perry’, '0398219234’, 1995),
Professor T('140’, ‘Jan Branson’, '0387210023’,

2001))) ;

INSERT INTO THE
(SELECT a.department
FROM Faculty a
WHERE a. fac_id = ‘4')
VALUES (‘4-1’, ‘Agricultural Sci.’, ‘Mark Sandeman’,
Professors (Professor T (NULL,NULL, NULL,NULL))) ;

The deletion of aparticular faculty from the Faculty table will delete all nested
tablesinside it. Onthe other side, we can delete a nested table without deleting
the faculty. The disadvantage is that we have to delete the whole nested table
record and we are notallowed to choose a particular record in the nested table.
A simple SQL code below shows the deletion of a department record. The
deletion ofafaculty record is pretty straightforward and thus is not shown here.

DELETE FROM THE
(SELECT a.department
FROM Faculty a
WHERE a.fac id = '4');

ThenextclassisBuilding_Tand itssubclasses. They will be implemented also
using an ad hoc query. Although this isan aggregation using the clustering
technique, the implementation of insertion and deletion will be very similar to
that of the previous classes. Now we will show the example of generic member
method usage inthe Degree_T class.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

246 Rahayu, Taniar and Pardede

DECLARE
— Construct objects and initialise them to null.
a_degree Degree T := Degree T

(NULL, NULL, NULL, NULL, NULL) ;

BEGIN
a_degree.insert degree('D100’, ‘Bachelor of Comp.
Sci’, '3', ‘Year 12 or Equivalent’, ‘4’);
a_degree.insert degree('D101’, ‘Master of Comp.
Sci’, ‘'2', ‘Bachelor of Comp. Sci’, ‘4’');

END;

/

SELECT deg id, deg name, deg length
FROM Degree;

DEG_ID DEG_NAME DEG_LENGTH
D100 Bachelor of Comp. Sci 3
D101 Master of Comp. Sci 2

Deletion from this table is very simple and basically very similar to the
implementation of insertion. The code below shows the implementation of the
deletion member method. On completion of this method, the degree with a
particular ID will be deleted.

BEGIN

a_degree.delete degree;
END;
/

We will not provide the examples of generic method implementation for the
Person_T classand its subclasses because itis very similar to the implementa-
tioninthe Degree_T class. However, there are a few things to remember. First,
the insertion inasuperclass might be done (and has to be done for partition
inheritance) fromthe subclasses. Second, a deletion fromthe superclass will
delete the data for the particular record in the subclasses as the consequence
of the referential integrity constraint.

Theimplementation forthe Subject_T classisvery similartothe implementation
in Degree_T. However, thisis notthe case for table Takes thatis derived from
the relationship between Subject_T and Student_T. The insertion has to be

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 247

done using astored procedure as is shown below. Note thatin order to insert
it, we have to make sure that the object references in the other classes have
already beeninserted.

EXECUTE Insert Takes('01234234’, ‘CSE42ADB’, 70);
EXECUTE Insert Takes('10012568’, ‘CSE42ADB’, 80);

We can check the records by retrieving the data. The code below shows the
resultof the query ontable Takes. Note that the first two attributes show the
address of the object itis referred to.

SELECT *
FROM Takes;

STUDENT SUBJECT MARKS
0000220208A1.. 0000220208D7... 70
00002202084E.. 000022020873... 80

Another piece of code below shows the implementation of deletion using the
stored procedure Delete_Takes. On completion of this method, the student
withaparticular ID who takes a particular subject will be deleted.

EXECUTE Delete Takes('01234234', ‘CSE42ADB’) ;
EXECUTE Delete Takes('10012568'‘', ‘CSE42ADB’);

User-Defined Methods Sample

Inthissection, we give an example of a user-defined implementation. Asin
generic methods, we can also make an ad hoc user-defined query and user-
defined stored procedure or function. However, we will only provide an
example for the user-defined methods that have been created previously.

Thefirstsample implementationis for Faculty T. The methodshow_partswill
display the names and the heads of the schools, departments, and research
centres given the faculty ID as the parameter.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

248 Rahayu, Taniar and Pardede

BEGIN
— Assume the parameter i1is the faculty with ID 1;
thus, the result
— shown 1is the school, department, and research
centre under faculty ID 1.

a_faculty.show parts;

END;

/

Part Name Head Name

Human Biosciences Chris Handley
Human Comm. Sci. Elizabeth Lavender
Sex, Health, and Soc. Marian Pitts
Inst. of Primary Care Hal Swerissen

PL/SQL procedure successfully completed.

The piece of code below shows the record inside the Building_Details table
before the method is executed. The next code shows the data that has been
inserted into the table after we execute the method.

SELECT *
FROM Building Details;

no rowsg selected

SELECT *
FROM Building Details;

BUILDING NAME BUILDING L
Beth Gleeson D5
Martin Building F3
Thomas Cherry D4
Physical Science 1 D5

Another sample implementationis for Office_T to display the details of the
office and the occupant given the building ID.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 249

BEGIN
— Assume that the parameter is building BB1l; thus,
the result
— shown below is all offices in building BB1.

an office.show office('BB1l’);

END;

/

Surname Office No Office Phone
Jones BG210 94792001
Zulu BG325 94791251
Stojnovski BG310 94791212
Langley BG311 94791213

Ling BG200 94792350
Husein BG215 94792341

Xin BG212 94792002
Kilby BG220 94792450

PL/SQL procedure successfully completed.

There are a few other methods that have been created in this case study.
However, we will not show all of them as the previous examples have clearly
shown how to execute the user-defined methods.

Building Case Application

In Section 7.2 we provided a problem solution that is constructed of several
small types, tables, and procedures. Despite their ability to address the
problem, they are notreally simple to use. Users will easily forget the names of
the tables and procedures, the number and the order of the parameters, and so
forth. Therefore, we need to put them together into one container that can help
users to choose the object that they want to use.

Oracle™ implements a PL/SQL container named Package that can group
proceduresand functions together. Unfortunately, Package in Oracle™ does
notrecognize objecttypes. Thus, to access member methods, we have to apply
helper stored procedures as an additional layer.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

250 Rahayu, Taniar and Pardede

Forsome operations, there will be redundancy because users need to repeat
the methods. Onthe other side, keeping them together makes the application
more user friendly. In addition, we can also make the application more
interactive by providing amenuto the users.

Like objecttype, inapackage, the user divides the process into two parts: the
declaration and the implementation or the header and the body. The code
below shows the whole implementation of this case study inside an application
name University.

General Syntax:

CREATE [OR REPLACE] PACKAGE <package schema>
— public
TYPE <type name> IS RECORD [(record attribute)];
PROCEDURE <procedure name> [(procedure
parameters)] ;

END <package names;

CREATE [OR REPLACE] PACKAGE BODY <package schemax>
— private
TYPE <type name> IS RECORD |[(record attribute)];
PROCEDURE <procedure name> [(procedure parameters)]
IS
BEGIN
<procedure body>
END <procedure names;

END <package names;

CREATE OR REPLACE PACKAGE University AS
PROCEDURE Start Program;
PROCEDURE Table Details;
PROCEDURE Method Details;

PROCEDURE Insertion(options IN NUMBER) ;
PROCEDURE Insert Campus (new campus_ location IN
VARCHAR2, new_campus_address IN VARCHAR2,

new_campus_phone IN VARCHAR2, new campus_fax IN
VARCHAR2,
new_campus_head IN VARCHAR2) ;
PROCEDURE Insert Faculty(new fac id IN VARCHAR2,
new_fac name IN VARCHAR2,
new_fac dean IN VARCHAR2) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 251

PROCEDURE Insert School (new fac id IN VARCHAR2,

new_school id IN VARCHAR2,
new_school name IN VARCHAR2, new_school head IN
VARCHAR2, new prof id IN VARCHAR2, new prof name IN
VARCHAR2, new_prof contact IN VARCHAR2,
new_prof year IN NUMBER) ;

PROCEDURE Insert Department (new fac id IN VARCHAR2,

new _dept id IN VARCHAR2,
new_dept name IN VARCHAR2, new dept head IN
VARCHAR2, new prof id IN VARCHAR2, new prof name IN
VARCHAR2, new_prof contact IN VARCHAR2,
new_prof year IN NUMBER) ;

PROCEDURE Insert Research Centre(new fac id IN
VARCHAR2, new _rc id IN VARCHAR2, new rc _name IN
VARCHAR2, new_rc head IN VARCHAR2, new unitl IN
VARCHAR2, new_unit2 IN VARCHAR2, new unit3 IN
VARCHAR2, new_unit4 IN VARCHAR2, new unit5 IN
VARCHAR2) ;

PROCEDURE Insert Building(new building id IN VARCHAR2,
new _building name IN VARCHAR2, new building location
IN VARCHAR2, new building level IN NUMBER,
new_ campus_location IN VARCHAR2, new_ faculty id IN
VARCHAR2) ;

PROCEDURE Insert Office(new building id IN VARCHAR2,
new office no IN VARCHAR2, new office phone IN
VARCHAR2) ;

PROCEDURE Insert Classroom(new building id IN VARCHAR2,
new _class no IN VARCHAR2, new class capacity IN
NUMBER) ;

PROCEDURE Insert Lab(new building id IN VARCHAR2,
new lab no IN VARCHAR2, new lab capacity IN NUMBER,
new lab equipment 1 IN VARCHAR2, new lab equipment 2
IN VARCHAR2, new_lab equipment 3 IN VARCHAR2,
new lab equipment 4 IN VARCHAR2, new lab equipment 5
IN VARCHAR2) ;

PROCEDURE Insert Degree (new degree id IN VARCHAR2,
new_degree name IN VARCHAR2, new _degree length IN
VARCHAR2, new_ degree prerequisite IN VARCHAR2,
new faculty id IN VARCHAR2) ;

PROCEDURE Insert Person(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2,
new person fname IN VARCHAR2, new person title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new campus_location IN VARCHAR2) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

252 Rahayu, Taniar and Pardede

PROCEDURE Insert Student (new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER) ;

PROCEDURE Insert Admin(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2,
new_admin title IN VARCHAR2, new comp skills IN
VARCHAR2, new office skills IN VARCHAR2) ;

PROCEDURE Insert Technician(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2, new_ tech title
IN VARCHAR2, new_tech skills IN VARCHAR2) ;

PROCEDURE Insert Senior Lecturer (new person id IN
VARCHAR2, new_person_ surname IN VARCHAR2,
new person fname IN VARCHAR2, new person title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new_campus_ location IN VARCHAR2,
new building id IN VARCHAR2, new office no IN
VARCHAR2, new_area IN VARCHAR2, new _no phd IN
NUMBER, new _no master IN NUMBER, new no honours IN
NUMBER) ;

PROCEDURE Insert Associate Lecturer (new person_ id IN
VARCHAR2, new_person_surname IN VARCHAR2,
new person fname IN VARCHAR2, new person title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new_campus_ location IN VARCHAR2,
new building id IN VARCHAR2, new office no IN
VARCHAR2, new_area IN VARCHAR2, new no_ honours IN
NUMBER, new year join IN NUMBER) ;

PROCEDURE Insert Tutor (new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 253

new_person_address IN VARCHAR2, new_person_ phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2, new year IN
NUMBER, new_no_hours IN NUMBER, new_rate IN
NUMBER) ;

PROCEDURE Insert Enrolls In(new pers_id IN VARCHAR2,
new _deg id IN VARCHAR2) ;

PROCEDURE Insert Subject (new_subject id IN VARCHAR2,
new_subject name IN VARCHAR2, new subject credit IN
VARCHAR2, new_subject prereq IN VARCHAR2,
new person id IN VARCHAR2) ;

PROCEDURE Insert Takes(new pers id IN VARCHAR2, new subj id
IN VARCHAR2, new marks IN NUMBER) ;

PROCEDURE Deletion(options IN NUMBER) ;
PROCEDURE Delete Campus (deleted campus location IN

VARCHAR2) ;
PROCEDURE Delete Faculty(deleted fac id IN VARCHAR2) ;
PROCEDURE Delete School (deleted fac id IN VARCHAR2) ;
PROCEDURE Delete Department (deleted fac id IN
VARCHAR2) ;
PROCEDURE Delete Research centre(deleted fac id IN
VARCHAR2) ;
PROCEDURE Delete Building(deleted building id IN
VARCHAR2) ;
PROCEDURE Delete Office(deleted building id IN
VARCHAR2, deleted office no IN VARCHAR2) ;
PROCEDURE Delete Classroom(deleted building id IN
VARCHAR2, deleted class no IN VARCHAR2);
PROCEDURE Delete Lab(deleted building id IN VARCHAR2,

deleted lab no IN VARCHAR2) ;

PROCEDURE

Delete Degree(deleted degree id IN VARCHAR2) ;

PROCEDURE Delete Person(deleted person id IN VARCHAR2) ;
PROCEDURE Delete Student (deleted person id IN

VARCHAR2) ;

PROCEDURE Delete Admin(deleted person id IN VARCHAR2) ;
PROCEDURE Delete Technician(deleted person id IN
VARCHAR2) ;

PROCEDURE Delete Senior Lecturer (deleted person id IN
VARCHAR2) ;

PROCEDURE Delete Associate Lecturer (deleted person id

IN VARCHAR2) ;

PROCEDURE
PROCEDURE

Delete Tutor(deleted person id IN VARCHAR2) ;
Delete Enrolls In(deleted pers id IN VARCHAR2,

deleted deg id IN VARCHAR2);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

254 Rahayu, Taniar and Pardede

PROCEDURE Delete Subject (deleted subject id IN

VARCHAR2) ;

PROCEDURE Delete Takes (deleted pers id IN VARCHAR2,
deleted subj id IN VARCHAR2) ;

END University;
/

CREATE OR REPLACE PACKAGE BODY University AS
PROCEDURE Start Program AS

BEGIN
DBMS OUTPUT.PUT LINE ('

")
DBMS OUTPUT.PUT LINE('For insertion, type “EXECUTE
University.Insertion(“table no”);”’);
DBMS OUTPUT.PUT LINE (*For deletion, type “EXECUTE

University.Deletion (“table no”);"”");
DBMS OUTPUT.PUT LINE('For retrieval, type “EXECUTE
University.Retrieval (“procedure no”);”');

DBMS OUTPUT.PUT LINE ('

