

���������	�
���

������

Johanna Wenny Rahayu
La Trobe University, Australia

David Taniar
Monash University, Australia

Eric Pardede
La Trobe University, Australia

���� �����

���	����� ��� 	

����	��� �������� �
�� �������	�
�

	
������	�
� ����
����� �	���� 	
� ���� ��������

Hershey • London • Melbourne • Singapore

Acquisitions Editor: Renée Davies
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: Shanelle Ramelb
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
IRM Press (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033-1240
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Object-oriented Oracle / Wenny Rahayu, David Taniar and Eric Pardede, editors.
 p. cm.
 Summary: " The book covers comprehensive and fundamental aspects of the implementation of
object-oriented modeling in a DBMS that was originated as a pure Relational Database, Oracle"--
Provided by publisher.
 Includes bibliographical references and index.
 ISBN 1-59140-810-5 (hardcover : alk. paper) -- ISBN 1-59140-607-2 (softcover : alk. paper) -- ISBN
1-59140-608-0 (ebook : alk. paper)
 1. Oracle (Computer file) 2. Object-oriented methods (Computer science) I. Rahayu, Wenny, 1968-
II. Taniar, David. III. Pardede, Eric, 1975-
 QA76.9.D26O23 2005
 005.1'1--dc22
 2005005340

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

���������	�
���
������

����������
��
�

Preface ... viii

Chapter I. Object-Relational Approaches .. 1
Object-Oriented Conceptual Model .. 1
Static Aspects of OOCM ... 2

Objects and Classes .. 3
Inheritance Relationships .. 4
Association Relationships ... 6
Aggregation Hierarchies ... 7

Dynamic Aspects of OOCM .. 12
Generic Methods ... 13
User-Defined Methods ... 14

New Era of Object-Relational Approaches 15
OOCM Implemented on Relational Databases 16
Object Wrappers on Relational Systems 16
Extended Relational Systems .. 17
Object-Oriented System and RDBMS Coexistence 18
OODBMS and RDBMS Interoperation 19

Object-Relational Database System ... 20
Case Study .. 21
Summary ... 23
References ... 24
Chapter Problems ... 25
Chapter Solutions ... 27

Chapter II. Object-Oriented Features in Oracle™ 31
Relational-Model Features ... 31
Object-Oriented Features ... 34

Object Types and User-Defined Types 34
Collection Types .. 35
Object Identifiers ... 36
Relationships using Ref ... 38
Cluster ... 39
Inheritance Relationships using Under .. 40
Encapsulation ... 41

Summary ... 47
References ... 47
Chapter Problems ... 48
Chapter Solutions ... 49

Chapter III. Using Object-Oriented Features 51
Using Inheritance Relationships ... 51

Union Inheritance Implementation ... 52
Mutual-Exclusion Inheritance Implementation 54
Partition Inheritance Implementation ... 56
Multiple Inheritance Implementation ... 57

Using Association Relationships ... 59
Creating an Association Relationship by a Primary-Key
 and Foreign-Key Relationship .. 60
Creating an Association Relationship by Object
 References .. 62
Primary Keys: Foreign Keys vs. Object References in an
Association Relationship ... 65

Using Aggregation Relationships ... 67
Implementing Existence-Dependent Aggregation using the
 Clustering Technique ... 67
Implementing Existence-Dependent Aggregation using the
 Nesting Technique .. 70
Implementing Existence-Independent Aggregation 73

Case Study .. 76
Summary ... 81
References ... 81
Chapter Problems ... 81
Chapter Solutions ... 83

Chapter IV. Object-Oriented Methods .. 89
Implementation of Encapsulation Using Stored Procedures
 or Functions and Grant Mechanisms 90

Stored Procedures or Functions .. 90
Grant .. 97

Implementation of Encapsulation Using Member Procedures
 or Functions ... 98
Case Study .. 102
Summary ... 107
References ... 108
Chapter Problems ... 108
Chapter Solutions ... 111

Chapter V.Generic Methods ... 114
Implementation of Methods in Inheritance Hierarchies 115

Implementation of Methods in Union Inheritance 116
Implementation of Methods in Mutual-Exclusion
Inheritance .. 126
Implementation of Methods in Partition Inheritance 133
Implementation of Methods in Multiple Inheritance 135

Implementation of Methods in Association Relationships 138
Implementation of Methods in Aggregation Relationships 142

Implementation of Methods in Aggregation Relationships
 Using the Clustering Technique ... 145
Implementation of Methods in Aggregation Relationships
 Using the Nesting Technique .. 146

Case Study .. 151
Summary ... 159
Chapter Problems ... 159
Chapter Solutions ... 163

Chapter VI. User-Defined Queries ... 170
User-Defined Queries in Inheritance Hierarchies 170

Subclass Query .. 171
Superclass Query ... 172

User-Defined Queries in Association Relationships 175
Referencing Query ... 175
Dereferencing Query .. 177

User-Defined Queries in Aggregation Hierarchies 178
Part Query ... 179

Whole Query ... 181
User-Defined Queries Using Multiple Collection Types 184

Varray Collection Type .. 184
Nested-Table Collection Type .. 186

User-Defined Queries with Object References 187
VALUE ... 188
DEREF .. 190
IS DANGLING ... 190

Object Table vs. Object Attribute ... 191
Clustering Technique vs. Index-Organization Table 193
Case Study .. 194
Summary ... 202
Chapter Problems ... 202
Chapter Solutions ... 206

Chapter VII. University Case Study ... 210
Problem Description ... 210
Problem Solution .. 217

Campus_T Table .. 217
Faculty_T Class and Part Classes ... 218
Building_T Class and Part Classes .. 221
Degree_T Class ... 224
Person_T Class, the Subclasses, and the Enrolls_In Table 227
Subject_T Class and Takes Table ... 240

Sample Database Execution ... 243
Generic Methods Sample ... 243
User-Defined Methods Sample .. 247

Building Case Application .. 249
Summary ... 275

Chapter VIII. Retailer Case Study ... 276
Problem Description ... 276
Problem Solution .. 282

Company_T Class and the Subclasses 284
Shareholders_T Class and Own_Shares Table 285
Management_T Class and the Subclasses 288
Store_T Class and the Department_T Part Class 290
Employee_T Class and the Subclasses 294
Maker_T Class .. 300
Item_T Class and Available_In Table 301

Customer_T Class ... 303
Transaction_T Class ... 306

 Building Tools Using Oracle™ Developer 307
Creating a Form Using the Data-Block Form 308
Creating a Form Using a Custom Form 315

Summary ... 323

About the Authors .. 324

Index ... 326

viii

�������

Why This Book?

Object orientation has now invaded traditional relational database-manage-
ment systems. Oracle™ without exception has included object-oriented fea-
tures in its system. SQL is now richer due to these additional features. How-
ever, the object-oriented elements in Oracle™ will not be fully utilized without
a proper database design. For example, a database application designed us-
ing a traditional database modeling, such as entity-relationship (E/R) model-
ing, will not be able to make use of most object-oriented features in Oracle™.
This is simply due to the absence of object-oriented elements in the design.
Even with a proper object-oriented design, without careful transformation from
design to implementation, many of the object-oriented features will be lost.
Object-Oriented Oracle™ addresses this need by not only explaining the
new object-oriented features in Oracle™, but most importantly how these
features can be fully utilized in database applications. We put a heavy empha-
size on how an object-oriented conceptual model is implemented in Oracle™.
This includes the static aspect of an object-oriented conceptual model, in-
cluding the inheritance, association, and aggregation relationships, as well as
the dynamic aspect covering generic object-oriented methods and user-de-
fined queries.
Just as we enjoyed writing this book, we hope that you will enjoy reading it,
and most importantly gain valuable lessons from it. We trust that this book will
give you a comprehensive insight into object-oriented Oracle™.

ix

Distinguishing Features

Object-Oriented Oracle™ presents the right mix between theoretical and
practical lessons on object-oriented features of Oracle™.
In the theoretical part, it describes the foundation of object-oriented concepts
and how they are used in the implementation. The importance of these con-
cepts is invaluable because without this understanding, the new object-ori-
ented features offered by Oracle™ will not be fully utilized. Therefore, these
theoretical elements serve as the foundation of object orientation in Oracle™.
In the practical part, the book contains two case studies (Chapters VII and
VIII) that thoroughly explain the development of a database application using
the object-oriented technology of Oracle™. The case studies start with the
description of an application, followed by the appropriate object-oriented
designs. The designs are then transformed for implementation in Oracle™.
Each chapter also contains extensive examples and code. These examples
and code will give readers a better understanding of how object-oriented
elements are used in Oracle™.
At the end of each chapter, a set of problems, together with their solutions,
are given. These will be suitable exercises for the classroom. The solutions
will be useful for both students and their teachers.

Topical Coverage

Object-Oriented Oracle™ contains eight chapters.
Chapter I starts with object-relational approaches that cover the object-ori-
ented conceptual model. There have been many approaches in amalgamating
the object-oriented model with database systems, from which the new era of
object-relational databases is born.
Chapter II explains object-oriented features in Oracle™. These include the
use of type and object in conjunction with table creation, varray, and nested
table. These features, together with the ref relationships, index cluster, and
the under clause for subtyping, change the whole concept of database model-
ing.
Chapter III describes how these object-oriented features should be properly
used in Oracle™. This includes how the object-oriented conceptual model
described in Chapter I is implemented using the features presented in Chapter

x

II. This chapter particularly focuses on the static aspect of the object-oriented
conceptual model, including the inheritance, association, and aggregation re-
lationships.
Chapter IV justifies how the dynamic aspect of the object-oriented concep-
tual model (encapsulation and object-oriented methods) is implemented using
the new features of Oracle™, namely member procedures and functions.
Chapter V describes generic methods in Oracle™. This covers generic meth-
ods found in the object-oriented conceptual model, including the inheritance,
association, and aggregation relationships. The generic methods comprise typi-
cal database operations (e.g., update, delete, and insert) applied to the mem-
ber attributes of a class. The use of generic methods is a direct implementation
of object-oriented encapsulation features.
Chapter VI focuses on user-defined queries. New SQL features, covering
referencing and dereferencing using ref, super- and subclass accesses using
treat, nesting techniques using the and table, are explained. The chapter also
discusses the varray and nested-table collection types, object references deref,
the is dangling clause, and object attributes.
Chapter VII introduces a university case study that contains a database to
maintain the running of courses in a university. This case study shows the en-
tire database-application development life-cycle process from the object-ori-
ented design to transformation for implementation in Oracle™.
Finally, Chapter VIII presents another case study based on a retailer-chain
company. In addition to using the object-oriented conceptual model for the
database design, implementation is carried out using Oracle™ Form Devel-
oper. The aim is to show how a window-based database application can be
developed using the object-oriented technology in Oracle™.

Intended Audience

Object-Oriented Oracle™ is intended for the following audiences.

• Database Practitioners
Object orientation in Oracle™ has now opened a wide opportunity in
exploring new ways for building database applications. This book shows
how object-oriented features can be adapted for database-application
development. It describes not only the practical aspects of database-
application development, but also the theoretical foundations that lead to

xi

the use of the object-oriented technology in database applications using
Oracle™. The two case studies included in this book show the two
flavours of database applications using the object-oriented technology
as their foundation whereby the first application is a text-based applica-
tion, and the second is window-based using Oracle™ Form Developer.

• College Students and Teachers
This book is suitable as a textbook for database courses at any level: an
introductory database course whereby this book can be used as a supple-
ment to the standard database-management textbook, or an advanced
database course concentrating on object-oriented database development.
Students who are learning the standard material of SQL are now able to
learn, at the same time, the new object-oriented features of SQL. Fur-
thermore, students are now able to relate how a database design, in this
case using an object-oriented method, can smoothly be implemented in
Oracle™, thus making the entire database-application-development life
cycle transparent.

• General IT Readers
General IT readers who are keen on the new technology of Oracle™ will
find this book useful and informative. Object orientation has been an
interesting topic in general due to the popularity of object-oriented pro-
gramming languages, like C++ and Java. The object-oriented concepts,
which underpin these programming languages, have been widely under-
stood. However, their applications to database systems have not been
broadly explored. This book demonstrates how object-oriented features
could be used easily in Oracle™, and most of all, how they could be
used appropriately and efficiently.

• IT Researchers
Object orientation in relational database systems has been an active re-
search area in the last decade. Many researchers have proposed meth-
ods for transforming object-oriented design to relational database imple-
mentation. Other groups of researchers have been concentrating on ob-
ject-relational databases. Due to the increasing trend whereby most da-
tabase-management-system vendors are positioning themselves in the ob-
ject-oriented tracks, there are plenty of research opportunities in this
important area. This book will give researchers the basic foundation for
amalgamating two different elements: object-oriented and relational da-
tabase systems.

xii

Feedback and Comments

Although we have fully tested all code included in this book, should there be
any problems or confusion about the code, please do not hesitate to contact
us.
We would appreciate if you could also share any other comments or feedback
with us so that we can incorporate them in a future edition. Comments and
feedback may be sent directly to the publisher at

Object-Oriented Oracle™
Idea Group Inc.
701 East Chocolate Avenue, Suite 200
Hershey, PA 17033-1240, USA

xiii

!�"
�#��$%�
�

Object-Oriented Oracle™ would not have been published without the sup-
port of a number of parties. We owe them our gratitude.
First of all, we would like to thank Mehdi Khosrow-Pour and Jan Travers of
Idea Group Publishing for believing in us on this project. They supported our
ideas in writing a book on this topic, and only because of their encouragement
and trust, this book becomes a realization.
We would also like to thank the team at Idea Group for keeping the schedule
on track. Their communication and support were very efficient and profes-
sional. We were glad for this opportunity to collaborate with them.
Finally, we would like to express our sincere thanks to our respective em-
ployers, the Department of Computer Science and Computer Engineering, La
Trobe University, Australia, and the School of Business Systems, Monash
University, Australia, for the facilities and time that we received during the
writing of this book. Without these, the book would not have been written in
the first place.

J. W. Rahayu
D. Taniar
E. Pardede

Melbourne, June 20, 2005

Object-Relational Approaches 1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Object-Relational
Approaches

This book focuses on the implementation of an object-oriented model into
object-relational DBMS using Oracle™. All aspects of the object-oriented
model, particularly those that play a significant role in database implementation,
will be discussed in this book.
The object-oriented modeling technique is an important issue in this book
because it is the underlying notion behind the development of the object-
relational approaches. Therefore, in this chapter we will start with an outline of
the object-oriented conceptual model (OOCM).