")
DBMS OUTPUT.PUT LINE(‘'To check the table no, type
“EXECUTE University.Table Details;”’);
DBMS OUTPUT.PUT LINE(‘'To check the procedure no,
type “EXECUTE University.Procedure Details;”’);
END Start Program;

PROCEDURE Table Details AS

BEGIN
DBMS OUTPUT.PUT LINE (
DBMS OUTPUT.PUT LINE(‘'—Table Name———');
DBMS OUTPUT.PUT LINE (' ") ;
DBMS OUTPUT.PUT LINE ('
(
(
(

\ l),
]

(1) Campus’);
DBMS OUTPUT.PUT LINE('(2) Faculty’);
DBMS OUTPUT.PUT LINE('(3) School (Nested Table)’);
DBMS OUTPUT.PUT LINE('(4) Department (Nested
Table) ') ;
DBMS OUTPUT.PUT LINE('(5) Research Centre (Nested
Table) ') ;
DBMS OUTPUT.PUT LINE('(6) Building’);
DBMS OUTPUT.PUT LINE('(7) Office’);
DBMS OUTPUT.PUT LINE('(8) Classroom’);
DBMS OUTPUT.PUT LINE('(9) Lab’);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 255

DBMS OUTPUT.PUT LINE (' Degree’) ;

DBMS OUTPUT.PUT LINE (' Person’) ;

DBMS OUTPUT.PUT LINE (' Staff’);

DBMS OUTPUT.PUT LINE (' Student’) ;

DBMS OUTPUT.PUT LINE (' Admin’) ;

DBMS OUTPUT.PUT LINE (' Technician’) ;
Lecturer’) ;

\

DBMS OUTPUT.PUT LINE
DBMS OUTPUT.PUT LINE

Senior Lecturer’) ;
Associate Lecturer’);

\

(*(10)
(*(11)
(*(12)
(*(13)
(" (14)
(*(15)
DBMS_OUTPUT.PUT LINE (' (16)
(*(17)
(*(18)
(*(19)
(*(20)
(*(21)
(*(22)

DBMS OUTPUT.PUT LINE (' Tutor’) ;

DBMS OUTPUT.PUT LINE (' Enrolls_In’);
DBMS OUTPUT.PUT LINE (' Subject’) ;
DBMS OUTPUT.PUT LINE (' Takes'’) ;

END Table Details;
PROCEDURE Procedure Details AS

BEGIN
DBMS OUTPUT.PUT LINE ('
F
DBMS OUTPUT.PUT LINE (‘'—Frequent Retrieval Procedure
Name—') ;
DBMS OUTPUT.PUT LINE ('
F

DBMS OUTPUT.PUT LINE('(1) Show Professor’);

DBMS OUTPUT.PUT LINE('(2) Show Building Details’);
DBMS OUTPUT.PUT LINE('(3) Show Office’);

DBMS OUTPUT.PUT LINE('(4) Show Degree Record’);
DBMS OUTPUT.PUT LINE('(5) Show Lecturer’);

END Procedure Details;

PROCEDURE Insertion(options IN NUMBER) AS
BEGIN
DBMS OUTPUT.PUT LINE ('
F
IF options = 1 THEN
DBMS OUTPUT.PUT LINE('Insert into Campus’) ;
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Insert Campus (new_campus location,
new_campus_address, new_campus_phone,
new_campus_fax, new campus_head) ;”’) ;
ELSIF options = 2 THEN
DBMS OUTPUT.PUT LINE(‘'Insert into Faculty’);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

256 Rahayu, Taniar and Pardede

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Faculty (new_fac id,
new_fac name, new fac dean);”');

ELSIF options = 3 THEN
DBMS OUTPUT.PUT LINE('Insert into School Nested
Table’) ;

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert School (new fac id,
new_school id, new school name, new_ school head,
new prof id, new prof name, new prof contact,
new_prof year);”’);
ELSIF options = 4 THEN
DBMS OUTPUT.PUT LINE('Insert into Department
Nested Table’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Department (new fac id,
new dept id, new dept name, new dept head,
new prof id, new prof name, new prof contact,
new_prof year);”’);
ELSIF options = 5 THEN
DBMS OUTPUT.PUT LINE('Insert into Research Centre
Nested Table’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Research Centre(new fac_ id,
new _rc_id, new_rc name, new_rc_head, new unitl,
new _unit2, new unit3, new unit4, new unit5);”’);
ELSIF options = 6 THEN
DBMS OUTPUT.PUT LINE('Insert into Building’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Building(new building id,
new _building name, new building location,
new _building level, new campus_ location,
new_ faculty id);”’);
ELSIF options = 7 THEN
DBMS OUTPUT.PUT LINE('Insert into Office’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Office(new building id,
new office no, new office phone);”’);
ELSIF options = 8 THEN
DBMS OUTPUT.PUT LINE('Insert into Classroom’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Classroom(new_building id,
new class no, new class capacity);”’);
ELSIF options = 9 THEN
DBMS OUTPUT.PUT LINE('Insert into Lab’);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 257

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Lab(new building id, new lab no,
new lab capacity, new lab equipment 1,

new lab equipment 2, new lab equipment 3,

new lab equipment 4, new lab equipment 5);”');

ELSIF options = 10 THEN

DBMS OUTPUT.PUT LINE('Insert into Degree’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Degree (new degree id,
new_degree name, new_degree length,

new degree prerequisite, new faculty id);”’);

ELSIF options = 11 THEN

DBMS OUTPUT.PUT LINE('Insert into Person’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Degree (new person id,
new_person_surname, new person fname,

new person title, new person address,

new person phone, new person postcode,
new_campus_location);”’);

ELSIF options = 12 THEN

DBMS OUTPUT.PUT LINE('Insert into Staff’);
DBMS OUTPUT.PUT LINE('You have to insert from
the child class’);

ELSIF options = 13 THEN

DBMS OUTPUT.PUT LINE('Insert into Student’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Student (new person id,
new_person_surname, new person fname,

new person title, new person address,

new person phone, new person postcode,

new_ campus_location, new year);”’');

ELSIF options = 14 THEN

DBMS OUTPUT.PUT LINE('Insert into Admin’);

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Admin(new person id,
new_person_surname, new person fname,

new person title, new person address,

new person phone, new person postcode,

new_ campus_location, new building id,

new office no, new admin title, new comp skills,
new office skills);”’);

ELSIF options = 15 THEN

DBMS OUTPUT.PUT LINE('Insert into Technician’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Technician(new person id,

new person surname, new person fname,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

258 Rahayu, Taniar and Pardede

new person title, new person address,

new person phone, new person postcode,

new_ campus_location, new building id,

new office no, new tech title,

new tech skills);”’);
ELSIF options = 16 THEN

DBMS OUTPUT.PUT LINE('Insert into Lecturer’);

DBMS OUTPUT.PUT LINE('You have to insert from
the child class’);

ELSIF options = 17 THEN
DBMS OUTPUT.PUT LINE(‘'Insert into Senior
Lecturer’) ;

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Senior Lecturer (new person_ id,
new_person_surname, new person_ fname,

new person title, new person address,

new person phone, new person postcode,

new_ campus_location, new building id,

new office no, new area, new no phd,
new_no_master, new_no_honours);”');

ELSIF options = 18 THEN
DBMS OUTPUT.PUT LINE('Insert into Associate
Lecturer’) ;

DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Insert Associate Lecturer (new person id,
new_person_surname, new person fname,
new person title, new person address,
new person phone, new person postcode,
new_ campus_location, new building id,
new office no, new area, new_no honours,
new_year join);”’);

ELSIF options = 19 THEN
DBMS OUTPUT.PUT LINE('Insert into Tutor’);
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Insert Tutor (new person id,
new_person_surname, new person fname,
new person title, new person address,
new person phone, new person postcode,
new_ campus_location, new building id,
new office no, new year, new no hours,
new_rate);”');

ELSIF options = 20 THEN
DBMS OUTPUT.PUT LINE('Insert into Enrolls In’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Insert Enrolls In(new pers id,
new _deg 1id);"’);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 259

ELSIF options = 21 THEN
DBMS OUTPUT.PUT LINE('Insert into Subject’);
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Insert Subject (new_subject id,
new_subject name, new_subject credit,
new_subject prereq, new person id);”’);

ELSIF options = 22 THEN
DBMS OUTPUT.PUT LINE('Insert into Takes’);
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Insert Takes (new pers id, new subj id,
new_marks) ;"’) ;

ELSE
DBMS OUTPUT.PUT LINE ('Wrong Option’);

END IF;

END Insertion;

- #1

PROCEDURE Insert Campus (new campus_ location IN
VARCHAR2, new_campus_address IN VARCHAR2,
new_campus_phone IN VARCHAR2, new campus_fax IN
VARCHAR2,
new_campus_head IN VARCHAR2) IS

BEGIN
INSERT INTO Campus
VALUES (new_campus_location, new_ campus_address,
new_campus_phone, new_campus_fax,
new_campus_head) ;
END Insert Campus;

- #2
PROCEDURE Insert Faculty(new fac id IN VARCHAR2,
new_fac name IN VARCHAR2,

new_fac dean IN VARCHAR2) IS

BEGIN
INSERT INTO Faculty
VALUES (new fac id, new fac name, new fac dean,
School Table T (School T (NULL,NULL,NULL,NULL)),
Department Table T (Department T (NULL,NULL, NULL,NULL)),
Research Centre Table T(Research Centre T (NULL,NULL,NULL,NULL))) ;
END Insert Faculty;

— #3
PROCEDURE Insert School (new fac id IN VARCHAR2,
new_school id IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

260 Rahayu, Taniar and Pardede

new_school name IN VARCHAR2, new_school head IN
VARCHAR2, new prof id IN VARCHAR2, new prof name IN
VARCHAR2, new_prof contact IN VARCHAR2,

new_prof year IN NUMBER) IS

BEGIN
INSERT INTO THE
(SELECT a. school
FROM Faculty a
WHERE a.fac_id = new_fac id)
VALUES (new_school id, new_school name,
new_school head,
Professors (Professor T(new prof id, new prof name,
new_prof contact, new prof year)));
END Insert School;

— #4
PROCEDURE Insert Department (new fac id IN VARCHAR2,
new dept id IN VARCHAR2,
new_dept name IN VARCHAR2, new dept head IN
VARCHAR2, new prof id IN VARCHAR2, new prof name IN
VARCHAR2, new_prof contact IN VARCHAR2,
new_prof year IN NUMBER) IS

BEGIN

INSERT INTO THE

(SELECT a.department
FROM Faculty a
WHERE a.fac_id = new_fac id)

VALUES (new dept id, new dept name, new_ dept head,
Professors (Professor T(new prof id, new prof name,
new_prof contact, new prof year)));

END Insert Department;

— #5

PROCEDURE Insert Research Centre(new fac id IN
VARCHAR2, new _rc id IN VARCHAR2, new rc _name IN
VARCHAR2, new_rc head IN VARCHAR2, new unitl IN
VARCHAR2, new_unit2 IN VARCHAR2, new unit3 IN
VARCHAR2, new_unit4 IN VARCHAR2, new unit5 IN
VARCHAR2) IS

BEGIN
INSERT INTO THE
(SELECT a.research centre
FROM Faculty a
WHERE a.fac_id = new_fac id)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 261

VALUES (new rc_id, new_rc name, new rc head,
Units(new _unitl, new unit2, new unit3, new unit4,
new _units));

END Insert Research Centre;

— #6

PROCEDURE Insert Building(new building id IN VARCHAR2,
new _building name IN VARCHAR2, new building location
IN VARCHAR2, new building level IN NUMBER,
new campus_location IN VARCHAR2, new_ faculty id IN
VARCHAR2) IS

campus_temp REF Campus T;
faculty temp REF Faculty T;

BEGIN
SELECT REF (a) INTO campus_temp
FROM Campus a
WHERE a.campus location = new campus_location;

SELECT REF(b) INTO faculty temp
FROM Faculty Db
WHERE b.fac id = new faculty id;

INSERT INTO Building
VALUES (new_building id, new building name,
new building location, new building level,
campus_temp, faculty temp);
END Insert Building;

— #7

PROCEDURE Insert Office(new building id IN VARCHAR2,
new office no IN VARCHAR2, new office phone IN
VARCHAR2) IS

BEGIN
INSERT INTO Office
VALUES (new_building id, new office no,
new office phone);

END Insert Office;

— #8

PROCEDURE Insert Classroom(new building id IN VARCHAR2,
new _class no IN VARCHAR2, new class capacity IN
NUMBER) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

262 Rahayu, Taniar and Pardede

BEGIN
INSERT INTO Classroom
VALUES (new_building id, new class no,
new class_ capacity) ;

END Insert Classroom;

— #9

PROCEDURE Insert Lab(new building id IN VARCHAR2,
new _lab no IN VARCHAR2, new lab capacity IN NUMBER,
new lab equipment 1 IN VARCHAR2, new lab equipment 2
IN VARCHAR2, new_lab equipment 3 IN VARCHAR2,
new lab equipment 4 IN VARCHAR2, new lab equipment 5
IN VARCHAR2) IS

BEGIN
INSERT INTO Lab
VALUES (new_building id, new lab no,
new lab capacity, Equipments (new lab equipment 1,
new_lab equipment 2, new lab equipment 3,
new lab equipment 4, new lab equipment 5));
END Insert Lab;

— #10

PROCEDURE Insert Degree (new degree id IN VARCHAR2,
new_degree name IN VARCHAR2, new degree length IN
VARCHAR2, new degree prerequisite IN VARCHAR2,
new faculty id IN VARCHAR2) IS

a_degree Degree T :=
Degree_ T (NULL, NULL, NULL, NULL, NULL) ;

BEGIN
a_degree.insert degree (new_degree id,
new_degree name, new_degree length,
new degree prerequisite, new faculty id);
END Insert Degree;

— #11
PROCEDURE Insert Person(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2,

new person fname IN VARCHAR2, new person title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new campus_location IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 263

a person Person T :=
Person T (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL) ;

BEGIN
a_person.insert person (new person id,
new_person_surname, new_person_ fname,
new person title, new person address,
new_person_phone, new person postcode,
new campus_location) ;
END Insert Person;

— #13 (no procedure for Option 12)

PROCEDURE Insert Student (new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER) IS

a_student Student T := Student T (NULL,NULL) ;