Object-Oriented Conceptual Model

An OOCM encapsulates the structural and static as well as behavioral and
dynamic aspects of objects. The static aspects consist of the classes and
objects, and the relationships between them, namely, inheritance, association,
and aggregation. Each of these relationships is associated with a set of
constraints. The dynamic aspect of the OOCM is divided into two types of
methods: generic and user defined.
The object-oriented method promised to improve software quality and effi-
ciency. One of the most enticing promises is that of real reusability: reusability

2 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of codes, program portions, designs, formal specifications, and also commer-
cial packages. As software-development cost increases, more developers see
the benefit of using reusable components. Solving the reusability problem
essentially means reducing the effort required to write codes; hence, more
effort can be devoted to improving other factors such as correctness and
robustness.
The main idea of the object-oriented method is that it provides a more natural
way to model many real-world situations. The model obtained by the object-
oriented method will be a more direct representation of the situations, providing
a better framework for understanding and manipulating the complex relation-
ships that may exist.
The basic segment of the object-oriented system is an object. Everything that
exists and is distinguishable is an object. Each object has one or more unique
attributes that make it distinguishable from the others.
However, several objects can also have the same structure of attributes and
operations. Only after the attributes’ values are given can an object be
recognized. A set of attribute structures and operations applicable to those
attributes is called a class.
In the object-oriented method, we also recognize the concept of encapsula-
tion. Basically, from an outside point of view, each object is just a thing or a
person (such as a student named Jennie, Andy, etc.). However, if each object
is explored in greater detail, it actually consists of some attributes (identity,
name, status, gender, etc.) for which each object has its own value and so is
distinguishable, as are the operations that are applicable to those sets of data
(print details, set details, etc.). In other words, an object is simply an
encapsulation of data and their operations.

Static Aspects of OOCM

The static aspects of OOCM involve the creation of the objects and classes that
also includes decisions regarding their attributes. In addition, the static aspects
of OOCM are also concerned with the relationship between objects, that is,
inheritance, association, and aggregation.

Object-Relational Approaches 3

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Objects and Classes

An object can be a physical object, such as a computer, vehicle, or person. It
can be an event such as a queue in front of the teller, sales, and so forth.
People’s roles such as that of an officer, tutor, student, and so forth can also
be classified as objects.
An object is a data abstraction that is defined by an object name as a unique
identifier, valued attributes (instance variables) that give a state to the object,
and methods or routines that access the state of the object. It is convenient to
use a graphical notation to represent an object model. We will use a notation
that is a modified UML notation (Booch, Rumbaugh, & Jacobson, 1999). The
modifications will be clarified throughout this discussion. Most of these relate
to the semantics and definitions of some terms such as composition, aggrega-
tion, and so forth. An object is often drawn as a rectangle having an object name
and its properties (attributes and methods). With far fewer details, an object is
often shown as a square with the object name only. Figure 1.1 gives an
illustration of a graphical notation for objects.
The state of an object is actually a set of values of its attributes. The specified
methods are the only operations that can be carried out on the attributes in the
object. The client of the object cannot change the state except by method
invocation. Thus, an object encapsulates both state and operations. In some
languages, the methods are procedures and functions. A procedure may or may
not have arguments, and it can be used to access the attributes of an object. A
function is similar to a procedure, but it returns a value.
Objects are the basic run-time entities in an object-oriented system. An object
can be created only during run time. Figure 1.2 shows an example where at run
time an object Staff with name Adam is a staff member in the computer-science
department.

Person

ID
name
address

get_age ()

object
name
attributes

methods

Figure 1.1. Object

4 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each object has an identity, called object identity (OID). An OID is an
invariant property of an object that distinguishes it logically and physically from
all other objects. An OID is therefore unique. Two objects can be equal without
being identical.
Along with objects, we also need to understand classes. It is important to
distinguish between them, and they should not be confused.
A class is a description of several objects that have similar characteristics
(Dillon & Tan, 1993). Coad and Yourdon (1990) described class as a set of
specifications that characterizes and is applicable to a collection of objects.
Objects of the same class have common methods and, therefore, uniform
behavior. Class is a compile-time notion, whereas objects exist only at run time.
Therefore, a class has three aspects: the type as attributes and applicable
routines, a container of objects of the same type, and an instantiation
mechanism, such as to create.

Inheritance Relationships

An inheritance relationship is generally known as a generalization or special-
ization relationship, in which the definition of a class can be based on other
existing classes. Given that a class inherits from another class, the former class
is known as a subclass, whereas the latter is the superclass.
A subclass is a class that inherits from at least one generalized class that is the
superclass. Consequently, a subclass must have all the properties of the
superclass, and may have others as well. In other words, a subclass is more
specialized than the superclass. Inheritance is a key feature of the object-
oriented paradigm.

Staff

name = ‘Adam’
work =

put_staff ()
set_staff ()

Department

name = ‘Computer Science’
mail = 39

set_details ()
put_details ()

Figure 1.2. Object as run-time entity

Object-Relational Approaches 5

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consider Figure 1.3 as an example. Suppose there are two classes: Person and
Student. In this case, every student must be a person, so Student class inherits
from Person class. All features that apply to a person are applicable to a
student, and every student is a person. A student will also have a name and an
address from Person class. Moreover, a student can have additional features.
Therefore, the inheritance mechanism can be viewed as an extension of a
superclass.
On the other hand, rather than being considered as an extension, inheritance
can be viewed as a restriction on the superclass by hiding previously exported
features of the superclass. Figure 1.4 shows an example of using inheritance as
a restriction. Beside features such as name, address, and so forth, Employee
class has an attribute salary, whereas Volunteer class, which is a special case
of employee, does not receive any salary.

Student
student_ID
major

superclass

subclass

Person
name
address

is a

Figure 1.3. Inheritance relationship as an extension

superclass

subclass

Employee
salary

Volunteer
no_salary

is a

Figure 1.4. Inheritance relationship as a restriction

6 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If several classes have considerable commonality, it can be factored out in a
deferred or abstract class. The differences are provided in several subclasses
of the deferred class. A deferred class provides only a partial implementation
of a class or no implementation at all. From the design point of view, a deferred
class provides the global view of a class, although the details have not yet been
implemented.

Association Relationships

Association refers to a connection between object instances. Association is
basically a reference from one object to another that provides access paths
among objects in a system.
Objects are connected through an association link. The link can have a
specified cardinality, such as one-to-one, one-to-many, and many-to-many. In
addition to this, in object orientation, collection types have also been intro-
duced and can characterize an association link.

One-to-One Association

In this type, only one object can be connected with another object of the other
type for the particular association link, and vice versa.
For example, in Figure 1.5, Staff class and Office class are connected through
a work_in association link. The link is one-to-one type because only one staff
can work in one office, and one office can have only one staff working in it.

One-to-Many Association

In this type, the first object can be connected only with one of the second
object, but the second object can connect with many of the first object.

work_in 1 1
Office Staff

Figure 1.5. One-to-one association

Object-Relational Approaches 7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, in Figure 1.6, Student class and Department class are connected
through an enrolled_in association link. The link is one-to-many type because
one student can enroll only in one department, but one department can have
many students enrolled in it.

Many-to-Many Association

In this type, one object can be connected with many objects of the other type
for the particular association link, and vice versa.
For example, in Figure 1.7, Student class and Subject class are connected
through a takes association link. The link is a many-to-many type because one
student can take many subjects, and one subject can be taken by many
students.

Aggregation Hierarchies

Aggregation is a tightly coupled form of association (Rumbaugh, Blaha,
Premerlani, Eddy, & Lorensen, 1991). The main difference between aggrega-
tion and association is the underlying semantic strength. While an aggregation
forms a method of organization that exactly maps human thinking, an associa-
tion is a mere mapping between objects in an application (Coad & Yourdon,
1991).
Aggregation is a composition or “part-of” relationship, in which a composite
object (whole) consists of other component objects (parts). This relationship
is used extensively in the areas of engineering, manufacturing, and graphics

Figure 1.6. One-to-many association

Figure 1.7. Many-to-many association

enrolled_in 11…
DepartmentStudent

takes 1…1…
SubjectStudent

8 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

design. In these applications, when a composite object is created, one may
merely want to know the type of the parts involved without being bothered with
the details. At other times, one may need the details of a particular part only
(Dillon & Tan, 1993).
In an aggregation relationship, in which one whole can have many parts
associated with it through a part-of relationship, the entire part-of relationship
is viewed as one composition, not several association relationships. Let us
consider an aggregation relationship between a PC (personal computer) as a
whole and its parts consisting of the hard disk, monitor, keyboard, and CPU
(Figure 1.8). It would be inappropriate to model the aggregation as an
association since the composition semantic would be lost in the association.
Modeling the above example as an association will form several association
relations, namely, the PC and hard disk, PC and monitor, PC and keyboard,
and PC and CPU. Instead of creating one composition, we will end up with
several associations.
Because the relationship between the whole and the parts is very clearly
designated in aggregation relationships, we should be able to retrieve all
aggregate parts that belong to a whole by identifying the whole only. For
example, when a PC object is accessed, the aggregate parts Hard Disk,
Monitor, Keyboard, and CPU that belong to that PC can also be identified.
Implementing the above aggregation as an association will require us to go
through every association relationship in order to retrieve all parts that belong
to a whole.
Dillon and Tan (1993), Dittrich (1989), and Kim (1990) identify four types of
composition: sharable dependent, sharable independent, nonsharable depen-
dent, and nonsharable independent. We will refer to nonsharable and sharable
as exclusive composition and nonexclusive composition, and dependent
and independent as existence-dependent and existence-independent com-
position, respectively.

Hard Disk Monitor Keyboard

PC

CPU

Figure 1.8. Aggregation

Object-Relational Approaches 9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Existence-Dependent and Existence-Independent Composition

When the existence of the part object is fully dependent on the whole object,
then the aggregation relationship is of an existence-dependent type. In this type
of aggregation, whenever the whole object is removed, then all its associated
part objects will also be removed. Thus, no part object can exist without an
associated whole object. This is the most common type of aggregation, where
the whole object is more like a container object. When the existence of a part
object is independent of any whole object, we will have an existence-
independent aggregation.
Existence-dependent and existence-independent compositions are two aggre-
gation types in which the dependencies between the whole object and its part
objects are significant.
Figure 1.9 shows an example of an existence-dependent composition. In the
example, a Course Outline object is an encapsulation of several part objects,
that is, Course Objectives, Course Contents, and Course Schedule. When a
whole object is accessed, its part objects can be identified without the necessity
to trace every link from the Course Outline object. In an existence-dependent
type of composition, the deletion of a course outline will cause the deletion of
that particular course outline and all of its elements.
In an existence-independent type of composition, the existence of the part is
independent. For example, in Figure 1.10, if for some reason Travel Docu-
ments is removed, the ticket, itinerary, and passport still exist.

1

1… 1…1…

Travel Documents

ItineraryTickets Passport

1

1… 1…1…

Course Outline

Course Objectives Course Content Course Schedule

Figure 1.10. Existence-independent composition

Figure 1.9. Existence-dependent composition

10 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Exclusive and Nonexclusive Composition

When in an aggregation relationship a particular part object can be shared by
more than one whole object, then we have a nonexclusive type. Otherwise,
when each part object is exclusive to a particular whole only, then it is an
exclusive type of aggregation.
Creating an exclusive composition means that the whole object is the sole
owner of the part objects. The need for exclusiveness arises particularly when
modeling physical objects, such as vehicles, bridges, electronic devices, and so
forth. In order to capture the semantics of such applications, the aggregation
relationship should emphasise the exclusivity; for example, a laptop does not
share a CPU or hard disk with other laptops.
In the example shown in Figure 1.11, we need to ensure that every part object
is exclusively owned by a particular whole only.
In a nonexclusive composition, a part of one whole object may be shared or
referenced by other whole objects, and thus the part is not exclusive. For
example, a binary file or a text file can be referenced by more than one directory
(see Figure 1.12).
It is important to note that in UML, the term composition refers to exclusive and
dependent aggregation. However, we use composition interchangeably with
aggregation and use qualifications to distinguish between the different categories.

1…

1…1…

Directory

Binary File Text File

Figure 1.12. Nonexclusive composition

1

1 1

 Laptop

CPU

Hard Disk

Figure 1.11. Exclusive composition

Object-Relational Approaches 11

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Homogeneous Composition

The previous examples are categorized into a heterogeneous composition since
one whole object may consist of several different types of part objects. In
contrast, homogeneous composition implies that one whole object consists of
part objects of the same type.
In the example shown by Figure 1.13, a Hard Disk object consists of several
Hard-Disk Controllers. Once we add another type under the whole, the type
has changed into heterogeneous composition.
The main advantage of modeling the homogeneous type of composition is that
the model is flexible enough for further extensions or modifications to include
components of another type. In the case of a mixture of homogeneous and
heterogeneous components, the homogeneous composition is indicated by the
cardinality, namely, 1 to n.

Multilevel Composition Objects or Complex Objects

In many applications, the composition hierarchy may span an arbitrary number
of levels. If one gets a composite or aggregated object design that has

1…

1

Hard Disk

Hard-Disk Controller

Figure 1.13. Homogeneous composition

1
1 1

1
1 1

 Entertainment Unit

Audio Unit

Visual Unit

Screen

Projector

AGGREGATE
(level 1 of path 1)

AGGREGATE
(level 2 of path 1)

AGGREGATE
(level 2 of path 2)

Figure 1.14. Entertainment-unit complex object

12 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

component objects that are themselves composite or aggregated objects, then
one gets a two-level aggregation or composition hierarchy. This hierarchy
could be repeated to several levels of composition or aggregation. Because of
the arbitrary number of the part-of relationships between the objects, the
objects involved in the composition are also known as complex objects.
Figure 1.14 shows an example of an entertainment-unit multilevel composition
hierarchy. The aggregation relationships in each level of the composition can be
seen as a type of simple aggregation relationship (e.g., existence dependent or
independent, exclusive or nonexclusive, or homogenous). However, a multi-
level composition hierarchy may include different types of aggregation relation-
ships at each level of the composition.

Dynamic Aspects of OOCM

Dynamic aspects can be called implementation or behavioral aspects of
OOCM. They involve the creation of the routines. Routines are specified as
operations or methods, which are defined in the class that describes the object.
The specified routines are the only operations that can be carried out on the
attributes in the object. The client of the object cannot change the state
(attributes) except by routine call. Routines form the interface between the state
of an object and the user.
Routines are implemented in OOCM using the encapsulation concept. Encap-
sulation, also known as information hiding, prevents the client programs from
seeing the internal part of an object where the algorithm of the routines and the
data structures are implemented, which does not need to be known by the
clients. Figure 1.15 shows the encapsulation of an object.

Client Programs

Attributes

Routines

Object

Figure 1.15. Encapsulation of attributes and routines

Object-Relational Approaches 13

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methods as a routine can be divided into two main parts: the generic method
and user-defined method.