BEGIN
a_student.insert student (new person id,
new_person_surname, new person fname,
new person title, new person address,
new person phone, new person postcode,
new campus_location, new_year) ;
END Insert Student;

— #14

PROCEDURE Insert Admin(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2,
new_admin title IN VARCHAR2, new comp skills IN
VARCHAR2, new office skills IN VARCHAR2) IS

an _admin Admin T := Admin T (NULL, NULL,NULL, NULL) ;
BEGIN
an_admin.insert admin (new person id,
new _person_surname, new person_ fname,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

264 Rahayu, Taniar and Pardede

new person title, new person address,
new person phone, new person postcode,
new_ campus_location, new building id,
new office no, new admin title, new comp skills,
new office skills);
END Insert Admin;

— #15

PROCEDURE Insert Technician(new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2, new_ tech title
IN VARCHAR2, new_tech skills IN VARCHAR2) IS

a_technician Technician T :=
Technician T (NULL, NULL,NULL) ;

BEGIN
a_technician.insert technician (new_person_ id,
new_person_surname, new person fname,
new person title, new person address,
new person phone, new person postcode,
new_ campus_location, new building id,
new office no, new tech title, new_tech skills);
END Insert Technician;

— #17 (no procedure for Option 16)

PROCEDURE Insert Senior Lecturer (new person id IN
VARCHAR2, new_person_surname IN VARCHAR2,
new person fname IN VARCHAR2, new person title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new_ campus_ location IN VARCHAR2,
new building id IN VARCHAR2, new office no IN
VARCHAR2, new_area IN VARCHAR2, new _no phd IN
NUMBER, new _no master IN NUMBER, new no honours IN
NUMBER) IS

a_senior lect Senior Lecturer T :=
Senior Lecturer T (NULL,NULL,NULL,NULL) ;

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 265

a_senior lect.insert senior lecturer (new person id,

new_person_surname, new person fname,

new person title, new person address,

new person phone, new person postcode,

new_ campus_location, new building id,

new office no, new area, new no phd,
new_no_master, new_no_honours) ;

END Insert Senior Lecturer;

— #18

PROCEDURE Insert Associate Lecturer (new person id IN
VARCHAR2, new_person_surname IN VARCHAR2,
new person fname IN VARCHAR2, new person title IN
VARCHAR2, new person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new person postcode
IN NUMBER, new campus_location IN VARCHAR2,
new building id IN VARCHAR2, new office no IN
VARCHAR2, new_area IN VARCHAR2, new no_ honours IN
NUMBER, new year join IN NUMBER) IS

a_associate lect Associate Lecturer T :=
Associate Lecturer T (NULL,NULL,NULL) ;

BEGIN
a_associate lect.insert associate lecturer

(new _person_id, new_person_ surname,
new person fname, new person title,
new_person_address, new_person_phone,
new person postcode, new campus_location,
new building id, new office no, new area,
new no_honours, new_year join);

END Insert Associate Lecturer;

— #19

PROCEDURE Insert Tutor (new person id IN VARCHAR2,
new_person_surname IN VARCHAR2, new person_ fname IN
VARCHAR2, new person title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_ phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new building id IN
VARCHAR2, new office no IN VARCHAR2, new year IN
NUMBER, new_no_hours IN NUMBER, new_rate IN
NUMBER) IS

a_tutor Tutor T := Tutor T (NULL,NULL,NULL) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

266 Rahayu, Taniar and Pardede

BEGIN
a_tutor.insert tutor (new_person id,
new_person_surname, new person fname,
new person title, new person address,
new person phone, new person postcode,
new_ campus_location, new building id,
new office no, new year, new no hours, new rate);
END Insert Tutor;

— #20
PROCEDURE Insert Enrolls In(new pers_id IN VARCHAR2,
new deg id IN VARCHAR2) IS

student temp REF Student T;
degree temp REF Degree T;

BEGIN
SELECT REF (a) INTO student temp
FROM Student a
WHERE a.pers _id = new pers id;

SELECT REF (b) INTO degree temp
FROM Degree Db
WHERE b.deg id = new_deg id;

INSERT INTO Enrolls In
VALUES (student temp, degree temp) ;
END Insert Enrolls In;

— #21

PROCEDURE Insert Subject (new_subject id IN VARCHAR2,
new_subject name IN VARCHAR2, new subject credit IN
VARCHAR2, new_subject prereq IN VARCHAR2,
new person id IN VARCHAR2) IS

a_subject Subject T :=
Subject T (NULL,NULL, NULL, NULL, NULL) ;

BEGIN
a_subject.insert subject (new_subject id,
new_subject name, new_subject credit,
new_subject prereq, new person id) ;
END Insert Subject;

— #22

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 267

PROCEDURE Insert Takes(new pers id IN VARCHAR2, new subj id
IN VARCHAR2, new marks IN NUMBER) IS

student temp REF Student T;
subject temp REF Subject T;

BEGIN
SELECT REF (a) INTO student temp
FROM Student a
WHERE a.pers id = new pers id;

SELECT REF (b) INTO subject temp
FROM Subject b
WHERE b.subj id = new subj id;

INSERT INTO Takes
VALUES (student temp, subject temp, new marks) ;
END Insert Takes;

PROCEDURE Deletion(options IN NUMBER) AS

BEGIN
DBMS OUTPUT.PUT LINE ('
")
IF options = 1 THEN
DBMS OUTPUT.PUT LINE (‘'Delete from Campus’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Campus (deleted campus
location) ;”") ;
ELSIF options = 2 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Faculty’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Faculty(deleted fac i1id);”’);
ELSIF options = 3 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From School’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete School (deleted fac id);”’);
ELSIF options = 4 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Department’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Department (deleted fac id);”’);

ELSIF options = 5 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Research
Centre’) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

268 Rahayu, Taniar and Pardede

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Reseach Centre(deleted fac
id) ;")
ELSIF options = 6 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Building’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Building(deleted building
id) ;") ;
ELSIF options = 7 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Office’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Office(deleted building id,
deleted office no);”’);
ELSIF options = 8 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Classroom’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Classroom(deleted building id,
deleted class no);”"’);
ELSIF options = 9 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Lab’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Lab(deleted building id,
deleted lab no);”’);
ELSIF options = 10 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Degree’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Degree(deleted degree 1id);”’);
ELSIF options = 11 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Person’) ;
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Person(deleted person 1id);”’);
ELSIF options = 12 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Staff’);
DBMS OUTPUT.PUT LINE(‘'You have to delete from
the child classes’) ;
ELSIF options = 13 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Student’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Student (deleted person id);”’);
ELSIF options = 14 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Admin’);
DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Admin(deleted person id);”’);
ELSIF options = 15 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Technician’);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 269

DBMS OUTPUT.PUT LINE (‘'Type “EXECUTE
University.Delete Technician(deleted person
id) ;")
ELSIF options = 16 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Lecturer’);
DBMS OUTPUT.PUT LINE(‘'You have to delete from
the child classes’);

ELSIF options = 17 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Senior
Lecturer’) ;

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE University.
Delete Senior Lecturer(deleted person 1id);”’);

ELSIF options = 18 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Associate
Lecturer’) ;

DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Delete Associate Lecturer (deleted
person id);"');
ELSIF options = 19 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Tutor');
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Delete Tutor (deleted person id);”’);
ELSIF options = 20 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Enrolls In’);
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Delete Enrolls In(deleted person id,
deleted degree 1id);"’);
ELSIF options = 21 THEN
DBMS OUTPUT.PUT LINE(‘'Delete From Subject’);
DBMS OUTPUT.PUT LINE ('Type “EXECUTE
University.Delete Subject (deleted subject

id) ;")
ELSIF options = 22 THEN
DBMS OUTPUT.PUT LINE (‘'Delete From Takes'’);
DBMS OUTPUT.PUT LINE('Type “EXECUTE

University.Delete Enrolls In(deleted person 1id,
deleted subject id);”’);
ELSE
DBMS OUTPUT.PUT LINE ('Wrong Option’);
END IF;
END Deletion;

- #1
PROCEDURE Delete Campus (deleted campus location IN
VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

270 Rahayu, Taniar and Pardede

BEGIN
DELETE FROM Campus
WHERE campus location = deleted campus location;

END Delete Campus;

- #2
PROCEDURE Delete Faculty(deleted fac id IN VARCHAR2)
IS

BEGIN

DELETE FROM Faculty

WHERE fac_id = deleted fac id;
END Delete Faculty;

— #3
PROCEDURE Delete School (deleted fac id IN VARCHAR2) IS

BEGIN
DELETE FROM THE
(SELECT a.school
FROM Faculty a
WHERE a.fac id = deleted fac id);
END Delete School;

— #4
PROCEDURE Delete Department (deleted fac id IN VARCHAR2)
Is

BEGIN
DELETE FROM THE
(SELECT a.department
FROM Faculty a
WHERE a.fac id = deleted fac id);
END Delete Department;

— #5
PROCEDURE Delete Research centre(deleted fac id IN
VARCHAR2) IS

BEGIN
DELETE FROM THE
(SELECT a.research centre
FROM Faculty a
WHERE a.fac id = deleted fac id);
END Delete Research centre;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 271

— #6
PROCEDURE Delete Building(deleted building id IN
VARCHAR2) IS

BEGIN

DELETE FROM Building

WHERE bld id = deleted building id;
END Delete Building;

— #7
PROCEDURE Delete Office(deleted building id IN
VARCHAR2, deleted office no IN VARCHAR2) IS

BEGIN
DELETE FROM Office
WHERE bld id = deleted building id
AND off no = deleted office no;
END Delete Office;

— #8
PROCEDURE Delete Classroom(deleted building id IN
VARCHAR2, deleted class no IN VARCHAR2) IS

BEGIN
DELETE FROM Classroom
WHERE bld id = deleted building id
AND class no = deleted class _no;
END Delete Classroom;

— #9
PROCEDURE Delete Lab(deleted building id IN VARCHAR2,
deleted lab no IN VARCHAR2) IS

BEGIN
DELETE FROM Lab
WHERE bld id = deleted building id
AND lab no = deleted lab no;

END Delete Lab;

— #10
PROCEDURE Delete Degree(deleted degree id IN VARCHAR2)
Is

a_degree Degree T :=
Degree_ T (NULL, NULL, NULL, NULL, NULL) ;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

272 Rahayu, Taniar and Pardede

BEGIN
a_degree.delete degree(deleted degree id) ;
END Delete Degree;

— #11
PROCEDURE Delete Person(deleted person id IN VARCHAR2)
IS

a person Person T :=
Person T (NULL,NULL, NULL, NULL, NULL, NULL, NULL, NULL) ;

BEGIN
a_person.delete person(deleted person id) ;
END Delete Person;

— #13 (no procedure #12)
PROCEDURE Delete Student (deleted person id IN VARCHAR2)
IS

a_student Student T := Student T (NULL,NULL) ;
BEGIN

a_student.delete student (deleted person id) ;
END Delete Student;

— #14

PROCEDURE Delete Admin(deleted person id IN VARCHAR2)
IS

an _admin Admin T := admin T (NULL,NULL,NULL, NULL) ;
BEGIN

an_admin.delete admin(deleted person id);
END Delete Admin;

— #15
PROCEDURE Delete Technician(deleted person id IN
VARCHAR2) IS

a_technician Technician T :=
technician T (NULL,NULL,NULL) ;

BEGIN
a_technician.delete technician(deleted person id);
END Delete Technician;

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 273

— #17 (no procedure #16)
PROCEDURE Delete Senior Lecturer (deleted person id IN
VARCHAR2) IS

a_senior lecturer Senior lecturer T :=
senior lecturer T (NULL,NULL,NULL,NULL) ;

BEGIN
a_senior lecturer.delete senior lecturer (deleted person id);
END Delete Senior Lecturer;

— #18
PROCEDURE Delete Associate Lecturer (deleted person id
IN VARCHAR2) IS

a_associate lecturer Associate lecturer T :=
associate lecturer T (NULL,NULL,NULL) ;

BEGIN
a_associate lecturer.delete associate lecturer (deleted person id) ;
END Delete Associate Lecturer;

— #19

PROCEDURE Delete Tutor (deleted person id IN VARCHAR2)
AS

a_tutor Tutor T := tutor_ T (NULL,NULL,NULL) ;

BEGIN

a_tutor.delete tutor(deleted person id) ;
END Delete Tutor;

— #20
PROCEDURE Delete Enrolls In(deleted pers id IN VARCHAR2,
deleted deg id IN VARCHAR2) IS

BEGIN
DELETE FROM Enrolls In
WHERE Enrolls In.student IN
(SELECT REF (a)
FROM Student a
WHERE a.pers id = deleted pers id)
AND Enrolls In.degree IN
(SELECT REF (b)
FROM Degree Db
WHERE b.deg id = deleted deg id);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

274 Rahayu, Taniar and Pardede

END Delete Enrolls In;

— #21
PROCEDURE Delete Subject (deleted subject id IN
VARCHAR2) IS

a_subject Subject T :=
subject T (NULL,NULL, NULL, NULL, NULL) ;

BEGIN
a_subject.delete subject (deleted subject id);
END Delete Subject;

— #22
PROCEDURE Delete Takes(deleted pers id 1IN VARCHAR2,
deleted subj id IN VARCHAR2) IS

BEGIN
DELETE FROM Takes
WHERE Takes.student IN
(SELECT REF (a)
FROM Student a
WHERE a.pers id = deleted pers id)
AND Takes.subject IN
(SELECT REF (b)
FROM Subject b
WHERE b.subj id = deleted subj id);
END Delete Takes;

END University;
/

Running apackage is very similar to running astored procedure or function. We
show anexample of an execution and the results of the execution of this retailer
application below. Notice that by using a package, we can add some lines to
help usersinusingthe application. The interaction is notas straightforward as
inaprogramming language because the package and the procedure in SQL do
notallow user inputduring their executions. Nevertheless, the line provided
inside the procedures gives guidance to users on what procedures to use.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University Case Study 275

General Syntax:

EXECUTE <package name>.<object names;
— The object 1is the stored procedures inside the

package.

EXECUTE University.Start Program;

For insertion, type “EXECUTE
University.Insertion(“table no”);
For deletion, type “EXECUTE University.Deletion
(“table no”) ;

For retrieval, type EXECUTE University.Retrieval
(“procedure no”) ;

"

To check the table no, type “EXECUTE
University.Table Details;”

To check the procedure no, type “EXECUTE
University.Procedure Details;”

PL/SQL procedure successfully completed.