Generic Methods

Generic methods are used to access attributes of an object. The concept behind
the need for generic methods is encapsulation, in which attributes associated
with an object can be accessed directly only by the methods of the object itself.
In object orientation, attributes refer to simple or primitive types (such as
integer, string, etc.), user-defined objects (such as Person, Student, etc.), or
collection types (such as list, array, set, and bag). Generic methods should
provide ways for accessing the different types of attributes.
Generic methods may have the following operations: retrieval, update,
delete, or insert. The retrieval generic methods are methods to retrieve the
attributes’ values. They are actually read-only methods and are often known as
queries. The update generic methods are used to update the values of the
specified attributes. The delete generic methods are used to delete the specified
attributes’ values. Since the update and the delete generic methods manipulate
the values of the specified attributes, they are often associated with the data-
manipulation language (DML). The insert generic methods insert new values to
the specified attributes. This is similar to the concept of object creation in an
object-oriented environment.
All of the above operations (i.e., retrieve, update, delete, and insert) can be
applied to inheritance, association, and aggregation hierarchies. Generic meth-
ods on inheritance hierarchies are methods that access attributes in inheritance
hierarchies. Normally, the method is declared in a subclass and accesses the
value of the superclasses’ attributes, and it may also access local attributes
(attributes of the subclass) as well.
Generic methods on association structures are methods that access attributes
of classes along an association structure. If two classes are associated through
an association relationship, methods declared in one class may access at-
tributes of the other class.
Generic methods on aggregation hierarchies are methods that access attributes
of other specified classes in an aggregation hierarchy. If the method is declared
in a whole class, the methods may access attributes of its part classes. The
opposite is applied if the method is declared in a part class, where it may access
attributes of the whole class as well as its own. Figure 1.16 illustrates the

14 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

taxonomy of generic methods in object orientation. The matrix indicates the
operations in generic methods including retrieve, update, delete, and insert, and
object hierarchies including inheritance, association, and aggregation hierar-
chies.
In the transformation of generic methods into object-relational operations, we
consider all of the operations specified above (i.e., retrieval, update, delete,
and insert) and operations on object hierarchies (i.e., inheritance, association,
and aggregation).
In this book, a semiautomatic transformation of object-oriented generic
methods into a set of object-relational operations is presented. These relational
operations can subsequently be implemented as stored procedures. The
transformation rules are determined by the different types of attributes being
accessed by the generic methods (result type), as mentioned above, and the
structure of the objects that own the generic methods.

User-Defined Methods

As suggested by the name, user-defined methods are nongeneric methods that
are defined by users in order to perform certain database functionality. In this
book, the representation of user-defined methods in object-relational data-
bases is presented. The functions and expressions used to represent user-
defined methods are supported by most commercial database systems avail-
able today. Ways by which to optimise queries that access the stored
procedures are also described.

Retrieve Update Delete Insert

Inheritance

Aggregation

Association

Figure 1.16. A taxonomy for generic methods

Object-Relational Approaches 15

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

New Era of
Object-Relational Approaches

As mentioned in the previous sections, object-oriented concepts provide an
excellent basis for modeling because the object structures permit analysts and
designers to focus on a problem at a high level of abstraction, but with a resulting
design that can be easily and practically implemented. In the past few years,
more software has been written using the object-oriented paradigm. Many
prototypes as well as commercial object-oriented DBMSs (OODBMSs) such
as O2, Versant, POET, ONTOS, Objectivity, GemStone, and ObjectStore
have been developed by both industrial and research laboratories around the
world (Deux, 1990; Kim, 1990; Robie, Lapp, & Achach, 1998; Stonebraker,
1990).
Nevertheless, object-oriented databases are still not as widely used as rela-
tional databases (RDBs) that rest on a firm formal foundation. Stonebraker
(1996) reports that the OODBMS market is 100 times smaller in comparison
with the RDBMS market, and it is expected that this figure will be maintained
in many years to come. It is a fact that RDBs still largely dominate the database
community. RDBMS technology is considered mature and has been the basis
of a large number of applications around the world. However, the relational
approach, when used to model real-world problems, is not nearly strong
enough to model all the different kinds of relationships, both static and dynamic.
This also includes the fact that the relational model has a lack of semantic
features and an inability to represent complex structures and operations (Kim,
1995).
The object-oriented data model has significant benefits in the areas of semantic
data modeling. These rich semantics are lacking in the relational model. On the
other hand, in the implementation of the data model, there are major strengths
of the existing RDBMS that OODBMS does not have. These include RDBMS’s
widespread acceptance as well as the simplicity of the query processing.
The above reasons have stimulated the emergence of a new approach in the
development of database systems, namely, the object-relational approach. In
general, this approach is a method of combining both object-oriented and
relational approaches with the aim of incorporating the advantages of each and
eliminating their drawbacks.
In the next sections, the object-relational approach is grouped into five major
categories.

16 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OOCM Implemented on Relational Databases

Despite the differences between the object-oriented and the relational para-
digm, in reality, most of object-based development systems are still using the
RDBMS engine as their persistence mechanism. Therefore, a transformation
from object-oriented models into relational structures and operations is crucial.
Much work has been done in this area, where each structure in the OOCM is
transformed into implementation in pure RDBMS (Rahayu, Chang, Dillon, &
Taniar, 2000, 2001). This method is especially useful when the RDBMS
chosen for the implementation is a pure RDB that does not support object-
oriented extensions (SQL 92 standard).

Object Wrappers on Relational Systems

An object wrapper (see Figure 1.17) is basically a layer on top of a
conventional RDB engine that simulates object-oriented features. One of the
main aims of this layer is to transform object queries (OQL) submitted by users
into relational queries. OQL is an enhanced relational query with additional
capabilities to understand arbitrary complex types as well as user-defined
operations. Thus, the user is allowed to interact with the system through the
object wrapper as if it were an OODBMS even though the underlying
mechanism is RDBMS.
It is necessary to have a solid transformation methodology that can be used by
the object wrapper to perform the translations of the object-oriented features
to their relational equivalent for interaction with the underlying RDBMS. The
transformation methodology should not only provide translation techniques,
but also ensure efficient access to the result of the translation process.

����

�

�
������

	
������������

	���
������

������������

Figure 1.17. Object wrappers on relational systems

Object-Relational Approaches 17

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Extended Relational Systems

In this category, relational systems are extended in order to support object-
oriented features (see Figure 1.18). The extensions include the support of
object identifiers, inheritance structures, complex type representations, and
user-defined operations.
The SQL3 standard and the forthcoming SQL4 may provide the solution to
standardizing the extensions to RDBMS. However, until now, work on SQL4
is still ongoing, and none of the existing extended relational systems fully
supports the standard, even for SQL3.
There are several different approaches that belong to this category. One of the
approaches used for capturing the concept of complex structures is to allow
relations to have attributes that are also relations, thereby abandoning the first
normal form of the relational model. The model, which is known as the nested-
relations or NF2 (nonfirst normal form) data model (Scheck & Scholl, 1986),
can be used to represent composite objects and set-valued attributes. An
example is a DBMS prototype developed by Dadam et al. (1986) that supports
the NF2 model.
Another approach in this category is an extension of a conventional SQL that
is used to retrieve and manipulate data. For example, POSTGRES (Stonebraker,
1986) provides an extended SQL called POSTQUEL query with the ability to
capture the concept of abstract data types (encapsulated data structures and
methods), inheritance structures, and object identity. Another example is
Starburst (Lindsay & Haas, 1990; Schwarz et al., 1986) that extends the
relational algebra and supports user-defined operations and complex types.
Oracle™ 8 and above provide the implementation of most of the above
extensions. It allows the creation of objects and user-defined types, encapsu-
lation of data structure and methods, complex relationships including inherit-

���

�����

����

����������� 	
����
	�������
��������

��������
������������ ���!

Figure 1.18. Extended relational systems

18 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ance and referencing, as well as composition through nested tables and
collection types. Because of this, we will use Oracle™ throughout this book to
demonstrate the design and implementation of object-relational databases.

Object-Oriented System and RDBMS Coexistence

As opposed to a hybrid system in which both object-oriented and relational
systems are combined into a single system, the coexistence approach provides
an interface that allows object-oriented systems to access and manipulate a
relational system by encapsulating RDB entities such as tables and queries into
objects. For example, Borland Database Engine API for Borland C++ Builder
allows an object-oriented programming language C++ to access standard data
sources in Paradox, dBase, or Interbase format. Similar interfaces such as
Microsoft Jet Database Engine are used by Microsoft Visual C++.
This coexistence approach (see Figure 1.19) is obviously quite attractive to
many commercial vendors. The main reason for this is that the cost of building
the overall system is minimized by taking the two systems (object-oriented
system and RDBMS) and letting them coexist. The work required to accom-
modate the new functionality in both systems and to let them communicate in
a coexistent environment is far less than the effort needed to combine both
systems into a single hybrid system.
Even though no attempt is made to enforce the storage of the object instances
within the schema for the RDBMS, it is essential to have a solid methodology
for the transformation of the object model into the associated relational
schemas that ensures correctness and efficiency of the data storage and
retrieval.

�"#$%���&� 	
����	�������
"��'��!!��'

���������

����������������

Figure 1.19. Object-relational coexistence approach

Object-Relational Approaches 19

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OODBMS and RDBMS Interoperation

In the interoperation approach (see Figure 1.20), a request from an originating
database side is translated and routed to a target database side for processing.
The result is then returned to the originator of the request. To achieve
transparency of the interoperation process, translation between the different
models of the participating database systems must be performed during the
data interchange (Ramfos et al., 1991). There are two major translations
needed in this approach:

• schema translations, where the schema of the target database is translated
into the data-definition language (DDL) of the originating database side,
and

• query translations, where a query in the DML of the originating database
side (posed against the above produced schema) is translated into the
DML of the target database side.

This approach is frequently used in a multi-DBMS. A multi-DBMS is a system
that controls multiple translators (or gateways), one for each remote database
(Kim, 1995). In this type of environment, it is possible for one application
program to work with data retrieved from both one OODBMS and one or
more RDBMSs.
To develop a comprehensive translator, the identification of the schemas and
operations owned by each of the participant database sides, OODBMS and
RDBMS, needs to be fully understood. A complete methodology that supports

(����������

		�����

�����

������������

������

�����

������������

Figure 1.20. OODBMS-RDBMS interoperation

20 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the theoretical mapping from the originating schema into the target schema is
essential. Ideally, this mapping methodology should cover both the structural
component as well as the dynamic component of the database systems.

Object-Relational Database System

The relational data model has a sound theoretical foundation, is based on the
mathematical theory of relations and first-order logic, and gives the users a
simple view of data in the form of two-dimensional tables. Many DBMSs use
this relational model. Even nonrelational systems are often described as having
supporting relational features for commercial purposes. The model’s objec-
tives were specified as follows.

• To allow a high degree of data independence. The application programs
must not be affected by modifications to the internal data representation,
particularly by the changes of file organizations, record orderings, and
access paths.

• To provide substantial grounds for dealing with data semantics, consis-
tency, and redundancy problems.

• To enable the expansion of set-oriented DMLs.
• To become an extensible model that can describe and manipulate simple

and complex data.

The first two objectives have been achieved by the relational model, mainly
because of the simplicity of the relational views presenting the data in two-
dimensional tables and the application of the normalization theory to database
design.
The third objective has been achieved by the use of relational algebra, which
manipulates tables in the same way that arithmetical operators manipulate
integers, and by nonprocedural languages based on logical queries specifying
the data to be obtained without having to explain how to obtain them.
The last objective is the essence of current developments concerning extended
relational and object-relational models.

Object-Relational Approaches 21

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Case Study

The Australian Education Union (AEU) keeps the records of its properties and
activities in a database using an object-oriented concept. Property can be
divided into two main categories: building and vehicle. Beside these two, there
are also other minor properties that are not categorized into building and
vehicle. Each building has several rooms and each room has computers in it.
Some of the rooms also have overhead projectors (OHPs).
The union employees’ records are kept in a separate class. Employees can be
divided into two types: office staff and organizers. Management is not included
in these two categories, although their data is also kept in the employee class.
While office staff work only internally in the union, the organizers have to
represent teachers in the area to which they have been assigned. One organizer
can represent many teachers, but one teacher can have only one organizer as
her or his representation. For this purpose, each organizer has been given one
vehicle, and that vehicle may be used only by that particular organizer. Each
organizer will be assigned only one area, which can be divided into several
suburbs. The area and suburb data are also kept in separate classes.
The union also keeps records for teachers who are union members. All of these
teachers have to work in government schools. Although it is not common, a
teacher can work in more than one school. The type of school that can liaise
with AEU has to be categorized into one of the three distinct types: primary
school, secondary school, and technical college (TechC).
We will draw an object-oriented model of the AEU database and determine the
type where necessary. We will identify the objects and the relationships as
follows.

• Identify Objects
To start with, we know that there will be a union object to store the data
about the AEU organization. It also has a property object that can be
divided into building and vehicle objects. Furthermore, there is a room
object that is composed of PC and OHP objects.
Next, we will need an employee object for AEU’s employee records.
Their types are also objects: Office Staff and Organizer. For working area
and suburb, we need two new objects as well.

22 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, as employees will need to work with teachers, we need a teacher
object. Along with that, the additional objects of School and its special-
izations—Primary, Secondary, and TechC—will be added.

• Identify Relationships
There will be three types of relationships that we need to recognize before
producing the object-oriented model diagram.
First, we need to identify inheritance relationships. Inheritance can be
shown by the generalization-specialization feature. One of them is be-
tween Employee and its specializations Office Staff and Organizer.
Property can also be specialized into Vehicle and Building. And the last
one is the specialization of School into Primary, Secondary, and TechC.
Second, we need to identify association relationships. This relation is
usually the most frequent relation in an object-relational system. From the
union object there are two associations: one to Property (one to many)
and the other one to Employee (one to many). Organizer has three

1

1…

1

1…1

1

1

1

1

1…

1…

1

1…

uses

hasworks

represents
assigned in 1…

1

1… 1…1

1…

teaches in

Teacher

SecondaryPrimary

School

TechC

Office Staff Organizer

Area

Suburb

Union Property

Vehicle Building

Rooms

PC OHP

Employee

Figure. 1.21. Object-oriented diagram of AEU case study

Object-Relational Approaches 23

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

association relationships, that is, associations to Vehicle (one to one),
Area (one to one), and Teacher (one to many). The last association
relation is between Teacher and School (many to many).
The last relationship type is aggregation. Building has two levels of
aggregation. The first level is homogeneous aggregation to Room, and the
second level is to PC and OHP. Another homogeneous aggregation
relationship is between Area and Suburb.

After identifying the objects and their relationships, we can draw down the
object-oriented model for the AEU case study as it is shown in Figure 1.21.

Summary

An approach to a new model in database systems is needed due to the limitation
of the relational model that is widely used commercially. The relational model
is not rich enough to represent the high complexity of real-world problems. On
the other hand, the object-oriented model that is well recognized as a very
powerful approach to model high-complexity problems, such as in procedural
languages, is not a well-known database system model. Also, users still like the
ease of use of the relational model.
Although the most widely used model of current database systems is a relational
model, it can also be extended to adopt the concept of the object-oriented
model. In an object-oriented model, the objects encapsulate their attributes
and their methods from other objects, thereby facilitating the concept of
information hiding. This model also accommodates the structural relationship of
classes and objects, which can be categorized into inheritance, association, and
aggregation, and the implementation of methods that consist of generic methods
and user-defined methods.

24 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Ambler, S. W. (1997). Mapping objects to relational databases. In Building
object applications that work. SIGS Books.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling
language user guide. Reading, MA: Addison-Wesley.

Coad, P., & Yourdon, E. (1990). Object-oriented analysis. Englewood
Cliffs, NJ: Yourdon Press.

Coad, P., & Yourdon, E. (1991). Object-oriented design. Englewood Cliffs,
NJ: Yourdon Press.

Dadam, P., et al. (1986). A DBMS prototype to support extended NF2
relations: An integrated view on flat tables and hierarchies. Proceedings
of the ACM SIGMOD Conference.

Deux, O. (1990). The story of O2. IEEE Transactions on Data and
Knowledge Engineering TKDE, 2(1), 91-108.

Dillon, T. S., & Tan, P. L. (1993). Object-oriented conceptual modeling.
Prentice-Hall.

Dittrich, K. R. (1989). Object-oriented database systems for information
systems of the future. In Seminar notes. Melbourne, Australia.

Halper, M., Geller, J., & Perl, Y. (1992). “Part” relations for object-oriented
databases. Proceedings of the 11th International Conference on the
Entity-Relationship Approach.

Kim, W. (1990). Introduction to object-oriented databases. The MIT
Press.

Kim, W. (1995). Modern database systems. Addison-Wesley.
Lindsay, B. G., & Haas, L. M. (1990). Extensibility in the starburst experimen-

tal database system. In IBM symposium: Database systems of the 90s
(pp. 217-248). Springer-Verlag.

Rahayu, J. W., Chang, E., Dillon, T. S., & Taniar, D. (2000). A methodology
for transforming inheritance relationships in an object-oriented concep-
tual model to relational tables. Information and Software Technology
Journal, 42(8), 571-592.

Rahayu, J. W., Chang, E., Dillon, T. S., & Taniar, D. (2001). Performance
evaluation of the object-relational transformation methodology. Data and
Knowledge Engineering, 38(3), 265-300.

Object-Relational Approaches 25

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ramfos, A., et al. (1991). A meta-translation system for object-oriented to
relational schema translations. In M. S. Jackson & A. E. Robinson (Eds.),
The Proceedings of the Ninth British National Conference on Data-
bases (BNCOD).

Robie, J., Lapp, J., & Achach, D. (1998). XML query language (XQL). The
Query Languages Workshop.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Prentice Hall.

Scheck, H. J., & Scholl, M. H. (1986). The relational model with relation-
valued attributes. Information Systems, 11(4).

Schwarz, P. M., Chang, W., Freytag, J. C., Lohman, G. M., McPherson, J.,
Mohan, C., et al. (1986). Extensibility in the starburst database system.
Proceedings of OODBS 1986 (pp. 85-92).

Stonebraker, M. (1986). Object management in postgres using procedures.
Proceedings of OODBS 1986 (pp. 66-72).

Stonebraker, M. (1990). The postgres DBMS. Proceedings of SIGMOD
1990 (p. 394).

Chapter Problems

1. List five major categories of an object-relational approach.
2. Discuss the static and dynamic aspects of an object-oriented model.
3. Discuss the background of object-relational DBMS (ORDBMS) devel-

opment.
4. Explain the terms existence-dependent, existence-independent, exclu-

sive–composition, and nonexclusive composition for aggregation rela-
tionships.

5. Each postgraduate student at L University needs to maintain a list of
references that he or she needs for research. For this purpose, references
used are categorized into four types: book, article in a journal, conference
paper, and PhD thesis. A reference can be included in one type only. The
fields of each type of reference are listed in the following table.

26 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Reference Type Fields
Book title of the book, list of authors, publisher
Article Journal title of the paper, list of authors, title of the journal,

volume, editor, publisher
Conference Paper title of the paper, list of authors, title of the conference,

publisher
PhD Thesis title of the thesis, author, school

Assuming that there are five classes, that is, References, Book,
Article_Journal, Conference_Paper, and PhD_Thesis, develop the class
hierarchy for the above description, and draw the corresponding class
diagram. You also need to identify the relationship between references
and another class, Postgraduate. Assume some attributes where neces-
sary.

6. AllBooks Library wants to extend its database by using the object-
oriented concept. For this purpose, in the database the authors are
categorized according to their backgrounds: industry based or academic.
If the author is an academic, the database needs to be further categorized
into research or teaching staff. They found that many academics are also
involved in industry and vice versa. However, it is found that an academic
may simultaneously be involved in both research and teaching. To simplify
the database, the developer decides that an academic can only be
recorded as a research staff or a teaching staff depending on his or her
primary role.
In the database, the books that the authors have written or edited are kept
in a different object named Course_Manual. For each datum in
Course_Manual, there are descriptions of each chapter that are kept as
another object. Draw the diagram for the object-oriented model de-
scribed above.

7. A new fast-food company, Hungry Burger, has just opened its first
restaurant in the country. One of its main menu items is called Huge Meal.
The Huge Meal package includes a big special hamburger, a drink, and a
generous-size bag of fries. The construction of the hamburger at Hungry
Burger has a special order that has to be followed. On the lower half of
the bun, kitchen staff will put a slice of meat patty, followed by two pieces
of lettuce, a slice of cheese, and a slice of tomato. The fries are made of
potatoes fried in grease. The hamburger and the fries may be sold
separately or with another package on the menu.

Object-Relational Approaches 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Draw the aggregation diagram for Hungry Burger’s Huge Meal. Explain
the dependency, order, and also the exclusiveness where necessary.

8. The Fast Run Bicycle Company is a major bicycle retailer. Unlike other
bicycle companies, it assembles its own bicycles to meet the customers’
requirements. The three main components are seats, frames, and wheels.
These three main components are inherited from the part class and these
parts are bought from several manufacturers. There are three categories
of bicycles assembled by Fast Run: racing, mountain, and road bicycles.
From the description given, draw a diagram for Fast Run that shows the
aggregation, inheritance, and association relationships.

Chapter Solutions

1. Five major categories of an object-relational approach are as follow.

• OOCM implemented on relational databases
• Object wrappers on relational systems
• Extended relational systems
• Object-oriented systems and RDBMS coexistence
• OODBMS and RDBMS interoperation

2. Static aspects of an object-oriented model include the object and class
data structure that facilitates encapsulation, and the relationships that can
be divided into three major divisions: inheritance, association, and aggre-
gation. The dynamic aspects of an object-oriented model include the
implementation of methods or operations, both generic methods and user-
defined methods.

3. ORDBMS is developed to add the desirable features of the object-
oriented model to the relational database system. RDBMS has been
widely used commercially and in addition, it is also reasonably simple to
implement. However, RDBMS cannot be used to represent certain
complex problems.

28 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An object-oriented model can capture most complex-problem domains;
however, the database based on the object-oriented model, OODBMS,
is still not as widely used. It is expected that instead of replacing the earlier
RDBMS, OODBMS will coexist in order to serve some specific problem
areas only. Therefore, the combination of both strengths have been
explored and implemented in the new database system: ORDBMS.

4. Existence-dependent composition is the type of aggregation where the
part objects are totally dependent on the whole object. Thus, by removing
the whole object, we will automatically remove the part objects. On the
other side, existence independent is the type of aggregation where the part
object can still exist although its whole object is removed.
Exclusive composition is the type of aggregation where the whole object
is the sole owner of the part object. On the other side, nonexclusive
composition is the type of aggregation where a part object of one whole
object may be shared or referenced by other whole objects.

5. There is an inheritance relationship between the reference object to the
subclass type.
The association between Postgraduate and References is many to many,
where each reference can be used by many postgraduates, and each
postgraduate can refer to many references.

1…1…

refers to

References
ID
year
get_ID ()

Postgraduate
name
address
degree
get_name ()

Book
title
authors
publisher
year

Article_Journal
title
authors
title_journal
volume
editor
publisher

Conference_Paper
title
authors
title_conference
publisher

PhD_Thesis
title
author
school

6. There is an inheritance relationship between superclass Author and its
subclasses. There is also an aggregation relationship between the
Course_Manual and Chapter classes, which in this case is homogeneous.
The whole object consists of part objects that are the same type.

Object-Relational Approaches 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

writes

1

homogeneous

1…

Teaching_StaffResearch_Staff

Course_ManualAuthor

Industry_Based Academic

Chapter

7. The aggregation at Level 1 is existence independent because the part
object can be sold separately without the whole object. It is an exclusive
composition because one part, for example, one hamburger, can only be
a composite of one whole part.
The aggregation at Level 2 is existence dependent. There is room for
argument for this one. Although all parts can exist on their own, they do
not have value. This aggregation is also an exclusive composition because
one part, for example, one particular bun, can only be a part of one
particular hamburger.

1 1

1

1

1… 1 1 1… 1

1

1

1… 1

Hamburger Drink

Bun Meat Lettuce Cheese Tomato

Fries

Potato Grease

Huge Meal

8. Bicycle is an aggregation of Seat, Frame, and Wheel. The type is an
exclusive composition as a particular part can only be incorporated into
a particular whole. It is also an existence-dependent composition because
the seat, frame, and wheels do not have their own value at Fast Run unless
they are assembled into a bicycle.
The bicycle class also has an inheritance relationship to the racing,
mountain, and road bicycles. The parts class with the seat, frame, and
wheel classes show another inheritance relationship.

30 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, there is a one-to-many association relationship between Custom-
ers and Bicycle, and a many-to-many relationship between Parts and
Manufacturers.

1
1… 1

1 1

1…1…
made by

sold to

2

CustomersBicycle

Racing_Bicycle Road_BicycleMountain_Bicycle

Seat Frame Wheel

Parts Manufacturers

Object-Oriented Features in Oracle™ 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Object-Oriented
Features in Oracle™

In this chapter, we will describe Oracle™ features that can be used to support
the implementation of an object-oriented model. As an overview, Section 2.1
will outline some of the original features within a standard relational model. The
next sections will illustrate the additional object-oriented features. We will use
these new features for our implementation in the subsequent chapters.

Relational-Model Features

In a relational model, the attributes are stored as columns of a table and the
records are stored as rows of a table. As in most standard RDBMSs, Oracle™
provides a create-table statement following the SQL standard. After the
declaration of the table name, we define the attributes’ names and their data
types. We can also perform the checking of attribute value. In the table,
Oracle™ enables users to determine the uniqueness of the records by defining
the primary key.
Oracle™ also enables the usage of a foreign key. The foreign-key attribute in
a table refers to another record in another table. In addition to the foreign key,

32 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

we can specify the referential integrity constraint every time we want to
manipulate the target of a foreign-key reference. There are three types of
constraint.

• Restrict: The manipulation operation is restricted to the case where there
are no such matching attributes; it will be rejected, otherwise.

• Cascade: The manipulation operation, such as delete and update,
cascades to the matching attributes.

• Nullify or set null: The manipulation operation is done after the foreign
key is set to null.

Oracle™ performs the restrict integrity constraint as default. It prevents the
update or deletion of a superclass key if there is a row in the subclass table that
is referencing the key. However, Oracle™ provides only an on-delete integrity
constraint. Therefore, to perform integrity constraint on other manipulations
such as insert and update, we might need to use triggers.
Once we have created the table, we can perform the data manipulation. The
manipulation can take form in the insertion, deletion, or update of data. The
syntax of each of these is shown.

Figure 2.1. Create-table statement

General Syntax:

CREATE TABLE <table schema>

(key attribute NOT NULL,
 attribute attribute type,
 attribute attribute type
 [CHECK (<attribute value> IN (set of values))]
 PRIMARY KEY (key attribute));

Example:

CREATE TABLE Employee

(id VARCHAR2(10) NOT NULL,
 name VARCHAR2(20),
 address VARCHAR2(35),
 emp_type VARCHAR2(8)

CHECK(emp_type IN (‘Manager’, ‘Worker’)),
 PRIMARY KEY (id));

Object-Oriented Features in Oracle™ 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE TABLE <table schema> OF <object schema>

(key attribute NOT NULL,
 attribute attribute type,
 PRIMARY KEY (key attribute),
 FOREIGN KEY (key attribute)
 REFERENCES <referenced table schema>(key attribute)
 [ON DELETE][CASCADE|SET NULL]);

Example:

CREATE TABLE Student

(id VARCHAR2(10) NOT NULL,
 course VARCHAR2(10),
 year VARCHAR2(4),
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE);

Figure 2.2. Create table with referential integrity checking

General Syntax of Insertion:

INSERT INTO <table schema> [(attribute,,attribute)]
VALUES (attribute value,,attribute value);

Example:

INSERT INTO Student
VALUES (‘1001’, ‘BEng’, ‘2005’);

General Syntax of Deletion:

DELETE FROM <table schema>
WHERE <statements>;

Example:

DELETE FROM Student
WHERE id = ‘1001’;

General Syntax of Update:

UPDATE <table schema>
SET <statements>
WHERE <statements>;

Example:

UPDATE Student
SET year = ‘2005’
WHERE id = ‘1001’;

Figure 2.3. Data manipulation in Oracle™

34 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-Oriented Features

More recent commercial RDBMSs such as Oracle™ 8 and above (Loney &
Koch, 2000, 2002; ORACLE™ 8, 1997) have extended their database
systems with object-oriented features. In Oracle™ 8 and above, these features
include enhancement of the existing data types with new data types including
object types and user-defined types, and so forth.

Object Types and User-Defined Types

In Oracle™, a statement “create type” is used to create a new data type
(object type) that can then be used as a generic type to create a table using the
statement “create table,” or to create another data type. The general syntax for
these two create statements is shown in Figure 2.4. “As object” is used after
creating an object type. Note that “or replace” is optional. By having this
additional phrase, an object with the same name will automatically be replaced
with the newest version of the object type. Figure 2.4 also shows an example
of using object type Person_T as an attribute type in a new table, Course.

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS OBJECT

(attribute attribute type,,
 attribute attribute type)

/

Example:

CREATE OR REPLACE TYPE Person_T AS OBJECT

(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE TABLE Course
(course_id VARCHAR2(10),
 course_name VARCHAR2(20),
 lecturer Person_T);

Figure 2.4. Oracle™ object type

Object-Oriented Features in Oracle™ 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Collection Types

Oracle™ allows the creation of an array type (varray or varying array). The
syntax is basically using the same statement “create type” with the additional
statement “as varray(n) of” followed by the object or the data type. Following
Figure 2.4, it is possible to have more than one lecturer for a particular course,
and therefore a new array of Persons can be defined.
Another extension is the support of nested tables, as shown in Figure 2.6. To
create a table object, we use the same “create type” statement with the
additional “as table of” statement following the name of the object table. This
object table can then be used as a column in a table. When a table type appears
as the type of a column in a table or as an attribute of the underlying object type,
Oracle™ stores all of the nested table data in a single table, which is associated
with the enclosing table or object type. Every time we create a table with
columns or column attributes whose type is a nested table, we have to include
the nested-table storage clause, “nested table (object table column schema)
store as” followed by the separate storage-table name. Using the previous
example from Figure 2.4, another data type called Person_Table_T can be
created based on the Person_T data type to store the instances of a person.
Note that Oracle™ 9 and above have also enabled users to create multilevel
nested tables.