Summary

Inthis chapter we have demonstrated acomplete walk-through of auniversity
case study. We have shown how we build each object type, table, and generic
and user-defined member method. We then created the links between those
types and tables, and instantiated the tables with some data. We have also
shown how we can run user-defined queries to those created tables.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

276 Rahayu, Taniar and Pardede

Chapter VIII

Retailer Case Study

Inthis chapter we will demonstrate the usage of development tools provided
by Oracle™ Developer. The tools help users create forms, queries, projects,
and other applications needed for practical purposes. Notice that we use
Oracle™ Developer 6.0 for this chapter. Newer versions will have more
features. Before demonstrating the usage of Oracle™ Developer, we will
presentanother case study whose database has to be developed first.

Problem Description

National Ltd. isamajor retail-chain company. Being the market leader inthe
retail industry, National has been urged to give extraattention to its database
system. The excellence of the database system helps National in controlling its
inventory better, in providing better service to the customer before and after
transactions, and in maintaining its huge collection of internal organizational
data.

Currently, National has six major retail companies under it. Three of them
concentrate on food and daily goods, which are called Company Type 1, and
the other three focus their business on clothing, housing furniture, and appli-
ances, which are called Company Type 2. Figure 8.1 shows the details for each
company.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 277

Figure 8.1. Company table

Company
Comp_ID Comp Name | Comp_ Address Comp_Phone Comp_Fax Comp_Type

1 OZ Buyer 20 Russel St. 0298394000 0298398371 1
Sydney 2000 0298394005
1800489000

2 Goodies 50 Collins St. 0394255000 0394250005 1
Melbourne 3000 0394255005
1800900000

3 Super Mart 6/1 George St. 0782349000 0782340005 1
Brishane 4000 0782349005
1800521325

4 Housemate 17/2 Vince St. 0292000001 0292000000 2
Sydney 2000 0292000002
1800023001

5 Piglet 10 Bourke St 0398300000 0398300005 2
Melbourne 3000 0398300001
1800876001

6 Liz and Neil 5 Lonsdale St 0398301000 0398601005 2
Melbourne 3000 0398301001
1800876005

While the first three are Type 1 companies that are segmented based on the
operational state, the lastthree are Type 2 companies that are segmented based
onthe income of the market. Among Company Type 1, OZ Buyer operates in
NSW and ACT, Goodies covers VIC, SA, and TAS, while Super Mart hasa
very wide operation area from QLD, NT, and WA. Among the other three
companies, Housemate is in the lower market, Pigletis inthe middle market,
and Liz and Neil is in the upper market. The data stored in this database is
showninFigure 8.2.

Asthe size of each company has expanded tremendously in the last 5 years,
National has decided to have different shares listed for each company. The
information about the shareholders is kept in the database system, which

Figure 8.2. Company Type tables

Company Type 1 Company Type 2
Comp_ID Type_Desc Area Comp_ID Type Desc Market
1 Food and Daily | NSW 4 Clothing, Furniture, Lower
Goods ACT and Appliances
2 Food and Daily | VIC 5 Clothing, Furniture, Middle
Goods SA and Appliances
TAS
3 Food and Daily | QLD 6 Clothing, Furniture, Upper
Goods NT and Appliances
WA

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

278 Rahayu, Taniar and Pardede

includes each shareholder’s ID, name, address, and telephone number. As
each company has been listed separately, a shareholder can have shares in
more than one company. Therefore, the database also keeps the record of the
share amountthat each shareholder has ineach company. Examples of the data
relating to shareholdersare shown in Figure 8.3.

Each company has also stored information about its management personnel.
This includes the management employee’s ID, name, address, telephone
number, and managementtype (whether he or she isadirector oramanager).
Foreachdirector, there isinformation about bonuses, while for each manager,
there isinformation onthe managerial type and yearly salary. A person can be
amember of management for one, and only one, company. A personcanbea
director and amanager at the same time.

Each company has a large number of stores nationwide. Some of the basic data
regarding the storesare shown in Figure 8.5.

Eachstore isdivided into several departments. For example, inall OZ Buyer
stores, there are delis, bakeries, drink sections, and so forth. For Housemate

Figure 8.3. Shareholders and Own_Shares tables

Shareholders
Sholders_ID Sholders_Name Sholders_Address Sholders Phone
100 Judith Maxwell 40 Pinnacles Rd Melbourne 3000 0393450293
200 lan Hobbes 2 Red Oak Ave Hobart 7000 0362231658
Own_Shares
Sholders ID | Comp_ID Share_Amount
100 1 1000
100 2 250
200 1 2500

Figure 8.4. Management, Director, and Manager tables

Manag ID | M; Name Manag_Address Manag_Phone Comp_ID
1001 Kunio Takahashi 20 Avondale Cr. 0296101024 1
Darlinghurst 2010
1002 Lucia Zanetti 5 Noel St 0290125846 1
Double Bay 2028
1003 Stanley Mann 2/2 Ross St Mascot 2020 | 0295211110 1
Director M
Manag ID | Bonus Manag_ID Manag_Type Yearly Salary
1001 5% 1001 Information System 100,000
1002 10% 1003 Operational 85,000

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 279

Figure 8.5. Store tables

Store
Store ID | Store Location Store_Address Store Phone | Store Manage Is_In
OB1 Paramatta 4 Victoria Rd 02 9854 5876 Alice Green 1
Paramatta 2797
0B2 Newcastle 15 University Dv 02 4589 5444 Rob Hayes 1
Callaghan 2308
H1 Wollongong 5 Princess Hwy 02 4256 8751 Elda Stiebel 4
Woll. 2500
P1 Crawley 110 Gordon St. 08 9368 5123 Beth Jackson 5
Crawley 6009
P2 Melbourne 12 Bourke St 09 9458 5482 Yusuf Kamal 5
Melbourne 3000

Figure 8.6. Department table

Department
Store_ID Dept_ID Dept_Name Dept_Head

OB1 1 Deli Jared Dench

OB1 2 Bakery Charlie Williams
OB1 3 Drinks Ameer Singh

H1 1 Clothing Lola Bing

H1 2 Furniture Victor Mathewson

H1 3 Electrical Raymond Chua

stores, there are departments of clothing, furniture, electrical appliances, and
so forth. In general, department information consists of the department ID,
name, and head (see Figure 8.6).

Considering the number of people who work in this retail company, the
database for each employee is kept and linked to each store instead of each
company. The Employee database includes the information about the employ-
ees’ IDs, names, addresses, telephone numbers, the stores and departments
they are working in, theiraccount numbers, tax file numbers, and their types of
employment.

There are three types of employment at National Ltd.: full time, parttime, and
casual. For full-time employees, the data about annual salaries and bonuses
have to be recorded. For part-time employees, the data about weekly wages
haveto be recorded. Finally, for casual employees, the additional information
istheir hourly wages. Figure 8.7 shows the table sample.

For inventory control, the database system covers the items database and
includesthe information of the item ID, name, description, cost, selling price,
stock amount, and finally the information about the item distributor. According
to the policy of the company, a specific item can be bought only from one

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

280 Rahayu, Taniar and Pardede

Figure 8.7. Employee tables

Employee
Emp_ID Emp_Name Emp_Address Emp_Phone Emp_Type
0OB1-01 Glenda Row 10/1 Harold St. 0395854523 Full Time
Thornbury 3125
0OB1-02 Ruben Boestch 5 Greenwood Dv 0402251657 Full Time
Bundoora 3083
0OB1-03 Lily Hui 6 Mornane St 0411528876 Part Time
Preston 3203
OB1-04 David Tran 12 Gillies St 0398575854 Part Time
Fairfield 3175
OB1-05 Debbie Bradsord 740 High St 0399587410 Casual
Northcote 3185
OB1-06 Turi Riswanant 3/2 George St 0403528587 Null
Reservoir 3158
Employee
Emp_Account No Emp_TFN Work_In Dept_ID
2568-548-586 081253654 OB1 1
2568-587-875 084568789 OB1 1
1525-288-888 084565896 OB1 1
1259-986-458 089658754 OB1 2
3366-000-120 098658423 OB1 3
3366-895-452 098547785 OB1 3
Full_Time Part_Time Casual
Emp_ID Annual_Wage Emp_Bonus Emp_ID Weekly Wage Emp_ID | Hourly Wage
OB1-01 30,000 2,000 OB1-03 400 OB1-05 | 13
0OB1-02 28,000 1,750 OB1-04 500
Figure 8.8. Maker and Item tables
Maker
Maker_ID Maker_Name Maker_Address Maker_Phone
M1 Smiths 15 Princess Hwy Sydney 2000 1800157856
M2 Homemade 450 Light Ave Albury 2780 0245245263
Item
Item_ID Item_Name Item_Desc Item_Cost Item_Price Made_By
1-1001 Crisp Original Potato Chips 250 gr 2.00 3.10 M1
1-1002 Crisp Cheese Potato Chips 250 gr 2.00 3.10 M1
1-1051 Cheese Bun Homemade 500 gr 3.00 3.25 M2

maker, but one maker can sell many items to National. Figure 8.8 shows the

Maker and ltem tables.

Asone item can be sold in many stores and one store can sell many items, we
need another table to store the relationship called the Available_Intable (see
Figure 8.9). Inthistable we also store the information on the stock available at

any giventime.

For better service to the customer, National keeps information about the main
customerswho are registered and have membership cards. By using the card

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 281

Figure 8.9. Available In table

Available In
Item_ID Store_ID Item_Stock
1-1001 OB1 5,000
1-1002 OB1 5,000
1-1051 OB1 200
Figure 8.10. Customer table
Cust
Cust_ID Cust_Name Cust_Address Cust_Phone Cust_ Cust_ DOB | Bonus
Gender Point
C1001 Sally Lange 14 Milky Way St 0395486542 F 01-Mar- 100
Melbourne 3000 1970
C1002 Raylene 1/1 Howard St 0398306360 F 23-Feb- 125
Roberts Box Hill 3128 1950
Figure 8.11. Transaction table
Transaction
Trans_ID Trans_Date Cust_ID Item_ID Quantity
1602027891 16-Feb-2002 C1002 1-1001 5
1802021009 18-Feb-2002 C1001 1-1002 4
1802021010 18-Feb-2002 C1002 1-1001 5
1802021049 18-Feb-2002 C1002 1-1003 10

while shopping, the customers will amass points that can be redeemed for an
annual prize. Figure 8.10 shows the example of the Customer table.

These Customerand Itemtables are linked to another table named Transaction.
We need thistable to analyze the items thata particular customer always buys.
It can be very useful for marketing strategy. Note that the transaction is
differentiated based on the date, customer, and item.

The information-system department usesan ORDB for its database system and
stores the data in classes. Some methods, mainly generic methods, are
implemented as member procedures. They are usually methods for insertion
and deletion. Notevery class needs member procedures. Only those classes
that frequently undergo insertion and deletion will need these generic member
procedures.

Classes that need generic member methods are Store_T and its part class,
Department_T. The Employee_T class and all its children also need these
methods because in this business, there are frequent ups and downs that urge
the company to have a flexible number of employees, therefore insertionand

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

282 Rahayu, Taniar and Pardede

deletion will be frequent. The next class that needs member methods is
Shareholders_T. Notice that the relation between the shareholders and the
companies they have invested in isequally important. For this purpose, we
mightneed aregular stored procedure. We also need member procedures for
the Item_T and Customer_T classes as they are the two most frequently
accessed databases inthe retail industry. Finally, regular stored procedures will
be needed for accessing the tables thatemerge from the relationship between
Item_Tand Store T.

Besides generic methods, there are some user-defined queries that are fre-
quently made for this database. These queries can also be implemented as
member methods. The list of these methods is shown below.

* Methodtoshowthe details of an certain store, which will be implemented
asamember procedure of the Store_T class

* Methodtoshow the details of shareholders if they have more than 1,000
sharesinagivencompany type. This procedure will be implemented in the
Shareholders_T class.

* Method to show the names of management employees and details
including the companiesthey are in, ordered by the name of the company.
Thismember procedure will be implemented inthe Management_T class.

» Methodtoshow the details of anemployee, whichwill be implemented in
Employee_Tclass

Finally, we will require astored procedure to show the item details and the sum
ofeachitemthatisbought by aspecific customer gender inaresidential suburb.
Itwill also need to determine the maximum age of the customers that buy those
items.

Problem Solution

The solution to the problem described in the previous section will be provided
inthissection. Thefirstthing to be done insolving this problemisto design the
database. We provide the design in an object-oriented diagram (see Figure
8.12). Note that the diagram does not indicate the number of tables we will need

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 283

Figure 8.12. Object-oriented diagram of National Ltd.

S1gbeue N

Arejes AlJeak

adAy Beuew

snuoq

10123l1g

uoun

JuswiaheurW MOYs

auoyd Beuew
ssalppe” Beuew
awreu” Beuew
Q| bBeuew

1 1uswabeuey

19 JeW
2s9p” adAy

7 odAL Auedwo)

uonnvd

\VA

slapjoys Big-moys
SIap|oys” 819|ep

e e

T Auedwo)

SIBpJOYsuasul

IRSENNEES

auoyd™ s1apjoys
Ssalppe” SsIap|oys
aweu” sIapjoys
Qi ssspjoys

SaUDYS~ UNO

adAy dwoa
xe) dwod
auoyd dwod
ssaippe” dwod
aweu dwod
al dwod

awn|ny a19|9p

|ensea” a19|ap awnued e)jep awny|ny uasul
|ensea” Jssul awned uasul snuog dwia
abem ™ Ajinoy abem Apjoam afem™ [enuue
1 [ensed L swil ed L swil ind
[| |
uorsnjoxa jprnu A_V
- mw\SEEm\\ MOYS
_ aako|dwa a1919p
osep” adAy 1dap a18|9p dako|dwa Jasul
1dap Masul al wdsp Jawolsnd~ a18[ap
T adAL Auedwod pesy 1dap N4L dwa JaLosno Lesul
f aweudsp ouTjunodoe” dws 904 180
Qi dap adA dwa Japusfisno
T 1 _ al 8i0ls wcocQHQEm w:o:QUm:u
8101S”MOys AV 1 swedsq mmenn,WQEm ssaIppe_Isnd
21015 010|3p awreu” dws auwreu”1snd
210)S JIasul - al_dws alsno
JabeUeW 2101S 1 eakojdw3 1 Jawoisn)
auoydal01s 1
ssalppe”2101s
uo1eI0| 2101S 1dap 2101 Moys
al 8.i0s wiay 213[9p
1 2101 T Wwia)l~ Jasul
T aoud wayl uonoesuel a1sjop
uonoesuel) Uasul
auoyd Jeew | ur oyqppav OS8p_WaH | Anuenb |
_ aweu” wall aep suesy
ssalppe”Jaxew — _
ENTETEN =] e T 1 __QI Suel J...q
P | uonoesuel |
LN | T T

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

284 Rahayu, Taniar and Pardede

to create. We also have to consider the cardinality of the relationships before
determining the number of tables needed.