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS VARRAY(n) OF (object/data
type)
/

Example:

CREATE OR REPLACE TYPE Persons AS VARRAY(3) OF Person_T
/

CREATE TABLE Course

(course_id VARCHAR2(10),
 course_name VARCHAR2(20),
 lecturer Persons);

Figure 2.5. Oracle™ varying array type

36 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE [OR REPLACE] TYPE <object table schema> AS TABLE OF (object
schema)
/
CREATE TABLE <table schema>

(attribute attribute type,,
 attribute attribute type,
 nested item object table schema);
NESTED TABLE nested item STORE AS storage table schema;

CREATE TABLE <table schema>
(attribute attribute type,,
 outer nested item object table schema);
NESTED TABLE <outer nested item>

STORE AS <outer storage table schema>
(NESTED TABLE <inner nested item>

STORE AS <inner storage table schema>);

Example:

CREATE OR REPLACE TYPE Person_T AS OBJECT

(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE OR REPLACE TYPE Person_Table_T AS TABLE OF Person_T
/

CREATE TABLE Course

(course_id VARCHAR2(10),
 course_name VARCHAR2(20),
 lecturer Person_Table)
 NESTED TABLE lecturer STORE AS Person_tab;

Figure 2.6. Oracle™ nested table

Object Identifiers

In an object-oriented system, the OID is system generated and is used as a
reference to locate the particular object. In Oracle™, the notion of an OID as
a logical pointer is not supported; however, the concepts of an OID to uniquely
identify a record (i.e., as a primary key) can be used. This is particularly useful
in a deep inheritance hierarchy, where all subclasses have to carry the OID of
the superclass in order to establish the connection between the superclass and
its subclasses.

Object-Oriented Features in Oracle™ 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE TABLE <table schema> OF <object schema>

(key attribute NOT NULL,
 attribute attribute type,
 PRIMARY KEY (key attribute),
FOREIGN KEY (key attribute)
REFERENCES <referenced table schema>(key attribute);

Example:

CREATE OR REPLACE TYPE Person_T AS OBJECT

(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE OR REPLACE TYPE Employee_T AS OBJECT

(person_id VARCHAR2(10),
 title VARCHAR2(10),
 salary NUMBER)
/

CREATE TABLE Person OF Person_T

(person_id NOT NULL,
 PRIMARY KEY (person_id));

CREATE TABLE Employee OF Employee_T

(person_id NOT NULL,
 PRIMARY KEY (person_id),

 FOREIGN KEY (person_id) REFERENCES Person(person_id));

Figure 2.7. Oracle™ object-identifiers implementation

Figure 2.7 illustrates the implementation of using OID to keep the inheritance
between the superclass and its subclasses. Note that we can create a table from
an object and determine the primary keys and foreign keys in this table. Every
time we determine the foreign key, we have to use a “references” statement
followed by the table and the column that is being referred. The general syntax
for this primary key and foreign key implementation is shown in Figure 2.7. The
table created is derived from an object type. Thus, we do not have to specify
the attribute type anymore. They have to be identified while we create the
object type. Note, however, that we can add a constraint “not null” statement
to avoid a “null” value of an attribute. It is needed for particular attributes.

38 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relationships using Ref

Oracle™ provides a way of referencing from one object to another by using the
keyword ref. This object-referencing technique can be used to replace the
standard “join” operations to traverse from one object to another.
We can then run a query:

SELECT C.course_name
FROM Course C
WHERE C.lecturer.person_name = 'Rahayu';

In the example above, the “scope is” statement is used to specify the exact table
being referenced by the object. Whenever the scope parameter is used, the
database engine will perform a join operation, which can be optimized using
indexes. On the contrary, if the scope parameter is omitted and more than one
table has been created using the given object type, the database engine will
navigate through a set of object reference values in order to identify the location
of the requested records (Dorsey & Hudicka, 1999).

General Syntax:

CREATE TABLE <table schema>

(object REF (object schema) [SCOPE IS (table schema)]);

Example:

CREATE OR REPLACE TYPE Person_T AS OBJECT

(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE TABLE Academic_Staff OF Person_T;

CREATE TABLE Course

(course_id VARCHAR2(10),
 course_name VARCHAR2(20),
 lecturer REF Person_T SCOPE IS Academic_Staff);

Figure 2.8. Oracle™ relationship using object references

Object-Oriented Features in Oracle™ 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the following chapters, we will not use the “scope is” parameter in our table-
creation statement. In most situations, we will not build more than one table for
each object type we declared, thereby avoiding the situation where the
database engine has to navigate through a number of object references. When
only one table is created for the object type, the ref operator will directly point
to the associated reference.

Cluster

Oracle™ provides a clustering technique that can be very useful for an
aggregation relationship. A cluster is created and will be defined in terms of all
components that take part in the aggregation relationship, as is shown in Figure
2.9.

General Syntax:

CREATE CLUSTER <cluster schema>

(cluster attribute attribute type);

CREATE TABLE <table schema>

(cluster attribute attribute type,
 attribute attribute type,,
 attribute attribute type)
CLUSTER <cluster schema> (cluster attribute);

CREATE INDEX <index schema> ON CLUSTER <cluster schema>;

Example:

CREATE CLUSTER HD_Cluster

(hd_id VARCHAR2(10));

CREATE TABLE Hard_Disk

(hd_id VARCHAR2(10) NOT NULL,
 capacity VARCHAR2(20),
 PRIMARY KEY (hd_id))
CLUSTER HD_Cluster(hd_id);

CREATE INDEX HD_Cluster_Index

ON CLUSTER HD_Cluster;

Figure 2.9. Oracle™ cluster

40 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE [OR REPLACE] TYPE <super-type object schema> AS OBJECT

(key attribute attribute type,
 attribute attribute type,...,
 attribute attribute type) [FINAL|NOT FINAL]

/

CREATE [OR REPLACE] TYPE <sub-type object schema> UNDER <super-type
object schema>

(additional attribute attribute type,,
 additional attribute attribute type)
 [FINAL|NOT FINAL]

/

CREATE TABLE <super-type table schema> OF
<super-type object schema>

(key attribute NOT NULL,
 PRIMARY KEY (key attribute));

Example:

CREATE OR REPLACE TYPE Person_T AS OBJECT

(id VARCHAR2(10),
 name VARCHAR2(20),
 address VARCHAR2(35)) NOT FINAL

/

CREATE OR REPLACE TYPE Student_T UNDER Person_T
(course VARCHAR2(10),
 year VARCHAR2(4))

/
CREATE TABLE Person OF Person_T

(id NOT NULL,
 PRIMARY KEY (id);

Figure 2.10. Oracle™ “under” features

Inheritance Relationships using Under

Oracle™ 9 and above have a new feature that accommodates inheritance-
relationship implementation. We do not have to use a primary-foreign-key
relationship in order to simulate the relationship between a superclass and its
subclasses.
To implement subtypes, we need to define the object as “not final” at the end
of its type declaration. By default, without the keyword, the object type will be
treated as final and no subtypes can be derived from the type. Oracle™
provides the keyword under to be used with the statement “create type” to
create a subtype of a supertype such as shown in Figure 2.10.

Object-Oriented Features in Oracle™ 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Encapsulation

Oracle™ provides two different types of encapsulation for an object-relational
model. The first is through stored procedures or functions. The second is
through member procedures or functions.

Stored Procedure or Function

The declaration of a stored procedure or function is basically very similar to the
standard procedure declaration in many procedural languages. The encapsu-
lation is provided by giving a grant to a specific role or user to access the
particular stored procedure or function.
We need to use a “create procedure” statement. As in other create statements,
the “or replace” statement is optional.
A stored procedure can have parameters attached to it, each of which must be
followed by its type. We can also add the mode of the parameters between the
parameter and the parameter type that is optional. There are three parameter
modes (Oracle™, 1998).

• In. The value of the actual parameter is passed into the procedure when
the procedure is invoked. Inside the procedure, the formal parameter is
considered read only: It cannot be changed. Then the procedure finishes
and control returns to the calling environment; the actual parameter is not
changed.

• Out. Any value the actual parameter has when the procedure is called is
ignored. Inside the procedure, the formal parameter is considered write
only; it can only be assigned to and cannot be read from. When the
procedure finishes and control returns to the calling environment, the
contents of the formal parameter are assigned to the actual parameter.

• In Out. This mode is a combination of the two previous modes. The value
of the actual parameter is passed into the procedure when the procedure
is invoked. Inside the procedure, the formal parameter can be read from
and written to. When the procedure finishes and control returns to the
calling environment, the contents of the formal parameter are assigned to
the actual parameter.

42 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The stored procedure can have local variables in it. These are variables that are
used only in the procedure body. Within the procedure body, we can use SQL
statements such as select, insert, update, and delete. Thus, methods that are
used to manipulate the database tables can be encapsulated within stored
procedures. To run the procedure, we use the general syntax below.

General Syntax to Run the Stored Procedure:
EXECUTE procedure name [parameter,...,parameter];
EXECUTE Delete_Student[‘1001’];

Apart from stored procedures, stored functions are also available. Similar to
stored procedures, stored functions can be likewise declared as in Figure 2.12.
Note that for a function, we have to declare the type of the return value after

General Syntax:

CREATE [OR REPLACE] PROCEDURE <procedure name>

[parameter [{IN | OUT | IN OUT}] parameter type,
,
 parameter [{IN | OUT | IN OUT}] parameter type)] AS

[local variables]

BEGIN
<procedure body>;

END <procedure name>;

GRANT EXECUTE ON <procedure_name> TO <user>;

Example:

CREATE OR REPLACE PROCEDURE Delete_Student(

delete_id Student.id%TYPE) AS

BEGIN

DELETE FROM Student
WHERE id = delete_id;

END Delete_Student;
/
GRANT EXECUTE ON Delete_Student TO Principal;

Figure 2.11. Stored-procedures general syntax

Object-Oriented Features in Oracle™ 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

we declare the function name. In addition, a stored function can take “in”
parameters only.

Member Procedure or Function

Member procedures and member functions are physically implemented as PL
or SQL procedures or functions, and they are defined together within the
specification of the object type. Figure 2.13 demonstrates the general syntax.

General Syntax:

CREATE [OR REPLACE] FUNCTION <function name>

[parameter [{IN}] parameter type,
,
 parameter [{IN}] parameter type)]

RETURN datatype IS

[local variables]

BEGIN
<function body>;
RETURN value;

END <function name>;

Example:

CREATE OR REPLACE FUNCTION Student_Course(

s_id Student.id%TYPE)
RETURN VARCHAR2 IS

v_course VARCHAR(10);

BEGIN

SELECT course INTO v_course
FROM Student
WHERE id = s_id;

RETURN v_course;

END Student_Course;
/

Figure 2.12. Stored-functions general syntax

44 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Unlike stored procedures, by using member methods we can identify the
visibility scope of the methods. There are three types: public, private, and
protected. By default, the attributes will be declared public.
Public attributes are visible from the class’ interface (Fortier, 1999) and can be
accessed by other types, tables, or routines. Private attributes are only visible
from internal methods and will not be visible from outside the class specifica-
tion. Finally, protected attributes are accessible from its own class or from any
table or methods that use the class as a subtype.
The biggest advantage of methods over stored routines is the visibility gained
by being part of the class. Methods will have access to attributes, procedures,
and functions that may not be visible at the class interfaces (private or
protected). On the other hand, a stored routine does not have access to these
types of attributes, procedures, and functions.
Furthermore, the visibility of the methods inside a class can also be specified
as private and protected. Same as attributes, the private methods can only be
accessed by internal methods inside the particular class, and protected meth-
ods can be accessed only by its own user-defined types or any supertype
interface of the particular class. We cannot apply this for stored routines.
Figure 2.14 shows an example of different visibility scopes of attributes and
methods. All the attributes in Person are declared public and thus can be visible
outside of the type interface. Some attributes in Staff, however, are declared
private and protected. These attributes require additional internal methods for
access, such as the function RetrieveTotalPayment to access the attributes
StaffPayRate and StaffCommRate, and return the total payment. The function
RetrieveStaffPhone in Person can be used to access the protected attribute in
its subtype, StaffPhone. The procedure RetrievePersonDetail can be used to
retrieve the attributes inside Person, including the private function
RetrieveStaffPhone.
Finally, member methods have substitutability featured in the inheritance
structure. Very often, when we insert data into a table, we wish to store different
subtypes derived from a single or multiple supertypes. Using stored routines,
we will require a different routine for a different parameter. With the substitut-
ability feature, an instance of a subtype can be used in every context where an
instance of a supertype can be used (Fortier, 1999). The context includes the
use of different subtypes as parameters of the same function.

Object-Oriented Features in Oracle™ 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE [OR REPLACE] TYPE <object schema> AS OBJECT

(attribute attribute types,
 ,
 attribute attribute types,

 MEMBER PROCEDURE <procedure name>

 [(parameter [{IN | OUT | IN OUT}] parameter type,
,
 parameter [{IN | OUT | IN OUT}] parameter type)],

 MEMBER FUNCTION <function name>

 [(parameter [{IN}] parameter type,
,
 parameter [{IN}] parameter type)]
 RETURN datatype);

/

CREATE [OR REPLACE] TYPE BODY (object schema) AS

MEMBER PROCEDURE <member procedure name>
[parameter [{IN | OUT | IN OUT}] parameter type,
,
 parameter [{IN | OUT | IN OUT}] parameter type)] IS

[local variables]

BEGIN
<procedure body>;

END <member procedure name>;

 MEMBER FUNCTION <function name>

 [parameter [{IN}] parameter type,
,
 parameter [{IN}] parameter type)]
 RETURN datatype IS

[local variables]

BEGIN

<procedure body>;
END <member function name>;

END;
/

Figure 2.13. Method implementation of member procedure

46 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TYPE Person
(PersonID VARCHAR(10),
 FirstName VARCHAR(20),
 LastName VARCHAR(20),
 Domicile ADDRESS,
 BirthDate DATE,

 PRIVATE FUNCTION RetrieveStaffPhone,
 PUBLIC PROCEDURE RetrievePersonDetail);

CREATE TYPE Staff UNDER PERSON

(PUBLIC StaffStartDate DATE,
 PROTECTED StaffPhone CHAR(10),
 PRIVATE StaffPayRate DECIMAL(5,2),
 PRIVATE StaffCommRate DECIMAL(5,2),

 PUBLIC FUNCTION RetrieveTotalPayment)

Figure 2.14. Visibility scope inside a class

Example:

CREATE OR REPLACE TYPE Student_T AS OBJECT

(id VARCHAR2(10),
 course VARCHAR2(20),
 year VARCHAR2(4),

 MEMBER PROCEDURE

Delete_Student)
/

CREATE OR REPLACE TYPE BODY Student_T AS

MEMBER PROCEDURE
Delete_Student IS

BEGIN
 DELETE FROM Student
 WHERE Student.id = self.id;
END Delete_Student;

END;
/

Figure 2.13. (continued)

Object-Oriented Features in Oracle™ 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

Similar to many other DBMSs, Oracle™ was first targeted for RDBs. It has
supported standard relational features in SQL including the data-definition
language and the data-manipulation language. Due to the increased demand of
a more powerful database, Oracle™ has added some object-oriented features
into its DBMS. This chapter introduces some of them including the object type,
collection type, inheritance, nested tables, and so forth. A list of references
below provides more information on the syntax and definition of the features
described in this chapter.