Toillustrate aclearer step-by-step development, the solution will be imple-
mented for one classatatime. It starts with the object creation, then moves to
table creation, and then, where applicable, to method creation. Note that the
table that results from the many-to-many relationship will be implemented along
with implementation of the second class.

Company_T Class and the Subclasses

Below we show the implementation of the Company_T class and the table
derived fromthe class, along with its subclasses. There isno member method
needed inthisclass, therefore, the datawill be inserted using the regular insert
statement.

Relational Schemas

Company (comp_ ID, comp name, comp address,
comp_phone,
comp_fax, comp_ type)

Class and Table Declaration

CREATE OR REPLACE TYPE Contacts AS VARRAY(3) OF
VARCHAR2 (12)

/
CREATE OR REPLACE TYPE Company T AS OBJECT
(comp id VARCHAR2 (10) ,
comp_name VARCHAR2 (20) ,
comp_address VARCHAR2 (50),
comp_phone Contacts,
comp_fax VARCHAR2 (10),
comp_ type NUMBER) NOT FINAL

/

CREATE TABLE Company OF Company T
(comp id NOT NULL,
comp_type CHECK (comp type IN (1, 2)),
PRIMARY KEY (comp_ id));

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study

CREATE OR REPLACE TYPE Company Type 1 T UNDER

Company T
(type_desc VARCHAR2 (40) ,
area VARCHAR2 (20))
/
CREATE OR REPLACE TYPE Company Type 2 T UNDER
Company T
(type_desc VARCHAR2 (40) ,
market VARCHAR2 (20))

Shareholders=T Class and Own=Shares Table

285

This section shows the implementation of Shareholders_T, the Shareholders
table, and the Own_Shares table, which is derived from the many-to-many
relationship between the tables Company and Shareholders. Asitisaregular
table, we cannot have amember method for the Own_Shares table. Instead,

we need regular stored procedures for insertion and deletion.
Besides generic methods, there is also a user-defined method in

the

Shareholders_T class to show the details of the shareholders who have more
than 1,000 shares, including the name of the company they have invested in

given the type of the company as an input parameter.

Relational Schemas

— We do not wuse the primary-key and foreign-key

concept in

— the Own_Shares table. Instead, we are using ref as

object references.
Shareholders (sholders ID, sholders name,
sholders_address, sholders phone)

Own_Shares (shareholders, company, share amount)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Shareholders T AS OBJECT

(sholders id VARCHAR2 (10) ,
sholders_ name VARCHAR2 (20) ,
sholders_ address VARCHAR2 (50) ,
sholders_ phone VARCHAR2 (10),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

286 Rahayu, Taniar and Pardede

MEMBER PROCEDURE insert sholders(
new_sholders id IN VARCHAR2,
new_sholders name IN VARCHAR2,
new_sholders address IN VARCHAR2,
new_sholders phone IN VARCHAR2),

MEMBER PROCEDURE delete sholders,

MEMBER PROCEDURE show big sholders(
new_comp_ type IN NUMBER))

/

CREATE TABLE Shareholders OF Shareholders T
(sholders id NOT NULL,
PRIMARY KEY (sholders id)) ;

CREATE TABLE Own_Shares
(shareholders REF Shareholders T,
company REF Company T,
share amount NUMBER) ;

Method Implementation

CREATE OR REPLACE TYPE BODY Shareholders T AS

MEMBER PROCEDURE insert sholders (
new_sholders id IN VARCHAR2,
new_sholders name IN VARCHAR2,
new_sholders address IN VARCHAR2,
new_sholders phone IN VARCHAR2) IS

BEGIN
INSERT INTO Shareholders
VALUES (new sholders id, new_sholders name,
new_sholders address, new_ sholders phone) ;
END insert sholders;

MEMBER PROCEDURE delete sholders IS

BEGIN
DELETE FROM Own_Shares
WHERE Own_Shares.shareholders 1IN
(SELECT REF (a)
FROM Shareholders a
WHERE a.sholders id = self.sholders id);
DELETE FROM Shareholders

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WHERE sholders id =
END delete sholders;

Retailer Case Study 287

self.sholders id;

MEMBER PROCEDURE show big sholders(

new_comp_ type IN NUMBER)

v_sholders name

Is

Shareholders.sholders name%TYPE;

v_sholders_ address

Shareholders.sholders address%TYPE;

v_sholders phone

Shareholders.sholders phone%TYPE;

BEGIN

SELECT a.sholders name,
a.sholders_ phone
INTO v_sholders name,
v_sholders phone

a.sholders_address,

v_sholders address,

FROM Shareholders a, Company b, Own_ Shares c
WHERE c.shareholders = REF(a)

AND c.company = REF (b)

AND Db.comp type = new_comp_type

AND c.share amount > 1000

AND a.sholders id = self.sholders id;

DBMS OUTPUT.PUT LINE
(‘Name’ | |’
DBMS OUTPUT.PUT LINE
¢ ‘)i
DBMS OUTPUT.PUT LINE
(v_ sholders name| |®
sholders address|| ' ‘||
v_ sholders_ phone) ;
END show big sholders;
END;
/

‘|| Address’ ||’

‘||’ Phone’) ;

— The following are stored procedures for the Own_Shares

table
— for insertion and deletion.

CREATE OR REPLACE PROCEDURE Insert Own_Shares(

new_sholders id IN VARCHAR2,
new _comp id IN VARCHAR2,
new_share amount IN NUMBER)

AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

288 Rahayu, Taniar and Pardede

sholders_temp REF Shareholders T;
comp temp REF Company T;

BEGIN
SELECT REF (a) INTO sholders_ temp
FROM Shareholders a
WHERE a.sholders id = new_sholders id;

SELECT REF (b) INTO comp_temp
FROM Company b
WHERE b.comp id = new comp id;

INSERT INTO Own_Shares
VALUES (sholders temp, comp_ temp,
new_share amount) ;
END Insert Own_Shares;
/

CREATE OR REPLACE PROCEDURE Delete Own_Shares(
deleted sholders id IN VARCHAR2,
deleted comp id IN VARCHAR2) AS

BEGIN
DELETE FROM Own_Shares
WHERE Own_Shares.shareholders 1IN
(SELECT REF (a)
FROM Shareholders a
WHERE a.sholders id = deleted sholders id)
AND Own_Shares.company IN
(SELECT REF (b)
FROM Company b
WHERE b.comp id = deleted comp_ id) ;
END Delete Own_Shares;

Management_T Class and the Subclasses

Next, we show the implementation of the Management_T classand the table
derived fromthe class, along with its subclasses. As the frequency of insertion
and deletion transactions for this class is considerably low, we do not need to
implement the generic methods inside the class. However, we still need to
implementa user-defined method show_managementto display the manage-
ment staff who has two roles: both as director and as manager.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 289

Relational Schemas
— Note that manag id in the subclasses is both a
primary key and
— foreign key at the same time. To implement the
relationship of
— Management with Company, we will use the object
reference of work in.

Management (manag ID, manag_name, manag_address,
manag phone, work in)

Directors (manag ID, bonus)

Managers (manag_ID, manag type, yearly salary)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Management T AS OBJECT
(manag id VARCHAR2 (10) ,
manag_name VARCHAR2 (20) ,
manag address VARCHAR2 (50) ,
manag phone VARCHAR2 (10)
work in REF Company T,

1

MEMBER PROCEDURE show management) NOT FINAL

CREATE TABLE Management OF Management T
(manag id NOT NULL,
PRIMARY KEY (manag id));

CREATE OR REPLACE TYPE Directors T UNDER Management T
(bonus NUMBER)
/

CREATE TABLE Directors OF Directors T
(manag id NOT NULL,
PRIMARY KEY (manag id));

CREATE OR REPLACE TYPE Managers T UNDER Management T
(manag_ type VARCHAR2 (20) ,
yearly salary NUMBER)

CREATE TABLE Managers OF Managers T
(manag id NOT NULL,
PRIMARY KEY (manag id));

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

290 Rahayu, Taniar and Pardede

Method Implementation

CREATE OR REPLACE TYPE BODY Management T AS
MEMBER PROCEDURE show management IS

CURSOR c¢_management IS

SELECT a.manag name, b.comp name
FROM Management a, Company b
WHERE a.work in = REF(b)
AND a.manag id = self.manag id
AND a.manag id IN

(SELECT manag id FROM Directors)
AND a.manag id IN

(SELECT manag id FROM Managers)
ORDER BY Db.comp name;

BEGIN
DBMS OUTPUT.PUT LINE
(‘Company Name’ ||’ ‘||’Management Name'’) ;
DBMS OUTPUT.PUT LINE
¢ ‘)i
FOR v_management IN c¢_ management LOOP
DBMS OUTPUT.PUT LINE
(v_management.comp name||‘' ‘]|
v_management .manag_name) ;
END LOOP;
END show management;
END;
/

Store_T Class and the Department_T Part Class

Tostore the aggregation relationship between Store_T and Department_T, we
use the clustering technique. We need generic methods for both whole and part
classes. Inaddition, we will need a user-defined method, show_storesinthe
Store_T class, todisplay the store details of a particular company inaparticular
location.

Relational Schemas
— Note that there are two primary keys in the
part class Department T,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 291

— and one of them (store ID) 1is also a foreign
key to the whole class

— Store T. The relationship between Stores and
Company is made wusing

— the object reference is in.

Stores (store ID, store location, store address,
store phone, store manager, is in)

Department (store ID, dept ID, dept name,

dept head)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Store T AS OBJECT

(store id VARCHAR2 (10) ,
store location VARCHAR2 (20) ,
store_address VARCHAR2 (50) ,
store_ phone VARCHAR2 (10),
store_manager VARCHAR2 (20) ,

is in REF Company T,

MEMBER PROCEDURE insert store(
new store id IN VARCHAR2,
new store location IN VARCHAR2,
new_store address IN VARCHAR2,
new_store phone IN VARCHAR2,
new_store manager IN VARCHAR2,
new comp id IN VARCHAR2),

MEMBER PROCEDURE delete store,
MEMBER PROCEDURE show_store)
/

CREATE CLUSTER Store Cluster
(store id VARCHAR2 (10)) ;

CREATE TABLE Store OF Store T
(store_id NOT NULL,
PRIMARY KEY (store id))
CLUSTER Store Cluster (store_ id) ;

CREATE OR REPLACE TYPE Department T AS OBJECT

(store id VARCHAR2 (10) ,
dept_id VARCHAR2 (10),
dept name VARCHAR2 (20) ,
dept_head VARCHAR2 (20) ,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

292 Rahayu, Taniar and Pardede

MEMBER PROCEDURE insert dept (
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_dept name IN VARCHAR2,
new_dept head IN VARCHAR2),

MEMBER PROCEDURE delete dept)

CREATE TABLE Department OF Department T
(store_id NOT NULL,
dept id NOT NULL,
PRIMARY KEY (store id, dept id),
FOREIGN KEY (store id)
REFERENCES Store(store_ id))
CLUSTER Store Cluster (store_ id) ;

CREATE INDEX Store Cluster Index
ON CLUSTER Store Cluster;

Method Implementation

CREATE OR REPLACE TYPE BODY Store T AS

MEMBER PROCEDURE insert store(
new store id IN VARCHAR2,
new store location IN VARCHAR2,
new_store address IN VARCHAR2,
new_store phone IN VARCHAR2,
new_store manager IN VARCHAR2,
new comp id IN VARCHAR2) IS

comp temp REF Company T;

BEGIN
SELECT REF (a) INTO comp_temp
FROM Company a
WHERE a.comp id = new comp id;

INSERT INTO Store
VALUES (new store id, new store location,
new_store address, new_store phone,
new_store manager, comp_temp) ;
END insert store;

MEMBER PROCEDURE delete store IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 293

BEGIN
— If a store 1s deleted, the data from table
Available In
— regarding that particular store has to be
removed as well.
— Also note the table Available In has to exist
first.

DELETE FROM Available In
WHERE Available In.store IN
(SELECT REF (a) FROM Store a
WHERE a.store id = self.store id);

DELETE FROM Employee
WHERE store id = self.store id;

DELETE FROM Store
WHERE store id = self.store id;
END delete store;

MEMBER PROCEDURE show_store IS

BEGIN
DBMS OUTPUT.PUT LINE
(‘Store Address’||’ ‘||’Store Phone’]|]|’
‘|| ’Store Manager') ;
DBMS OUTPUT.PUT LINE
¢ ‘)i
DBMS OUTPUT.PUT LINE
(self.store address||‘ ‘||self.store phone||
‘|| self.store manager) ;
END show store;

END;
/

CREATE OR REPLACE TYPE BODY Department T AS

MEMBER PROCEDURE insert dept (
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_dept name IN VARCHAR2,
new_dept head IN VARCHAR2) IS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

294 Rahayu, Taniar and Pardede

BEGIN
INSERT INTO Department
VALUES (new store id, new dept id, new dept name,
new_dept head) ;

END insert dept;

MEMBER PROCEDURE delete dept IS

BEGIN
DELETE FROM Department
WHERE store id = self.store id
AND dept id = self.dept id;
END delete dept;

END;
/

Employee_T Class and the Subclasses

Next, we show the implementation of the Employee_T classanditstable,along
withthe subclasses. Asthe type of inheritance isnot mentioned, we will assume
that the type isa mutual-exclusion inheritance. In other words, anemployee has
to be amember of only one subclass or none.

We need generic methods for the superclass and the subclasses. For insertion
to subclasses, we will need to insert to the superclass first. The same applies
for deletion. The datain the subclasses will be deleted automatically due to the
referential integrity constraint. In addition, there is a user-defined method
show_employeetodisplay the details of a particular employee type that works
inaparticular store.

Relational Schemas
— Note there is a reference work in to the Store
table.

Employee (emp ID, emp name, emp_ address, emp phone,
emp type, emp account no, emp TFN,
work in, dept ID)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Employee_T AS OBJECT
(emp_id VARCHAR2 (10) ,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 295

emp_name VARCHAR2 (20) ,
emp address VARCHAR2 (50) ,
emp_phone VARCHAR2 (10) ,
emp_type VARCHAR2 (20) ,
emp_account_no VARCHAR2 (15) ,
emp_ tfn VARCHAR2 (15),
work in REF Store T,

dept id VARCHAR2 (10) ,

MEMBER PROCEDURE insert employee (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2),

MEMBER PROCEDURE delete employee,
MEMBER PROCEDURE show_employee) NOT FINAL
/

CREATE TABLE Employee OF Employee T
(emp_id NOT NULL,
emp_ type CHECK (emp type IN
(‘Full Time’, ‘Part Time’, ‘Casual’, NULL)),
PRIMARY KEY (emp id));

CREATE OR REPLACE TYPE Full_Time_T UNDER
Employee T

(annual_ wage NUMBER,

emp_bonus NUMBER,

MEMBER PROCEDURE insert fulltime (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_annual wage IN NUMBER,
new_emp bonus IN NUMBER),

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

296 Rahayu, Taniar and Pardede

MEMBER PROCEDURE delete fulltime)
/

CREATE OR REPLACE TYPE Part Time T UNDER
Employee T
(weekly wage NUMBER,

MEMBER PROCEDURE insert parttime (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_weekly wage IN NUMBER),

MEMBER PROCEDURE delete parttime)
/

CREATE OR REPLACE TYPE Casual T UNDER Employee T
(hourly wage NUMBER,

MEMBER PROCEDURE insert casual (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_hourly wage IN NUMBER),

MEMBER PROCEDURE delete casual)
/

Method Implementation

CREATE OR REPLACE TYPE BODY Employee T AS

MEMBER PROCEDURE insert employee (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 297

new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,

new store id IN VARCHAR2,

new dept id IN VARCHAR2) IS

store temp REF Store T;

BEGIN
SELECT REF(a) INTO store_ temp
FROM Store a
WHERE a.store id = new store id;

INSERT INTO Employee
VALUES (new emp id, new emp name, new emp address,
new_emp phone, NULL, new_emp_ account no,
new emp tfn, store temp, new _dept id);
END insert employee;

MEMBER PROCEDURE delete employee IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp id = self.emp id;

END delete employee;

MEMBER PROCEDURE show employee IS

BEGIN
DBMS OUTPUT.PUT LINE
(‘Name’ ||’ ‘||’Address’ ||’ ‘||’Phone’||’
‘|| "Emp Type’ ||’ ‘||’Account No’]||’
“||*TFEN’||* || 'Department’);

DBMS OUTPUT.PUT LINE
(\

V)
DBMS_OUTPUT.PUT LINE

(self.emp name ||' ‘||self. emp address||®

‘| |self.emp phonel|| ' ‘||self.emp typel|]|

‘| |self.emp account nol|| ' ‘||self.emp tfn]|]|
‘| |self.dept id);

END LOOP;

END show employee;

END;
/

CREATE OR REPLACE TYPE BODY Full Time T AS

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

298 Rahayu, Taniar and Pardede

MEMBER PROCEDURE insert fulltime (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_annual wage IN NUMBER,
new_emp bonus IN NUMBER) IS

store temp REF Store T;

BEGIN
SELECT REF(a) INTO store temp
FROM Store a

WHERE a.store id = new store id;

INSERT INTO Employee

VALUES (Full Time T (new _emp id, new emp name,
new_emp_address,
new_emp_ phone, ‘Full Time'’,
new_emp account no,
new_emp tfn, store temp, new dept id,

new_annual_ wage,
new_emp_ bonus) ;
END insert fulltime;

MEMBER PROCEDURE delete fulltime IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp id = self.emp id;

END delete fulltime;

END;
/

CREATE OR REPLACE TYPE BODY Part Time T AS

MEMBER PROCEDURE insert parttime (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 299

new_emp_ account no IN VARCHAR2,
new_emp_ tfn IN VARCHAR2,

new store id IN VARCHAR2,

new dept id IN VARCHAR2,
new_weekly wage IN NUMBER) IS

store temp REF Store T;

BEGIN
SELECT REF(a) INTO store temp
FROM Store a

WHERE a.store id = new store id;

INSERT INTO Employee

VALUES (Part Time T (new _emp id, new emp name,
new_emp_address,
new_emp_phone, ‘*Part Time'’,
new_emp account no,
new_emp tfn, store temp, new dept id,

new_weekly wage)) ;
END insert parttime;

MEMBER PROCEDURE delete parttime IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp id = self.emp id;
END delete parttime;
END;
/

CREATE OR REPLACE TYPE BODY Casual T AS

MEMBER PROCEDURE insert casual (
new _emp id IN VARCHAR2,
new_emp name IN VARCHAR2,
new_emp_ address IN VARCHAR2,
new_emp phone IN VARCHAR2,
new_emp_ account no IN VARCHAR2,
new_emp tfn IN VARCHAR2,
new store id IN VARCHAR2,
new dept id IN VARCHAR2,
new_hourly wage IN NUMBER) IS

store _temp REF Store T;

BEGIN

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

300 Rahayu, Taniar and Pardede

SELECT REF(a) INTO store_ temp
FROM Store a
WHERE a.store id = new store id;

INSERT INTO Employee

VALUES (Casual T(new _emp id, mnew_emp name,

new_emp_address,

new_emp_ phone, ‘Casual’,

new_emp_ account no, new emp tfn,

store temp, new dept id, new hourly wage) ;

END insert Casual;

MEMBER PROCEDURE delete casual IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp id = self.emp id;

END delete casual;

END;
/

Maker=T Class

The Maker_T classand itstable have to be created first before the Itemtable
because the Item_T classwill have an object reference to Maker_T. We also
need auser-defined method show_maker to display the maker details given an

itemID.

Relational Schemas
Maker (maker ID, maker name, maker address,
maker phone)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Maker T AS OBJECT
(maker id VARCHAR2 (10) ,
maker name VARCHAR2 (20)
maker address VARCHAR2 (50)
maker phone VARCHAR2(10)

1

)

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Retailer Case Study 301

CREATE TABLE Maker OF Maker T
(maker id NOT NULL,
PRIMARY KEY (maker id));

Item=T Class and Available=In Table

Nowwe canimplement item_T, itstable, and the Available_Intable, whichis
derived from the many-to-many relationship between tables Store and Item.
The Item_T class needs an object reference to the Maker_T class on the
attribute made_by. As Available_Inisaregulartable, we cannothave member
methods. Instead, we use regular stored procedures for insertion and deletion.

Apartfrom generic methods, there isalso auser-defined method inthe Item_T
classto show the store address, phone number, and the store’s stock available
foragivenitem name.

Relational Schemas
— Note that the Item and Store attributes in the
Available In
— table are implemented using object references
Item
— for the Item T class and Store for the Store T
class.

Item (item ID, item name, item desc, item cost,
item price, made by)
Available In (item, store, item stock)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Item T AS OBJECT

(item_id VARCHAR2 (10),
item name VARCHAR2 (20) ,
item desc VARCHAR2 (50) ,
item cost NUMBER,

item price NUMBER,
made by REF Maker T,

MEMBER PROCEDURE insert item(
new_item id IN VARCHAR2,
new_item name IN VARCHAR2,
new_item desc IN VARCHAR2,
new_item cost IN NUMBER,
new item price IN NUMBER,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

302 Rahayu, Taniar and Pardede

new maker id IN VARCHAR2),

MEMBER PROCEDURE delete item)

CREATE TABLE Item OF Item T
(item_id NOT NULL,
PRIMARY KEY (item_id));

CREATE TABLE Available In
(item REF Item T,
store REF Store T,
item stock NUMBER) ;

Method Implementation

CREATE OR REPLACE TYPE BODY Item T AS

MEMBER PROCEDURE insert item(
new_item id IN VARCHAR2,
new_item name IN VARCHAR2,
new_item desc IN VARCHAR2,
new_item cost IN NUMBER,
new_item price IN NUMBER,
new maker id IN VARCHAR2) IS

maker temp REF Maker T;

BEGIN
SELECT REF (a) INTO maker_ temp
FROM Maker a
WHERE a.maker id = new maker id;

INSERT INTO Item
VALUES (new_item id, new item name, new item desc,
new_item cost, new_item price,
maker temp) ;
END insert item;

MEMBER PROCEDURE delete item IS

BEGIN
DELETE FROM Available In
WHERE Available In.item IN
(SELECT REF(a) FROM Item a
WHERE a.item id = self.item id);

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 303

DELETE FROM Item
WHERE item id = self.item id;
END delete item;

CREATE OR REPLACE PROCEDURE Insert Available In(
new_item id IN VARCHAR2,
new store id IN VARCHAR2,
new_item stock IN NUMBER) AS

item temp REF Item T;
store temp REF Store T;

BEGIN
SELECT REF(a) INTO item temp
FROM Item a
WHERE a.item id = new item id;

SELECT REF (b) INTO store temp
FROM Store b
WHERE b.store id = new store id;

INSERT INTO Available In
VALUES (item temp, store temp, new item stock) ;
END Insert Available In;

/

CREATE OR REPLACE PROCEDURE Delete Available In(
deleted item id IN VARCHAR2,
deleted store id IN VARCHAR2) AS

BEGIN
DELETE FROM Available In
WHERE Available In.item IN
(SELECT REF(a) FROM Item a
WHERE a.item id = deleted item id)
AND Available In.store IN
(SELECT REF(b) FROM Store b
WHERE b.store id = deleted store id);
END Delete Available In;

Customer=T Class

Nextisthe implementation of the Customer_T classanditstable. Ithas generic
methods for insertion and deletion, and a user-defined method to show the item

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

304 Rahayu, Taniar and Pardede

name and total given a particular customer’s gender and age ina given store
location.

Relational Schemas
Customer (cust ID, cust name, cust_ address,
cust_phone,
cust _gender, cust DOB, bonus point)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Customer T AS OBJECT
(cust_id VARCHAR2 (10) ,

cust_ name VARCHAR2 (20
cust _address VARCHAR2
cust_phone VARCHAR2
cust _gender VARCHAR2
cust_dob DATE,
bonus point NUMBER,

(20),
(50),
(10),
(3)

1

MEMBER PROCEDURE insert customer (
new _cust id IN VARCHAR2,
new_cust name IN VARCHAR2,
new_cust address IN VARCHAR2,
new_cust phone IN VARCHAR2,
new_cust gender IN VARCHAR2,
new_cust dob IN DATE),

MEMBER PROCEDURE delete customer)
CREATE TABLE Customer OF Customer T
(cust_id NOT NULL,

PRIMARY KEY (cust_id));

Method Implementation

— The implementation can only be done if the
table
— Transaction has been created beforehand.

CREATE OR REPLACE TYPE BODY Customer T AS
— The number of bonus points inserted for a new
customer 1is O.

MEMBER PROCEDURE insert customer (
new _cust id IN VARCHAR2,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study

new_cust name IN VARCHAR2,
new_cust address IN VARCHAR2,
new_cust phone IN VARCHAR2,
new_cust gender IN VARCHAR2,
new_cust _dob IN DATE) IS

BEGIN
INSERT INTO Customer

305

VALUES (new_cust_1id, new_cust_name,

new_cust_ address,

new_cust phone, new_cust gender,

new_cust _dob, 0);
END insert customer;

MEMBER PROCEDURE delete customer IS

BEGIN
DELETE FROM Customer
WHERE Customer.cust id = self.cust id;

END delete customer;

CREATE OR REPLACE PROCEDURE Show Cust Item(
new_cust gender IN VARCHAR2,
new_cust age IN NUMBER,
new store location IN VARCHAR2) AS

BEGIN
CURSOR c_show cust item IS
SELECT b.item name, S8UM (c.quantity) AS
Total Item
FROM Customer a, Item b, Transaction c,
Available In d, Store e

WHERE c.customer = REF(a) AND c.item =
REF (b)
AND a.cust _gender = new cust gender
AND (TO_ NUMBER (SYSDATE, 'YYYY’) -
TO_NUMBER (a.cust_dob, ‘YYYY’)) <
new_cust age
AND d.item = REF(b) AND d.store = REF (e)
AND e.store location = new store location

GROUP BY b.item name;

BEGIN
DBMS OUTPUT.PUT LINE
(‘Item Name’||’ ‘||’Total Item');
DBMS OUTPUT.PUT LINE

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

306 Rahayu, Taniar and Pardede

¢ ‘)i
FOR v_show cust item IN c_show cust item LOOP
DBMS OUTPUT.PUT LINE
(v_show cust item.item name||‘' ‘||
v_show cust item.total item);
END LOOP;
END show cust item;

Transacti0n=T Class

Nextwe show the implementation of the Transaction_T classand itstable, with
its generic member methods. Note that we have object references to the
Item_T and Customer_T classes onattribute Item because the participationin
thisside istotal.

Relational Schemas
— The Customer and Item attributes are implemented

using ref.