References

Dorsey, P., & Hudicka, J. (1999). Oracle™ 8 design using UML object
modelling (chap. 1). Oracle Press, Osborne McGraw Hill.

Fortier, P. (1999). SQL3 implementing the SQL foundation standard.
McGraw Hill.

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

CREATE TYPE <object1 schema>
(attr1 data type,...,
 attrj data type,

 PROCEDURE <procedure1 name>(
 param1 parameter type data type,...,
 paramn parameter type data type);
) NOT FINAL/

CREATE TYPE <object2 schema> UNDER <object1 schema>
(attr1 data type,...,
 attrj data type,

 OVERRIDING PROCEDURE <procedure1 name>(
 param1 parameter type data type,...,
 paramn parameter type data type);
)/

Overriding
Method

Original
Method

Figure 2.15. Member-methods substitutability

48 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. Using Oracle™, create a table to store book records. Each record has the
title, the author, the publisher, and the ISBN (International Standard
Book Number) that uniquely differentiate the book.

2. Continuing from Question 1, now we want to refer the attribute publisher
into a table Publisher that has “name” as the primary key. If a deletion is
performed in the publisher table, the associated referring key will be
nullified. Alter your create-table statement from Question 1.

3. Write a statement in Oracle™ to implement an ordered collection type of
the 20 most expensive book prices in a bookstore.

4. As in Question 1, you want to create a table Book. However, you want
to instantiate the table from a specified Book_Type. Write the create-type
and create-table statement.

5. Movie Guide magazine wants to keep a database of directors and the
films that they directed. The director table has the attributes of name, age,
and residence. The film is saved as an object with the attributes of title,
genre, year, and rating. As a director may direct more than one film, the
film object is implemented into the director table using a nesting technique.
Show the implementation of the relationships described.

6. Discuss briefly the two mechanisms of encapsulation to implement meth-
ods or operations in an object-relational DBMS.

Object-Oriented Features in Oracle™ 49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter Solutions

1. We use a create-table statement with the attributes of ISBN, title, author,
and publisher. The primary key is the ISBN attribute.

 CREATE TABLE Book
(isbn VARCHAR2(10) NOT NULL,
 title VARCHAR2(100),
 author VARCHAR2(100),
 publisher VARCHAR2(50),
 PRIMARY KEY (isbn));

2. We assume the table Publisher already exists.

 CREATE TABLE Book
(isbn VARCHAR2(10) NOT NULL,
 title VARCHAR2(100),
 author VARCHAR2(100),
 publisher VARCHAR2(50),
 PRIMARY KEY (isbn),
 FOREIGN KEY (publisher) REFERENCES Publisher

(Name) ON DELETE NULLIFY);

3. For an ordered collection with only one data element (in this case the
price), we can use varray.

 CREATE OR REPLACE TYPE prices AS VARRAY(20) OF

 NUMBER(12,2)

 /

4. First, create the type and then follow this by creating the table.

 CREATE OR REPLACE TYPE Book_Type AS OBJECT
(isbn VARCHAR2(10),
 title VARCHAR2(100),
 author VARCHAR2(100),
 publisher VARCHAR2(50))
 /

50 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 CREATE TABLE Book OF Book_Type
(isbn NOT NULL,
 PRIMARY KEY (isbn),
 FOREIGN KEY (publisher) REFERENCES Publisher(name)

 ON DELETE NULLIFY);

5. For a nested table, we have to create the object type followed by an
object table before we can nest it to the table as an attribute.

 CREATE OR REPLACE TYPE Film_T AS OBJECT
(title VARCHAR2(50),
 genre VARCHAR2(10),
 year NUMBER,
 rating VARCHAR2(10))

 /

 CREATE OR REPLACE TYPE Film_Table_T AS TABLE OF
Film_T
 /

 CREATE OR REPLACE TYPE Director_T AS OBJECT
(name VARCHAR2(20),
 age NUMBER,
 residence VARCHAR2(20),
 filmography Film_Table_T)

 /

 CREATE TABLE Director OF Director_T
(name NOT NULL,
 PRIMARY KEY (name))
NESTED TABLE filmography STORE AS Film_tab;

6. The two mechanisms are encapsulation using stored procedures or
functions with grants, and encapsulation using member procedures or
functions.
The first mechanism is based on pure RDBMS practice. It is a specific
method for accessing the data that can be privileged to certain users by a
grant mechanism. The second mechanism is based on an object-oriented
model where the methods are encapsulated inside the class with the
attributes. They are usually called member methods such as member
procedures and member functions.

Using Object-Oriented Features 51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Using Object-Oriented
Features

In Chapter II, we discussed the different features available in Oracle™ that can
be used to implement an object-oriented model. We will use those features in
this chapter. The discussion in this chapter will be categorized based on the
relationship types.
There are three distinct relationship types that we have to consider in object-
oriented modeling for implementation in object-relational databases: inherit-
ance, association, and aggregation. Some manipulations will be needed in order
to accommodate the features of these relationships.

Using Inheritance Relationships

The concept of inheritance, where an object or a relation inherits the attribute
(and methods) of another object, is not supported in the older versions of
Oracle™ (prior to Oracle™ 9). The implementation of an inheritance relation-
ship is established using primary-key and foreign-key relationships (shared ID)
in order to simulate the relationship between a superclass and its subclasses.

52 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Union Inheritance Implementation

Figure 3.1 shows an inheritance relationship of union type. It declares that the
union of a group of subclasses constitutes the entire membership of the
superclass. In a union inheritance, we know that every object in the superclass
is an object of at least one of the subclasses. In the example (see Figure 3.1),
the union type does not preclude a member of a subclass from being a member
of another subclass. For example, a person who is a staff member may also be
a student at that university.
In order to simulate the union inheritance, Student and Staff will carry the
primary key of the superclass, Person, in their relational tables. The primary key
of the superclass becomes a foreign key in the subclasses. The foreign keys in
the subclasses are also their primary keys. It becomes the main difference
between the primary-key and foreign-key relationships in association and in
inheritance. Thus, in Figure 3.1 it is noted that the primary key of Person is also
the primary key of both Student and Staff. At the same time, the constraint of
the primary-key and foreign-key relationship between the ID attributes in
Student and Staff and the ID in Person is maintained in order to make sure that
each student and staff is also a person. Thus, we have to specify the referential
integrity constraint every time we want to manipulate the target of a foreign-key
reference.
If we use the newer Oracle™ version, which supports inheritance using the
“under” keyword, we can create Student and Staff subclasses under the
superclass Person. The implementation is shown in Figure 3.3. Note that for
union inheritance, we need to create one table each for the superclass and all
the subclasses. As can be seen in the later sections, this union inheritance has
a different way of implementation compared with other inheritance types. Using

union

Person
ID
name
address

Student
course
year

Staff
department
room_no

Figure 3.1. Union inheritance

Using Object-Oriented Features 53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Person
(id VARCHAR2(10) NOT NULL,
 name VARCHAR2(20),
 address VARCHAR2(35),
 PRIMARY KEY (id));

CREATE TABLE Student

(id VARCHAR2(10) NOT NULL,
 course VARCHAR2(10),
 year VARCHAR2(4),
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE);

CREATE TABLE Staff

(id VARCHAR2(10) NOT NULL,
 department VARCHAR2(10),
 room_no VARCHAR2(4),
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Person ON DELETE CASCADE);

Figure 3.2. Implementation of union inheritance

Figure 3.3. Implementation of union inheritance using “under”

CREATE OR REPLACE TYPE Person_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(20),
 address VARCHAR2(35)) NOT FINAL

/

CREATE TABLE Person OF Person_T

(id NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Student_T UNDER Person_T
(course VARCHAR2(10),
 year VARCHAR2(4))

/

CREATE TABLE Student OF Student_T
(id NOT NULL,
PRIMARY KEY (id));

CREATE OR REPLACE TYPE Staff_T UNDER Person_T
(department VARCHAR2(10),
 room_no VARCHAR2(4))
/

CREATE TABLE Staff OF Staff_T
(id NOT NULL,
 PRIMARY KEY (id));

54 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the “under” keyword, normally we do not need to create separate tables for the
subclasses because the table created for the superclass can also be used to
store the instances of the subclasses. However, in this union type of inheritance,
we need to allow a particular person to be both a student as well as a staff. If
we are to store all instances into one superclass table, we will not be able to
store the two records together as they will violate the primary-key constraints
(i.e., two records with the same ID). Therefore, we need to create a separate
table for each of the subclasses to allow the same person’s record to appear
in both the Student as well as Staff tables. We also need to create a table for
Person to store persons who are neither staff members nor students.

Mutual-Exclusion Inheritance Implementation

Mutual-exclusion inheritance declares that a group of subclasses in an inherit-
ance relationship is pairwise disjointed. An example of this type is shown in
Figure 3.4. This example is called mutual exclusion because there is no manager
who is also a worker, and vice versa. However, in this case there may be an
employee who is neither a manager nor a worker.
The best way to handle mutual-exclusion inheritance without losing the seman-
tics of the relationship is by adding to the superclass table an attribute that
reflects the type of the subclasses or has the value null. For example (see Figure
3.4), in the table Employee, an attribute called emp_type is added. Thus,
emp_type can take the values manager, worker, or null. There are no
employees that can have two values for this attribute, such as a manager who
is also a worker simultaneously (mutual exclusion). Figure 3.5 shows the
implementation details. Note that we use the “check” keyword for the purpose
of checking the value of an attribute in a set of values.

mutual exclusion

Manager
annual_salary

Worker
weekly_wage

Employee
ID
name
address

Figure 3.4. Mutual-exclusion inheritance

Using Object-Oriented Features 55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.6. Implementation of mutual-exclusion inheritance using “under”

CREATE OR REPLACE TYPE Employee_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(20),
 address VARCHAR2(35),
 emp_type VARCHAR2(8)) NOT FINAL
/

CREATE TABLE Employee OF Employee_T

(id NOT NULL,
 emp_type CHECK (emp_type in (‘Manager’, ‘Worker’, ‘NULL’)),
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Manager_T UNDER Employee_T
(annual_salary NUMBER)
/

CREATE OR REPLACE TYPE Worker_T UNDER Employee_T
(weekly_wage NUMBER)
/

Figure 3.5. Implementation of mutual-exclusion inheritance

CREATE TABLE Employee
(id VARCHAR2(10) NOT NULL,
 name VARCHAR2(20),
 address VARCHAR2(35),
 emp_type VARCHAR2(8)

CHECK(emp_type IN (‘Manager’, ‘Worker’, NULL)),
 PRIMARY KEY (id));

CREATE TABLE Manager

(id VARCHAR2(10) NOT NULL,
 annual_salary NUMBER,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Employee (id)
 ON DELETE CASCADE);

CREATE TABLE Worker

(id VARCHAR2(10) NOT NULL,
 weekly_wage NUMBER,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Employee (id)
 ON DELETE CASCADE);

Using the newer Oracle™ version for the same example, we can create
Manager and Worker subclasses under the superclass Employee (see Figure
3.6). Notice that in this type of inheritance, we create only one table for the
superclass. We do not need subclass tables because an object can be a member

56 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

partition

Manager
annual_salary

Worker
weekly_wage

Employee
ID
name
address

Casual
hourly_rate

Figure 3.7. Partition inheritance

of only one subclass. These subclasses are instantiations of the superclass. Also
notice that although the table is created from the superclass table, Oracle™
maintains the integrity constraint between the subclass and the superclass table.
We cannot delete the subclass while the superclass table still exists.
In this case, an employee can only be a manager, a worker, or neither. If an
employee is neither a manager nor a worker, he or she is only an object of the
superclass, Employee. If an employee is a manager, for example, he or she will
be an object of the subclass Manager. Thus, the employee will have all of the
attributes of the Manager type and all other attributes that are inherited from the
Employee type. However, all of the subclass tables can be kept in the
superclass table.

Partition Inheritance Implementation

Partition inheritance declares that a group of subclasses partitions a superclass.
A partition requires that the partitioning sets be pairwise disjointed and that
their union constitute the partitioned set. Therefore, a partition type can be said
to be a combination of both union and mutual-exclusion types. Figure 3.7
shows an example of a partition type of inheritance. We use the example of an
employee again, but here a new class, Casual, is added, and it is assumed that
each member of the Employee class must belong to one and only one of the
classes Manager, Worker, and Casual. For example, an employee cannot be
both a manager and a casual.
Similar to the other types of inheritance, the best way to map the partition type
of inheritance into tables is to have one table for each superclass and one for

Using Object-Oriented Features 57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

each subclass. Like the mutual-exclusion type, a new attribute emp_type is
added to the superclass table. The difference is that this new attribute has a
constraint, which is “not null.” This will ensure that each superclass object
belongs to a particular subclass type. It also ensures that no superclass object
belongs to more than one subclass. Figure 3.8 shows an example of the
implementation of partition inheritance. Notice that the attribute emp_type is
also needed in the Employee table with the “not null” constraint.
The newer Oracle™ version can also accommodate this inheritance type. It is
very similar to the implementation in the mutual-exclusion type. The only
difference is the constraint of emp_type in the Employee table as is shown in
Figure 3.9.

Multiple Inheritance Implementation

The last type of inheritance relationship is called multiple inheritance. Figure
3.10 gives an example of multiple inheritance. A Tutor class can be said to be
inheriting from overlapping classes because basically a tutor can be a student
who is also a staff member.
The best way to handle this inheritance from overlapping classes is to use one
table for each superclass and one table for the subclass. Figure 3.11 gives an
example of a multiple inheritance implementation. A Tutor class can be said to
be inheriting from overlapping classes Student and Staff.