Transaction (trans_ID, trans_date, customer, item,
quantity)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Transaction_T AS OBJECT
(trans_id VARCHAR2 (10) ,
trans_date DATE,
customer REF Customer T,
item REF Item T,
quantity NUMBER,

MEMBER PROCEDURE insert transaction(
new trans id IN VARCHAR2,
new_trans date IN DATE,
new _cust id IN VARCHAR2,
new_item id IN VARCHAR2,
new _quantity IN NUMBER),

MEMBER PROCEDURE delete transaction)
/

CREATE TABLE Transaction OF Transaction T
(trans_id NOT NULL,
PRIMARY KEY (trans_ id));

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 307

Method Implementation

CREATE OR REPLACE TYPE BODY Transaction T AS

MEMBER PROCEDURE insert transaction(
new trans id IN VARCHAR2,
new_trans date IN DATE,
new _cust id IN VARCHAR2,
new_item id IN VARCHAR2,
new _quantity IN NUMBER) IS

cust _temp REF Customer T;
item temp REF Item T;

BEGIN
SELECT REF (a) INTO cust_temp
FROM Customer a
WHERE a.cust id = new cust id;

SELECT REF (b) INTO item temp
FROM Item b
WHERE b.item id = new item id;

INSERT INTO Transaction
VALUES (new trans_id, new trans date,
cust _temp, item temp, new quantity);
END insert transaction;

MEMBER PROCEDURE delete transaction IS

BEGIN
DELETE FROM Transaction
WHERE Transaction.trans id = self.trans id;

END delete transaction;

END;
/

Building Tools Using
Oracle™ Developer

In this section, we will demonstrate the usage of one of the Oracle™
development tools provided to develop a client-server application. Using

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

308 Rahayu, Taniar and Pardede

Figure 8.13. Form Builder welcome screen

i Welcome to the Form Builder | X|

Where to start

Designing:

¢ Open an existing form
¢ Build a form based on a template

Learning: ¢ Bun the Quick Tour [concepts)
Oracle Developer " Explore the Cue Cards [tasks)

[V Display at startup

QK; I Cancel Help
LaY

Figure 8.14. Data Block Wizard welcome screen

Oracle™ forms, the users can control the layout of the screen, and these forms
allow usersto control the program flow in detail.

Therewill be two types of forms shown. The firstone is the form builtusing the
data-block form, and the second one is built using the custom form. In ORDBSs,
we will mainly need the second approach because there are user-defined
methods to be shown. Inaddition, some built-ininsertion and deletion methods
implemented by Oracle™ Developer mightnot meetthe ORDB requirements.
Nevertheless, for demonstration purposes, we will provide both approachesin
the following sections.

Creating a Form Using the Data-Block Form

Inthis section, we will demonstrate how to create a form using the data-block
formin Form Builder. We choose the object Maker_T of the case study to be

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 309

implemented using the data-block form. We notice that this objectis trans-
formed into an object table with simple attributes and without genericand user-
defined methodsembedded init.

Once bothsides, clientand server, are ready to run the Oracle™ development
tool, this step-by-step action will be very simple to follow. By choosing Form
Builder from the program menu, the welcome screen should come up (see
Figure 8.13). Choose the design using Data Block Wizard and click the OK
button to go to the next step.

The next window shows another welcome screen, but this is the welcome
screentothe Data Block Wizard (See Figure 8.14a). Click the Next button to
gotothe nextprocess. Inthe nextwindow (see Figure 8.14b) we have to select
the type of data block, and for this example, we select the Table or View radio
button and click the Next button.

Inthe nextwindow, we need to choose the table for the form. By clicking the
Browse... button (see Figure 8.15a), users will be shown the list of tables and
views available. However, if the user has not connected yet to the database,
another window will come up to connect to the database. Once we connect to
the database, the connection will remain until we log off of Form Builder. Figure
8.15b shows the window where we can select the table or view; in this case,
we select table Maker.

After we selectthe table, the next page (see Figure 8.16a) displays the whole
attributes in that particular table on the Available Column box. To selectan
individual attribute, we can use the single-arrow sign, but to select whole

Figure 8.15. Connecting to the database in Data Block Wizard

i Tables [x]
Display
[V Curmerk yar ¥ Tabies
[Other users ™ Mews
I™ Symonyms
Table [Owner CE
ACCOUNT
AVAILABLE_IN
BONUS
CASUAL
COMPaNY
COMPANY_TYPE_1
COMPANY TYPE_2
CUSTOMER
DEPAATMENT
DEFT
DIRECTORS
EMP
EMPLOYEE
FULL_TIME
ITEM
M, =
o [| Concal | Heb |

a. b.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

310 Rahayu, Taniar and Pardede

Figure 8.16. Selecting an attribute in Data Block Wizard and the end
screen

attributes, we use the double arrow. Each attribute chosen will appear in the
Database Items box.

Thisisthe last step of Data Block Wizard; the end screen (see Figure 8.16b)
should appear. We can keep the option of using the Layout Wizard to set the
layout of the form by clicking the Finish button.

Attheend of Data Block Wizard, the Layout Wizard will be displayed. Thefirst
window shown isthe welcome screen (see Figure 8.17a). By clicking the Next
button, we can start to build the layout of the form. Figure 8.17b shows the next
window where the users can create a canvas on which the form will be
displayed. We can also select the type of the canvas by choosing from the pull-
down menu. For thisexample, we select the content type where the canvas can
fill theentire window.

Figure 8.17. Layout Wizard welcome screen and creating a canvas

Layoul Wizard £

Welcome to the Layout Wizard|

Tris v zard above vou 10 cu ey o sy lap ot the
e ol a caia blece

Selec: e carvas on mhich wou miak 1o lay cut e date
alack’s e, Il you 218 cresdng & naws canvas, dso oe
sweto saiscthe eppropiiale canvas hipe

The woad wl ciiplen the e in 2 Fame o0 2 saruss,
20d by thren ot 0 e of ool ydes

Lk Picsd 10 B 50alng el Yo

Fyou select 2 180 cavs, 1hen Jou aho st select &
ab page oa vhich 1o by cut the dats tock's berre

Cacel Hep o || Mews 5| Fnsh Cavel | Heb | Bk | Mse> 1] Fieh

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 311

Figure 8.18. Select columns and modify items in Layout Wizard

Layoul Wizand [<]

Envar & orcerel. wedih, and beigh: for each fer. The
urks forifam vadh and beigh: are Perls.

Prompt Wi a
I F—

a. b.

Figure 8.19. Selecting-style page and setting-row page in Layout Wizard

Layout Wizard [x] Layout Wizard [x]

Erien & e fox s lratie Ak Les e o ety The
numker of daabase racords to be diapaped in the fame,
s vad gt lhe dederie Lelveen each saoud

To displey s sl ber n lhe Ihat San b veesd b
sciol colabase iecords, cheek te Display
Scrclber’ check bav.

Same e [MekeDenl:
Eosarch Disgiged: 1

Ditorce Bavween Reconds: |0

Skl & barond 2b fon s frams Ly Sk & 1o
Futtee beloa

 Eiin

 Lavdal

I~ Disap Sovalbar

<Back | Ner] Frin |

S Y

The nextwindow (see Figure 8.18a) enables the user to choose the columns
and attributes from the data block that will be displayed in the form. For this
example, we selectall columns, and by using the double arrow, we transpose
them fromthe left box to the right one.

Inthe window after that (see Figure 8.18b), all of the columns created will be
displayed. Inthiswindow, the user can modify the display of the prompt, and
the width and the height of each item.

The nextwindow (see Figure 8.19a) allows the users to select the layout style
ofthe page. We select the form style where only one record can be displayed
atatime. Onthe otherside, if we select Tabular, the result will be displayed in
atable format. By clicking the Next button, the next window (see Figure 8.19b)
will appear where we can determine the title for the frame and the layout of the
record. Inour example, the frame title is “Maker Details.”

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

312 Rahayu, Taniar and Pardede

Figure 8.20. Layout Wizard end screen

Figure 8.21. Object Navigator and Layout Editor

Thisis the last step of Layout Wizard, and the end screen (see Figure 8.20)
should appear. We can keep the option of using Layout Wizard to set the layout
of the form by clicking the Finish button.

Being finished with the Layout Wizard, we will automatically go to Layout
Editor with the default Object Navigator (see Figure 8.21). This editor

providesagraphical display of the canvas that is used to draw and to position
formitems.

Inthe Layout Editor, we can edit the layout of the items by using the Property
Palette (see Figure 8.22a). A simple, more appealing layout of the Maker
Details formisshown in Figure 8.22b.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 313

Figure 8.22. Property Palette and updated Layout Editor

Figure 8.23. Form run time through client-server mode

Once we have modified the form layout, we can run the form using different
methods. One way is through the traditional client-server mode by clicking the
client/server button inthe Layout Editor or by selecting Client/Server fromthe
menu Program under Run From. Figure 8.23a shows the form run-time window
in client-server mode. By clicking the Execute Query button, the form will
display records in the Maker table (see Figure 8.23b). We can navigate the
record by clicking the arrow buttons on the toolbar.

Oracle™ forms provide insertion and deletion capabilities. Therefore, although
there isno generic method embedded inan object, the form has provided its
own generic methods. However, extra care has to be taken to manage the
integrity constraintamong objects, especially when using object references.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

314 Rahayu, Taniar and Pardede

Figure 8.24. Inserting a record in a form

Figure 8.25. Form run time through the Web

Figure 8.24 shows how to inserta new record using a form. By clicking the
Insert Record button, the record is automatically inserted into the table. By
clicking the delete button, we can delete a particular record from the database.

We have shown how to runaformusing the traditional client-server mode. The
next method isrunning itthrough the applet viewer. By doing this, we can see
how the formworkswhen itis deployed onthe Web. We can do this by clicking
Runfrom the Web button in Layout Editor, or by selecting Web from the menu
Program under Run From. The window is shown in Figure 8.25.

Finally, the form canalso runfromaWeb browser. By calling the server name
usinga URL (uniformresource locator), users can access the form fromthe
server easily and itworks similarly to the way itworks in the traditional client-
server mode. Note that the URL will depend on the setup of the server.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 315

Figure 8.26. Form run time through a Web browser

If we do not enter the user details in the URL, we will first have to make a
connection (see Figure 8.26a). On the completion of the connection, the form
will be displayed (see Figure 8.26b). This form works similarly to the previous
two run methods.

Creating a Form Using a Custom Form

Inthis section we will demonstrate how to create a form using a custom form.
Acustom formis usually applicable for the forms that integrate several tables
together. It can also be used when the users want to have more freedom in the
form design. Forexample, we will use acustom form for the Management_T
objectand itssubclasses Directors_T and Managers_T.

Asbefore, by choosing Form Builder from the Program menu, the welcome
screen (see Figure 8.13) should come up. Instead of choosing Data Block
Wizard, we select to build aform manually. The form window with the Object
Navigator should then appear, and we are ready to start building the form.

First, by changing the view from the ownership view (which is the default) to the
visual view, we will see aslightly different Object Navigator. With this visual
view, we can then change the name of the window created. In this case, we
choose the name Management_Window (see Figure 8.27a).

Under the window, we then create a canvas (see Figure 8.27b). As in the
previous section, this canvas will be used to display the records in the form. By
choosing the Property Palette of the window and the canvas, we can change the

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

316 Rahayu, Taniar and Pardede

Figure 8.27. Changing window name and creating a canvas in Object
Navigator

a. b.

details such as the title, the size, the scroll bar, and so forth. In our case, we
choose to use the title Management Details for the window we will work on.

Now we are ready to create aspecial data block that is not associated with a
specific database table, which is called the control block. It is recommended
to design the control block first before we start building the custom form. In our
case, the control block will contain records from the table Managementand its
subclasstables.

To create the control block, we have to change the view from the visual view
to the ownership view under View menu. On the Object Navigator (see Figure
8.28a), we then highlight the item data block, and by clicking the Add button

Figure 8.28. Creating a data block in Object Navigator

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 317

Figure 8.29. Empty new canvas

onthetoolbar, we canstart creating the new data block. A pop-up window will
appear; we selectto build anew data block manually.

The block will appear under the data block item on the Object Navigator. We
can change the name of the data block to Management_Block (see Figure
8.28Db). Note that under the new data block there isamenu named Items. Items
inthis case are components inside the datablocks. We can create the itemson
the canvas that we created earlier.

Now we can open the canvas by selecting Layout Editor under the Tools menu.
This canvaswill be anempty canvas (see Figure 8.29). We are ready to put the
items on the canvas by utilizing the toolbar on the left side of the canvas.

First, select the textitem button from the toolbar and put it on the canvas. Next,
do the same thing for a text button. For each item, we can change the details
through the Property Palette. Figure 8.30a shows the two items with their
details having been changed. The text item management_ID will show the
manag_ID of the Managementtable. Therefore, we have to make sure that the
data type and other properties match the data in the database tables.

We have to do this process for each item that we want to display on the form.
Figure 8.30b shows the canvas with all itemsadded to it. The attributes from
tables Director and Manager are also included in this form. Note that we are
notallowed to do this using the data-block form.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

318 Rahayu, Taniar and Pardede

Figure 8.30. Adding items to the canvas

b.

Atthisstage, we can save the module with the name Management_Detailsand
start linking the items to the database tables. For this purpose, one way
provided by Oracle™ isby using the LOV (list of values) Wizard. The LOV
isalistof legal values that can be used inaformfield. Itis useful for making data
entry easier and avoiding errors. For the custom form, itis the way to link the
separate tables together.

In our Management form, we need four different tables. The firstthree tables
are obvious and are the Management table and its subclasses tables. The last
table needed isthe Company table because the data in the Managementtable
might have references (through ref) to the data in the Company table.

Tostartcreatinga LOV, we select LOV Wizard from the Tools menu. A first
LOV Wizard window will appear (see Figure 8.31a). Keep the radio buttonon

Figure 8.31. Welcome screen and entering and SQL statement in LOV
Wizard

10V Wizaed [] LOV Wizard]

L0V g thek dtafrom Flecard Grous, mhich may s
aopudwed usrg SQL quanies, o by erleirg a sl bat

F«e)ardﬁwom te based 00 SOL e [}aynu)
valuss.

W to enter o madiv the cuerp that your LOV's Al

Do yeu vierk o base wour LOY on 8 n=w Aecoid Group,
o e asting Bacd Gioun? Iiyu WA A
. 70U st

IF 0 youmay us the Glacn Denkopel l]ua-ysma
by clicking Euld SOL Duery. Or, vou may anter
ey dhad), v the SGL Gy Stateneet he‘dbeb\

SO oy
BuMSOLOuey.. | lmoat SOL Ouey.
SaL G .l'-inmn-wm

(e
HU amarie)
[SELECT manec |d FROM Marage:s]

Cernecl | Check Syrbse. |

U (N <Bak | hwis (| Eneh |

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 319

Figure 8.32. Selecting LOV columns in LOV Wizard

2 LOV mayrinchde some cr al of the columns inthe. 1fyouswish 10 spesiythe LV aokama propetics, o
Rmiﬂ Gioun Wraesa Fanned Group saumng do you may =obe & s, wedth o reban vave o ssch LOY
wAzh tainzudsin your LOVT cchann The uails for the columa wicth & Ports.
Betoud Glous Cobirs: L0 Cobairs: [Tils [Wilth| Helumn velus =

Mg ld 5 0o
«
| =}
1 1|
r Lock up jetmi !'
Coeel | Hem <Back | Nme>] Fria Cencd Helo <k |[Hst> | Feim |
a. b.

creatinganew record group. The nextwindow (see Figure 8.31b) enables the
usersto specify the query statement for grouping the datainthe LOV. We can
also use Query Builder for this purpose by pressing the query-builder button.