Figure 3.8. Implementation of partition inheritance

CREATE TABLE Employee
(id VARCHAR2(10) NOT NULL,
 name VARCHAR2(20),
 address VARCHAR2(35),
 emp_type VARCHAR2(8) NOT NULL

CHECK(emp_type IN (‘Manager’, ‘Worker’ ,’Casual’)),
 PRIMARY KEY (id));

CREATE TABLE Manager same as in mutual exclusive inheritance
CREATE TABLE Worker same as in mutual exclusive inheritance

CREATE TABLE Casual

(id VARCHAR2(10) NOT NULL,
 hourly_rate NUMBER,
 PRIMARY KEY (id),

 FOREIGN KEY (id) REFERENCES Employee (id) ON DELETE CASCADE);

58 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At the time of this writing, the newer Oracle™ does not support multiple
inheritance using the “under” keyword. This keyword is applicable only to the
single inheritance type. However, this multiple inheritance concept is often
simulated using other existing techniques. For example, we can use the “under”
keyword to implement one inherited parent, and use an association type to link
to the other parent. The drawback of using this technique is that only the parent
type implemented using “under” can be inherited, and therefore we have to be
careful when choosing which parent to inherit and which one to associate.

University_Person
ID
name
address

Student
course
year

Staff
department
room_no

Tutor
no_hours
rate

Figure 3.10. Multiple inheritance

Figure 3.9. Implementation of partition inheritance relationship using
“under”

CREATE OR REPLACE TYPE Employee_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(20),
 address VARCHAR2(35),
 emp_type VARCHAR2(8)) NOT FINAL
/

CREATE TABLE Employee OF Employee_T
(id NOT NULL,
 emp_type NOT NULL
 CHECK (emp_type in (‘Manager’, ‘Worker’, ‘Casual’)),
 PRIMARY KEY (id));

CREATE TYPE Manager_T same as in mutual exclusive inheritance
CREATE TYPE Worker_T same as in mutual exclusive inheritance

CREATE OR REPLACE TYPE Casual_T UNDER Employee_T

(hourly_rate NUMBER)
/

Using Object-Oriented Features 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Association Relationships

Relational data structures can be related to the concepts of sets through the fact
that tuples are not in any particular order and duplicate tuples are not allowed.
Therefore, the implementation of association relationships with a set semantic
into object-relational tables is identical to the well-known transformation of
many-to-many or one-to-many relationships from relational modeling to rela-
tional tables.
In relational modeling, many-to-many relationships are converted into tables in
which the primary key is a composite key obtained from the participating
entities. Should there be any attributes of the relationships, these will automati-
cally be added to the tables that represent the many-to-many relationships.
Likewise, in object modeling, if a class has a set relationship with another class
and the inverse relationship is also a set, the transformation of such an

Figure 3.11. Implementation of multiple inheritance relationship

CREATE TABLE Person
(id VARCHAR2(10) NOT NULL,
 name VARCHAR2(20),
 address VARCHAR2(35),
 PRIMARY KEY (id));

CREATE TABLE Student

(id VARCHAR2(10) NOT NULL,
 course VARCHAR2(10),
 year VARCHAR2(4),
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE);

CREATE TABLE Staff

(id VARCHAR2(10) NOT NULL,
 department VARCHAR2(10),
 room_no VARCHAR2(4),
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE);

CREATE TABLE Tutor
(id VARCHAR2(10) NOT NULL,
 no_hours NUMBER,
 rate NUMBER,
 PRIMARY KEY (id)
 FOREIGN KEY (id) REFERENCES Person (id) ON DELETE CASCADE);

60 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1…1…

enrolls_in

located_in

11

taught_by
1…

1

Course
course_ID
course_name

Student
stud_ID
stud_name

Lecturer
lect_ID
lect_name

Office
office_ID
building_name

Figure 3.12. Object-oriented diagram for association relationships

association is identical to the many-to-many relationships’ transformation from
relational modeling to relational tables where a table is created to represent the
set relationship. This transformation strategy also enforces that each element
within a set cannot be duplicated, which is realized by the implementation of the
composite primary key of the relationship tables.
In one-to-many relationships, as in relational modeling, the primary key of the
one side is copied to the many side to become a foreign key. In other words,
there is no special treatment necessary for the transformation of association
relationships having a set semantic.
In Oracle™, there are two ways of implementing an association relationship:
by primary-key and foreign-key relationships and by object references. Each
of these methods will be described as follows.

Creating an Association Relationship by a Primary-Key
and Foreign-Key Relationship

This first method is the traditional relational implementation of connecting two
or more tables together. The placement of the foreign keys is based on the
cardinality of the association relationship, whether it is one to one, one to many,
or many to many. We will use the following object-oriented diagram to show
the implementation of association relationships.
The first association between Student and Course is a many-to-many relation-
ship. A third table needs to be created to keep the relationship between the two

Using Object-Oriented Features 61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Course
(course_id VARCHAR2(10) NOT NULL,
 course_name VARCHAR2(20),
 PRIMARY KEY (course_id));

CREATE TABLE Student

(stud_id VARCHAR2(10) NOT NULL,
 stud_name VARCHAR2(20),
 PRIMARY KEY (stud_id));

CREATE TABLE Enrolls_in

(course_id VARCHAR2(10) NOT NULL,
 stud_id VARCHAR2(10) NOT NULL,
 PRIMARY KEY (course_id, stud_id),
 FOREIGN KEY (course_id) REFERENCES Course (course_id)
 ON DELETE CASCADE,
 FOREIGN KEY (stud_id) REFERENCES Student (stud_id)
 ON DELETE CASCADE);

Figure 3.13. Implementation of many to many using a primary-key and
foreign-key relationship

Figure 3.14. Implementation of one to many using a primary-key and
foreign-key relationship

CREATE TABLE Lecturer
(lect_id VARCHAR2(10) NOT NULL,
 lect_name VARCHAR2(20),
 PRIMARY KEY (lect_id));

CREATE TABLE Course

(course_id VARCHAR2(10) NOT NULL,
 course_name VARCHAR2(20),
 lect_id VARCHAR(10),
 PRIMARY KEY (course_id),
 FOREIGN KEY (lect_id) REFERENCES Lecturer (lect_id)
 ON DELETE CASCADE);

connected tables. This table will have the primary keys of the connected tables
as its primary (composite) key. Each of the primary keys, which form the
composite, is connected to the originated table through a primary-key and
foreign-key relationship.
The second association is a one-to-many relationship between Lecturer and
Course. In order to establish the association relationship in the implementation,
the primary key of the one side, Lecture, becomes a foreign key of the table that
holds the many side, Course.

62 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The third association is a one-to-one relationship between Lecturer and Office.
In this type of relationship, one has to decide the participation constraint
between the two connected tables (Elmasri & Navathe, 2000). There are two
types of participation constraints, namely, total and partial. In the above
example, every lecturer must be located in one particular office; thus, the
participation of the lecturer in the relationship is total. On the other hand, one
particular office may be vacant; no particular lecturer has been assigned the
room. In this case, the participation of the office in the relationship is partial. In
order to establish the association relationship in the implementation, the primary
key of the table with partial participation, Office, becomes a foreign key of the
table that holds the total participation, Lecturer.

Creating an Association Relationship by Object
References

Another implementation method of association relationships in Oracle™ is
using object references. Instead of connecting two tables through the values of
the associated primary key and foreign key, this method allows one to directly
connect two tables through the referencing attribute. Thus, the associated
attribute that connects the two tables is not holding a value of the primary key
of the other connected table, but a reference of where the connected table is
actually stored.

Figure 3.15. Implementation of one-to-one using a primary-key and
foreign-key relationship

CREATE TABLE Office
(office_id VARCHAR2(10) NOT NULL,
 building_name VARCHAR2(20),
 PRIMARY KEY (office_id));

CREATE TABLE Lecturer

(lect_id VARCHAR2(10) NOT NULL,
 lect_name VARCHAR2(20),
 office_id VARCHAR2(10),
 PRIMARY KEY (lect_id),
 FOREIGN KEY (office_id) REFERENCES Office (office_id)

 ON DELETE CASCADE);

Using Object-Oriented Features 63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.17. Implementation of one to many using object references

CREATE OR REPLACE TYPE Person_T AS OBJECT
(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE OR REPLACE TYPE Course_T AS OBJECT

(course_id VARCHAR2(10),
 course_name VARCHAR2(30),
 course_lecturer REF Person_T)
/

CREATE TABLE Lecturer OF Person_T

(person_id NOT NULL,
 PRIMARY KEY (person_id));

CREATE TABLE Course OF Course_T

(course_id NOT NULL,
 PRIMARY KEY (course_id));

Figure 3.16. Implementation of many to many using object references

CREATE OR REPLACE TYPE Person_T AS OBJECT
(person_id VARCHAR2(10),
 person_name VARCHAR2(30))
/

CREATE OR REPLACE TYPE Course_T AS OBJECT

(course_id VARCHAR2(10),
 course_name VARCHAR2(30))
/

CREATE TABLE Student OF Person_T

(person_id NOT NULL,
 PRIMARY KEY (person_id));

CREATE TABLE Course OF Course_T

(course_id NOT NULL,
 PRIMARY KEY (course_id));

CREATE TABLE Enrolls_in

(student REF Person_T,
 course REF Course_T);

64 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following figures show the implementation of many-to-many, one-to-
many, and one-to-one relationships of the example in Figure 3.17 using object
references.
In some cases, we want to have additional semantics at the many side, for
example, by incorporating an ordering semantic. To show more implementation
examples of association relationships involving collection types, we will extend
the example in Figure 3.12. The additional classes are shown in Figure 3.19.
Every course will require a list of books as references. The class Book is also
associated with a list of authors. Note that in this example we use the term list
to represent an ordered collection as opposed to the earlier example of set for
an unordered collection.

requires

{list}{list} {list}1

writes
Course
course_ID
course_name

Author
author_ID
author_name

Book
book_ID
book_title

Figure 3.19. Association example using collection types

CREATE OR REPLACE TYPE Office_T AS OBJECT
(office_id VARCHAR2(10),
 building_name VARCHAR2(20))
/

CREATE OR REPLACE TYPE Person_T AS OBJECT

(person_id VARCHAR2(10),
 person_name VARCHAR2(30),
 person_office REF Office_T)
/

CREATE TABLE Office OF Office_T

(office_id NOT NULL,
 PRIMARY KEY (office_id));

CREATE TABLE Lecturer OF Person_T

(person_id NOT NULL,
 PRIMARY KEY (person_id));

Figure 3.18. Implementation of one to one using object references

Using Object-Oriented Features 65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Course_T AS OBJECT
(course_id VARCHAR2(10),
 course_name VARCHAR2(30))

/

CREATE OR REPLACE TYPE Book_T AS OBJECT

(book_id VARCHAR2(10),
 book_title VARCHAR2(30),
 course_book REF Course_T)

/

CREATE TABLE Course OF Course_T

(course_id NOT NULL,
 PRIMARY KEY (course_id));

CREATE TABLE Book OF Book_T

(book_id NOT NULL,
 PRIMARY KEY (book_id));

CREATE TABLE Require

(Book REF Book_T,
 Index_Book NUMBER NOT NULL,

 Course REF Course_T);

Figure 3.20. Implementation of one to list using object references

The following figures show the implementation of one-to-list and list-to-list
relationships of this example using object references. Note that we have the
attribute Index_Book in table Require because we need the ordering semantic
of the book associated with a specific course.
The main difference between a list implementation and the earlier many-to-
many association is the need to add one index attribute (e.g., Index_Author in
Figure 3.21). This index will maintain the ordering semantic within the list.

Primary Keys: Foreign Keys vs. Object References in an
Association Relationship

An association relationship uses keys to provide a solid referential integrity
constraint. As mentioned earlier, we can add constraints (cascade, restrict, and
nullify) by either using the Oracle™ system-defined constraints or by triggers.
With the referential integrity constraints, there will be an automatic check on the
table that is being referenced before data manipulation is performed. On the

66 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.22. Implementation of one to one using ref and references

CREATE TYPE Office_T -- same as in Figure 3.18
CREATE TYPE Person_T -- same as in Figure 3.18
CREATE TABLE Office -- same as in Figure 3.18

CREATE TABLE Lecturer OF Person_T

(person_id NOT NULL,
 PRIMARY KEY (person_id),
 FOREIGN KEY (person_office) REFERENCES Office
 ON DELETE CASCADE);

other hand, using the object reference ref, there is no referential integrity
constraint performed. There is the possibility for an object reference to be
dangling if the object it refers to has been accidentally deleted.
One suggestion to avoid this is by applying a foreign key to the object-reference
concept. For example, recalling Figure 3.18, we can create a new version to
add referential integrity into the object reference (see Figure 3.22).

Figure 3.21. Implementation of list to list using object references

CREATE OR REPLACE TYPE Book_T AS OBJECT
(book_id VARCHAR2(10),
 book_title VARCHAR2(30))

/

CREATE OR REPLACE TYPE Author_T AS OBJECT

(author_id VARCHAR2(10),
 author_name VARCHAR2(30))

/

CREATE TABLE Book OF Book_T

(book_id NOT NULL,
 PRIMARY KEY (book_id));

CREATE TABLE Author OF Author_T

(author_id NOT NULL,
 PRIMARY KEY (author_id));

CREATE TABLE Write

(Book REF Book_T,
 Index_Book NUMBER NOT NULL,
 Author REF Author_T);

CREATE TABLE Written_By
(Author REF Author_T,
 Index_Author NUMBER NOT NULL,

 Book REF Book_T);

Using Object-Oriented Features 67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Using Aggregation Relationships

There are two techniques that can be used in Oracle™ in order to simulate the
implementation of aggregations: the clustering technique and the nesting tech-
nique.