Inthis case, we link the three tables together using the references or object
references.

The nextwindow (see Figure 8.32a) shows the record group columns created.
We can choose to transform the record into LOV columns by using the arrow
asinthe data-block form. For our example, we choose to transformall records.
In the next window (see Figure 8.32b), the properties for each column are

displayed. We can change them according to the needs. The important thing to
consider inthisstep isto choose the right look-up return item.

Figure 8.33. Return item in LOV and the complete return value

Items and Parameters LOV Wizard

[x]
Find [MANAG EMENT_BLOCK. % 1F you wizh to specify the LOV column peoperties, you
= may enter alille, width and retum value for each LOV
1ANAGEMENT BLDCK EM coburre. The wits for the column width & Ponls.
AMAGEMENT_| BLOCK, MANAG_MAME
ANAGEMENT_BLOCK MANAG_ADDRESE =
ANAGEMENT_BLOCK MANAG_PHONE q
ANAGEMENT_BLOCK.COMP_ID T

ANAGEMENT_BLOCK BONUS
ANAGEMENT_BLOCK MANAG_TYFE
AMAGEMEMNT_BLOCK YEARLY_SALARY

- o

35
Cealy Salay [27

<J

=
Find | ok Cancel |
A
<Back | Next),\J Finsh |
a. b.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

320 Rahayu, Taniar and Pardede

By putting the cursor onthe column of a particular item, we can click the “Look
up return item” button to choose which value to return to the specified item.
Figure 8.33ashows the window to choose the return item.

By clicking the OK button, the particular item Manag_ID will return the value
of Management_ID intherecord group. Itwill be done for each single item (that
needsreturn values) inthe block as is shown in Figure 8.33b.

The next window (see Figure 8.34a) allows us to add the title of the LOV
window, and the window after that (see Figure 8.34b) allows us to determine
the number of dataretrieved at atime on the advanced-options page.

Inthe nextwindow, we canassign the return items from the LOV columns. Only
assigned itemswill be displayed on the form, and for this case, we selectall of
the columns (see Figure 8.35a). Thisis the last step of LOV Wizard, and at the
end, the end screen should appear (see Figure 8.35b).

Figure 8.34. Display page settings in LOV Wizard

LOV Wizard [x] LOV Wizard [x]

Dc ycu ma: to mediy the advancad propadis: Hist
aliazt the dahwice of your LOV?

el s b s e o iy 3w LD vienkon?

T [ervesren Gl 11 sou are ot P it he usage, s scemmerded
hat o access e defouks o el spoast beiow:

Wit size veoudd you e wout LDV te be? The urids foe
the LIV sze and postion aie Forls.

i [181 oyt [155
Do pour wazn! Tomns Pardims to poshion veur LIVT

@ Ve le Fome poshon g LOV abomaiicsly
" Ho. | mark ko postion menudly

Beligos |7 vede i
F Faftash recond croun detz bascee dipling LOV
™ Lek the e fites recoids sefore dsplakng thes

Cancd Help ckad |[Cmss] Feen ek | Reinp] Feen |

a. b.

Figure 8.35. Assigned items in LOV and end screen

LUV Wizl 3]

s e i e aes b g LV o s ey
L T B e R
fatve.

Tovhich o thae fams do vo. wich b swsion poul
7

Entur beere

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 321

After creating the LOV, we can change the name of the record group and the
LOV. Itismainly optional and is done for the sake of convenience. Inthis case,
we rename them to Management_LOV (see Figure 8.36).

Next, we canadd a button for the users to retrieve the record (see Figure 8.37).
Recall thatin Management_T we need one user-defined method to show the
details of the management employees who have the roles of adirectorand a

Figure 8.36. Rename record group and LOV in Object Navigator

Figure 8.37. Adding a button to a custom form

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

322 Rahayu, Taniar and Pardede

manager at the same time. Actually, the method was implemented while we
were creating the record group because the SQL statement in Figure 8.31b
actually performs the same as the method. Therefore, using this button, we just
needtoretrieve the records.

Now we can add atrigger to that particular button. In this case, we will add a
trigger every time the button is pressed. By choosing Smart Triggers under the
Program menu, while the cursor is pointing to the button, we can be directed
tothe PL/SQL Editor window (see Figure 8.38).

Finally, before we run the application, we can design the look of the form. We
can dothis by changing the color, font, and so forth using the Property Palette
or changing them directly through Layout Editor. Figure 8.39 shows the
example of the same form with a better appearance.

Figure 8.38. Trigger in PL/SQL Editor

® PL/SQL Editor M[=] E3

Compile RBevert New... Delete m Help
Tyoe: [Trigger ~| Object [MANAGEMENT _I ~ IPUSH_BUTTDN"I

Name: [WHEN-BUTTON-PRESSED |

@o_iten (' managemwent_id') :
list_values;

-

of
[«l] >

Modified Not Compiled

Figure 8.39. Custom form after editing

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retailer Case Study 323

Figure 8.40. Custom form running from the client-server application

Now we are ready to run the application. Like using Data Block Wizard, the
application can be run through different ways. For example, we can run it
through the traditional client-server application (see Figure 8.40). Note that
after we press the Show_Managementbutton, windows will appear that listall
the dataretrieved.

Summary

This chapter has demonstrated an implementation of acomprehensive case
study whereby object-oriented Oracle™ has been used to design and imple-
ment the tables and methods, and Oracle™ Developer was used to build the
user interface of the system.

The formsimplementation in this chapter was done using a very simple form
applicationusing Oracle™ Developer. With more PL/SQL applications, we
candesignamore interactive and powerful developmenttool.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

324 About the Authors

Aboutthe Authors

Johanna Wenny Rahayu is an associate professor in the Department of
Computer Science and Computer Engineeringat La Trobe University, Austra-
lia. Her major research is in the area of object-relational databases, Web
databases, and the Semantic Web. She has published more than 70 papers that
have appeared in international journals and conference proceedings. She has
edited three books, which form aseries in Web applications, covering Web
databases, Web information systems, and Web semantics. Currently, sheis
involved inanumber of large projects on software developmentin collabora-
tion with several industry partnersin Australia.

David Taniar earned a PhD in databases from Victoria University, Australia
(1997). Heisnowasenior lecturer at Monash University, Australia. He has
published more than 100 research articles and edited anumber of booksina
Webtechnology series. He ison the editorial board of anumber of international
journalsincluding Data Warehousing and Mining, Business Intelligence and
Data Mining, Mobile Information Systems, Mobile Multimedia, Web
Information Systems, and Web and Grid Services. He has been elected as
afellow of the Institute for Management of Information Systems (UK).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors 325

Eric Pardedeearned his Master’sin Information Technology from La Trobe
University, Australia (2002). At the same university, he is currently aPhD
candidate under the supervision of Dr. Wenny Rahayu and Dr. David Taniar.
He has beenworking asaresearch and teaching assistantat Monash University
and La Trobe University. He has published several research articles that have
appeared ininternational journals and conference proceedings. His research
areaisindatamodelingand query optimization for object-relational databases
and XML (extensible markup language) databases.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

326 Index

Index

A

aggregate table 73

aggregation 1, 7

aggregation hierarchies 7, 178

aggregation relationships 67

array type 35

association 1, 6

association relationships 6, 59, 65,
175

attribute 3

Australian Education Union (AEU)
21

B
Building_T 221
C

Campus_T 217

City University (CU) 210
class 2

clustering 39, 67
clustering technique 39

Company_T 284
complex objects 11
constraint 32
Customer_T 282

D

Degree T 224

delete 13

Department_T 290

DEREF 187

dereferencing query 175, 177
dynamic 89

E

Employee T 294

encapsulation 2, 41, 114
Enrolls_In 227

exclusive composition 8, 10
existence-dependent 8
existence-dependent aggregation 70
existence-dependent composition 9
existence-independent aggregation 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

existence-independent composition 8,
9
extended relational systems 17

F

Faculty T 218
foreign keys 65
foreign-key relationships 51, 60

G

generic methods 1, 13, 114,
115, 215

grant 97

grant mechanism 89, 90

H

heterogeneous composition 11
homogeneous composition 11

I

index-organization table 193

Information Technology Services
(ITS) 210

inheritance 1, 5

inheritance hierarchies 115, 170

inheritance join expression 171

inheritance relationships 4, 51

insert 13

IS DANGLING 187

Item_T 282

K

keyword 52
keyword under 40

M

Management_T 288
many-to-many association 7
member functions 43

Index 327

member procedures 43, 98
methods, defined 1

methods, generic 1

methods declaration 117

methods implementation 117
multilevel composition hierarchy 12
multilevel composition objects 11
multiple inheritance 57
mutual-exclusion inheritance 54, 126

N

National Ltd. 276

nested tables 70

nested-table 186

nesting 70

nesting technique 70
nonexclusive composition 8, 10

0]

object 2

object attribute 191, 192

object identity (OID) 4

object name 3

object references 62, 187

object table 191

object type 34

object wrapper 16

object-oriented conceptual model
(O0CM) 1, 51

object-oriented methods 89

object-oriented model 1, 51

object-oriented system 36

object-relational DBMS 1

one-to-many association 6

one-to-one association 6

Oracle™ 1, 8, 9, 31, 34, 35,
51, 89, 115, 123, 170, 171,
176, 210, 276

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

328 Index

P union inheritance 52, 116
update 13

user-defined methods 14
user-defined queries 170, 171

part queries 178

partquery 179

partition inheritance 56, 132
Person_T 227 \%

personal computer 8
| o value 187, 188
primary-key relationships 51, 60 varray 35, 184

R Varray Collection 184
vertical division 116
ref 38 Victoria 211

referencing query 175
referential integrity 114
referential integrity constraint 32 W
relational databases 16
relational modeling 59
relational systems 16
relational-model 31

visibility scope 44

whole query 178, 181

retrieval 13
S
setnull; 32

shared ID 170
Shareholders T 285

static 89

Store T 282, 290

stored procedure 41, 90, 101
subclass 4, 117

subclass queries 170
Subject_T 240

superclass 4

superclass queries 170

T
tourist attraction 102
U

UML 10
Under 40

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Experience the latest full-text research in the fields
of Information Science, Technology & Management

InfoSci-Online

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:

B Scholarly and scientific book chapters

W Peerreviewed journal articles

B Comprehensive teaching cases

B Conference proceeding papers

B All entries have abstracts and citation information

B The full text of every entry is downloadable in .pdf format

Some topics covered: “...The theoretical bent

B Business Management of many of the titles

W Computer Science covered, and the ease

B Education Technologies of adding chapters to

B Electronic Commerce reading lists, makes it
InfoSci-Online B Environmental IS particularly good for
features: B Healthcare Information Systems institutions with strong
B Easy-to-use W Information Systems information science
B 6,000+ full-text B Library Science curricula.”

entries B Multimedia Information Systems —lssues in Science and

B Aggregated B Public Information Systems Technology Librarianship
B Multi-user access M Social Science and Technologies

To receive your free 30-day trial access subscription contact:
Andrew Bundy
Email: abundy@idea-group.com ® Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSc-3nline

Full Text + Cutting Edge + Easy Access

A PRODUCT OF . f . I °
Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press INTosCI-oniine.com

Idea Group

REFERENCE

New Releases from Idea Group Reference

The Premier Reference Source for Information Science and Technology Research

ENCYCLOPEDIA OF
DATA WAREHOUSING
AND MINING

Edited by: John Wang,
Montclair State University, USA
Two-Volume Set * April 2005 ¢ 1700 pp
ISBN: 1-59140-557-2; US $495.00 h/c
Pre-Publication Price: US $425.00*

*Pre-pub price is good through one month
after the publication date

Provides a comprehensive, critical and descriptive exami-
nation of concepts, issues, tfrends, and challenges in this
rapidly expanding field of data warehousing and mining

A single source of knowledge and latest discoveries in the
field, consisting of more than 350 contributors from 32
countries

Offers in-depth coverage of evolutions, theories, method-
ologies, functionalities, and applications of DWM in such

interdisciplinary industries as healthcare informatics, artifi-
cial intelligence, financial modeling, and applied statistics

Supplies over 1,300 terms and definitions, and more than
3,200 references

ENCYCLOPEDIA OF

DISTANCE LEARNING

Four-Volume Set ¢ April 2005 « 2500+ pp
ISBN: 1-59140-555-6; US $995.00 h/c
Pre-Pub Price: US $850.00*

*Pre-pub price is good through one
month after the publication date

More than 450 international contributors provide exten-
sive coverage of topics such as workforce training,
accessing education, digital divide, and the evolution of
distance and online education into a multibillion dollar
enterprise

Offers over 3,000 terms and definitions and more than
6,000 references in the field of distance learning

Excellent source of comprehensive knowledge and liter-
ature on the topic of distance learning programs

Provides the most comprehensive coverage of the issues,
concepts, frends, and technologies of distance learning

ENCYCLOPEDIA OF
INFORMATION SCIENCE
AND TECHNOLOGY
AVAILABLE NOW!

Five-Volume Set * January 2005 ¢ 3807 pp
ISBN: 1-59140-553-X; US $1125.00 h/c

ENCYCLOPEDIA OF
DATABASE TECHNOLOGIES
AND APPLICATIONS

April 2005 ¢ 650 pp
ISBN: 1-59140-560-2; US $275.00 h/c
Pre-Publication Price: US $235.00*
*Pre-publication price good through
one month after publication date

ENCYCLOPEDIA OF
MULTIMEDIA TECHNOLOGY
AND NETWORKING

April 2005 * 650 pp
ISBN: 1-69140-561-0; US $275.00 h/c
Pre-Publication Price: US $236.00*
*Pre-pub price is good through
one month after publication date

www.idea-group-ref.com

Idea Group Reference is pleased to offer complimentary access to the electronic version
for the life of edition when your library purchases a print copy of an encyclopedia

For a complete catalog of our new & upcoming encyclopedias, please contact:
701 E. Chocolate Ave., Suite 200 * Hershey PA 17033, USA « 1-866-342-6657 (toll free) * cust@idea-group.com