Implementing Existence-Dependent Aggregation using
the Clustering Technique

In this section we use an example of a homogeneous aggregation relationship
between Hard Disk (HD) and HD Controller (HD_Contr; see Figure 1.13).
The Oracle™ implementation of this type of aggregation using the clustering
technique is shown in Figure 3.23.
It is clear from the implementation that the clustering technique supports only
an existence- dependent aggregation. It is not possible to have an HD controller
(part object) that does not belong to an HD (whole object). This is enforced
by the existence of the cluster key in all the part tables. Moreover, the example
in Figure 3.23 also shows a nonexclusive aggregation type, where each part

Figure 3.23. Implementation of existence-dependent aggregation using
the clustering technique

CREATE CLUSTER HD_Cluster
(hd_id VARCHAR2(10));

CREATE TABLE Hard_Disk

(hd_id VARCHAR2(10) NOT NULL,
 capacity VARCHAR2(20),
 PRIMARY KEY (hd_id))
CLUSTER HD_Cluster(hd_id);

CREATE TABLE HD_Contr

(hd_id VARCHAR2(10) NOT NULL,
 hd_contr_id VARCHAR2(10) NOT NULL,
 description VARCHAR2(25),
 PRIMARY KEY (hd_id, hd_contr_id),
 FOREIGN KEY (hd_id) REFERENCES Hard_Disk (hd_id))
CLUSTER HD_Cluster(hd_id);

CREATE INDEX HD_Cluster_Index
ON CLUSTER HD_Cluster;

68 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

object can be owned by more than one whole object. For example, HD
controller HDC1 may belong to HD1 as well as HD2.
Depending on the situation, the above nonexclusive type may not be desirable.
We can enforce the aggregation-exclusive type by creating a single primary key
for the part object and treating the cluster key as a foreign key rather than as
part of the primary key. Figure 3.24 shows the implementation of the previous
example as an exclusive type (the implementation of the cluster and the cluster
index remain the same).
Each time a new record is inserted into the part table, HD_Contr, the value of
the cluster key, hd_id, is searched for. If it is found, the new record will be
added to the cluster. The rows of the whole table, Hard_Disk, and the rows of
the part table, HD_Contr, are actually stored together physically (see Figure
3.25). The index is created in order to enhance the performance of the cluster
storage.

hd_id capacity hd_contr_id description
HD11 2GB Contr111

 Contr112
HD12 6GB Contr121

 Contr122
 Contr123

Figure 3.25. Physical storage of the aggregation relationship using
cluster

CREATE TABLE Hard_Disk
(hd_id VARCHAR2(10) NOT NULL,
 capacity VARCHAR2(20),
 PRIMARY KEY (hd_id))
CLUSTER HD_Cluster(hd_id);

CREATE TABLE HD_Contr

(hd_id VARCHAR2(10) NOT NULL,
 hd_contr_id VARCHAR2(10) NOT NULL,
 description VARCHAR2(25),
 PRIMARY KEY (hd_contr_id),
 FOREIGN KEY (hd_id) REFERENCES Hard_Disk (hd_id))
CLUSTER HD_Cluster(hd_id);

Figure 3.24. Implementation of exclusive aggregation using the clustering
technique

Using Object-Oriented Features 69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE CLUSTER PC_Cluster
(pc_id VARCHAR2(10));

CREATE TABLE PC

(pc_id VARCHAR2(10) NOT NULL,
 type VARCHAR2(20),
 PRIMARY KEY (pc_id))
CLUSTER PC_Cluster(pc_id);

CREATE TABLE Hard_Disk
(pc_id VARCHAR2(10) NOT NULL,
 hd_id VARCHAR2(10) NOT NULL,
 capacity VARCHAR2(20),
 PRIMARY KEY (pc_id, hd_id),
 FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster(pc_id);

CREATE TABLE Monitor

(pc_id VARCHAR2(10) NOT NULL,
 monitor_id VARCHAR2(10) NOT NULL,
 resolution VARCHAR2(25),
 PRIMARY KEY (pc_id, monitor_id),
 FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster(pc_id);

CREATE TABLE Keyboard

(PC_id VARCHAR2(10) NOT NULL,
 keyboard_id VARCHAR2(10) NOT NULL,
 type VARCHAR2(25),
 PRIMARY KEY (pc_id, keyboard_id),
 FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster(pc_id);

CREATE TABLE CPU

(pc_id VARCHAR2(10) NOT NULL,
 cpu_id VARCHAR2(10) NOT NULL,
 speed VARCHAR2(10),
 PRIMARY KEY (pc_id, cpu_id),
 FOREIGN KEY (pc_id) REFERENCES PC (pc_id))
CLUSTER PC_Cluster(pc_id);

CREATE INDEX PC_Cluster_Index

ON CLUSTER PC_Cluster;

Figure 3.26. Implementation of an aggregation relationship with multiple
part objects

It is also possible to use the cluster method to implement an aggregation
relationship between a whole object with a number of part objects. Figure 3.26
demonstrates the implementation of an aggregation between a PC with
Hard_Disk, Monitor, Keyboard, and CPU (see Figure 1.8 in Chapter I).

70 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.27 shows the physical storage of the multiple aggregation relationship
between a PC with Hard_Disk, Monitor, Keyboard, and CPU.

Implementing Existence-Dependent Aggregation using
the Nesting Technique

Another Oracle™ implementation technique for aggregation involves using
nested tables. In this technique, similar to the clustering one, the part informa-
tion is tightly coupled with the information of the whole object and it is
implemented as a nested table. This actually enforces the aggregation exist-
ence-dependent type. If the data of the whole object is removed, all associated
part objects will need to be removed as well. Moreover, the data in the part
nested table is normally accessed through the whole object only. Because of
this, this nested-table technique is suitable only for the implementation of the
aggregation existence-dependent type.
Figure 3.28 describes the link between the whole and the part table in a nesting
structure, whereas Figure 3.29 shows the implementation of the homogenous
aggregation depicted in Figure 1.13 using the nested-table technique.
Note that there is neither the concept of a primary key nor the integrity
constraint in the part nested table as shown in Figure 3.28. For example, if a
particular HD controller is used by another HD from the whole table, then all
the details of the HD controller will be written again as a separate record within
the nested table.

whole id whole attribute part ID part attribute
PC001 HardDisk1
 HardDisk1
 Monitor11
 Keyboard
 CPU11
PC002 HardDisk2
 Monitor21
 Keyboard
 CPU21

Figure 3.27. Physical storage of multiple-aggregation relationships using
cluster

Using Object-Oriented Features 71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Oracle™ also facilitates multilevel nested tables and thus can be used for
implementing a multilevel aggregation relationship. It is implemented by using
the inner and outer table principle (see Figure 3.30). A PC is an aggregation of
several HDs, and a HD is an aggregation of several HD controllers. In this case,
the inner table is a nested table of HD controller, and the outer table is a nested
table of HD. The implementation of this aggregation is shown in Figure 3.31.
Note in the implementation (see Figure 3.29 and Figure 3.31) that we do not
create standard tables for the HD controller. We only need to define a HD
controller type, and define it as a nested table later when we create the Hard
Disk table (for Figure 3.29) and the PC table (for Figure 3.31). It is also shown
that the information of the nested table is stored externally in a table called
HD_Contr_tab. This is not a standard table; no additional constraints can be

CREATE OR REPLACE TYPE HD_Contr AS OBJECT
(hd_contr_id VARCHAR2(10),
 description VARCHAR2(30));

/

CREATE OR REPLACE TYPE HD_Contr_Table AS TABLE OF HD_Contr
/

CREATE TABLE Hard_Disk

(hd_id VARCHAR2(10) NOT NULL,
 capacity VARCHAR2(20),
 controller HD_Contr_Table,
 PRIMARY KEY (hd_id))

 NESTED TABLE controller STORE AS HD_Contr_tab;

Figure 3.29. Implementation of aggregation relationships using nested
tables

HardDisk_ID Capacity

HD11 2GB

HD12 6GB HD_Contr_ID Description

Contr111 ---

Contr112 ---

Contr121 ---

Contr122 ---

Contr123 ---

Figure 3.28. Aggregation relationships using a nested table

72 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.31. Implementation of multilevel aggregation relationships
using nested tables

Example:

CREATE OR REPLACE TYPE HD_Contr AS OBJECT

(hd_contr_id VARCHAR2(10),
 description VARCHAR2(30))
/

CREATE OR REPLACE TYPE HD_Contr_Table AS TABLE OF HD_Contr
/

CREATE OR REPLACE TYPE Hard_Disk AS OBJECT

(hd_id VARCHAR2(10),
 capacity VARCHAR2(20),
 controller HD_Contr_Table)
/

CREATE OR REPLACE TYPE Hard_Disk_Table AS TABLE OF Hard_Disk
/

CREATE TABLE PC

(pc_id VARCHAR2(10) NOT NULL,
 hd Hard_Disk_Table,
 PRIMARY KEY (pc_id))
NESTED TABLE hd STORE AS HD_tab

(NESTED TABLE controller STORE AS HD_Contr_tab);

HardDisk_ID Description

Contr111 ---

Contr112 ---

Contr121 ---

Contr122 ---

PC_ID HardDisk

(reference)
PC001

PC002 HardDisk_ID Contr
 (reference)

HD11

HD12

HD21

HD22

Figure 3.30. Multilevel aggregation relationships using nested tables

Using Object-Oriented Features 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

attached to this table and no direct access can be performed to this table
without going through the Hard Disk table.
Every whole object can own any part object in the nesting technique, even if that
particular part has been owned by another whole object. The record of the
HD_Contr object will simply be repeated every time a hard disk claims to own
it. This shows a nonexclusive type of aggregation, where a particular part object
can be shared by more than one whole object.
Because there is no standard table created for the HD controller, we cannot
have a primary key for the table, which we usually employ to enforce an
exclusive type of aggregation (see the previous clustering technique).
It is clear from the above sections on clustering and nesting techniques that these
techniques are suitable only for the implementation of the existence-dependent
type of aggregation. The clustering technique supports both nonexclusive and
exclusive aggregation. However, the nesting technique supports only the
nonexclusive type.
In the following section we will see how we can implement an existence-
independent type of aggregation.

Implementing Existence-Independent Aggregation

To implement the existence-independent aggregation type in relational tables,
an Aggregate table is created. This table maintains the part-of relationship
between the whole table and the part tables. By having one Aggregate table,
we avoid having a link from the whole to the part that is hard coded within one
of the tables. In both the clustering and nesting techniques, the connection
between whole and part is either hard coded within the whole table (in the
nesting technique) or within the part tables (in the clustering technique). These
techniques actually prevent us from creating independent part objects that exist
but are not necessarily connected to a particular whole at any given time.
In the Aggregate table, only the relationships between the identifiers of the
whole table and the part tables are stored. To maintain consistency in the
Aggregate table, the identifiers across different part tables should be kept
unique. If the number of the part tables is more than one, a new attribute type
is used to distinguish the different types of the part tables.
Figure 3.32 shows an existence-independent aggregation, where lab is an
aggregate of Computer, Printer, and Scanner. There are times when we have

74 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.33. Existence-independent type of aggregation using the
Aggregate table

Computer
comp_ID
description

Printer
printer_ID
description

Scanner
scan_ID
description

Lab
Lab_ID
location

Aggregate
Lab_ID
Part_ID
Part_type

Figure 3.32. Existence-independent type of aggregation

1

1… 1…1…

Lab
Lab_ID
location

Computer
comp_ID
description

Printer
printer_ID
description

Scanner
scan_ID
description

new computers or printers that have not been allocated to any particular lab.
We want to still be able to keep the record of the new parts even when no
associated whole is established.
This situation cannot be implemented using either the clustering or the nested
technique. In the nesting technique, we can only insert a new part record within
the nested table if we have an existing whole record for it. In the clustering
technique, the primary key of the whole serves as the cluster key; thus, it is not
supposed to be null.
Figure 3.33 shows how an Aggregate table is created to store the relationship
between Lab and Computer, Printer, and Scanner. The Aggregate table
contains the primary key of the whole, which is lab_ID, and an attribute called
part_ID, which is the primary key of either one of the part tables (comp_ID,
printer_ID, or scan_ID). The last attribute is called part_type, which is the type

Using Object-Oriented Features 75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the part_ID (computer, printer, or scanner). Figure 3.34 demonstrates the
implementation of the above aggregation structure.
Figure 3.34 shows an implementation of the existence–independent, nonexclu-
sive aggregation type. It is an existence-independent type because the new
records of part tables, Computer, Printer, and Scanner, can be inserted without
any associated record within the whole table, Lab. If a Lab record is removed
from the Lab table, it will only be cascaded to the Aggregate table where the
specific Lab record appears; however, it does not have to affect the records
within the associated part tables. The above example is also a nonexclusive type
because one particular part, such as a printer, can appear in the Aggregate table
more than once and is associated with a different lab_ID. This is possible
because both the lab_ID and part_ID are primary keys of the Aggregate table.
If this situation is not desirable, then we can make the lab_ID a foreign key in

CREATE TABLE Lab
(lab_id VARCHAR2(10) NOT NULL,
 location VARCHAR2(20),
 PRIMARY KEY (lab_id));

CREATE TABLE Computer

(comp_id VARCHAR2(10) NOT NULL,
 description VARCHAR2(10),
 PRIMARY KEY (comp_id));

CREATE TABLE Printer

(printer_id VARCHAR2(10) NOT NULL,
 description VARCHAR2(10),
 PRIMARY KEY (printer_id));

CREATE TABLE Scanner
(scan_id VARCHAR2(10) NOT NULL,
 description VARCHAR2(10),
 PRIMARY KEY (scan_id));

CREATE TABLE Aggregate
(lab_id VARCHAR2(10) NOT NULL,
 part_id VARCHAR2(10),
 part_type VARCHAR2(20)

CHECK (part_type in (‘Computer’, ‘Printer’, ‘Scanner’)),
 PRIMARY KEY (lab_id, part_id),
 FOREIGN KEY (lab_id) REFERENCES Lab(lab_id));

Figure 3.34. Implementation of the existence-independent type of
aggregation

76 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the Aggregate table, and only the part_ID will be the primary key. This will
enforce each part_ID to appear only once within the Aggregate table and be
associated with one particular lab_ID only.

Case Study

The following course-manual authorship case study shows how we can
implement an object-oriented model in Oracle™. The diagram shows two
inheritance relationships. First is the union inheritance between an author and
an industry-based author and an academic author. Second is the mutual-
exclusion inheritance between an academic and a research staff and a teaching
staff. There are association relationships between the author and course
manual, as well as between the teaching staff and subject. There is also one
aggregation relationship between the course manual and its chapters.
To implement the course-manual authorship object-oriented model into
Oracle™, we will apply the following systematic steps: type and table. We have

Author_T

name
address

Industry_Based_T

company name
company address

company size

Academic_T

institution name
institution address

number of students

Teaching_Staff_T

total contact hours

contact no. : <varray>

Research_Staff_T

research topic

research director

Subject_T

subject code
subject name

venue

1…

1

Course_Manual_T

ISBN

title

year

Chapter_T

chapter no.
chapter title
page no.

1…

1…

Figure 3.35. Course-manual authorship case study

Using Object-Oriented Features 77

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Author_T AS OBJECT
(ao_id VARCHAR2(3),
 name VARCHAR2(10),
 address VARCHAR2(20)) NOT FINAL
/

CREATE OR REPLACE TYPE Industry_Based_T UNDER Author_T

(c_name VARCHAR2(10),
 c_address VARCHAR2(20),
 c_size VARCHAR2(10))
/

CREATE OR REPLACE TYPE Academic_T UNDER Author_T

(i_name VARCHAR2(10),
 i_address VARCHAR2(20),
 no_student NUMBER,
 academic_type VARCHAR2(20)) NOT FINAL
/

CREATE OR REPLACE TYPE Research_Staff_T UNDER Academic_T

(topic VARCHAR2(20),
 director VARCHAR2(10))
/

CREATE OR REPLACE TYPE Contacts AS VARRAY(3) OF NUMBER
/

CREATE OR REPLACE TYPE Teaching_Staff_T UNDER Academic_T

(total_hour NUMBER,
 contact_no Contacts)
/

CREATE TABLE Author OF Author_T

(ao_id NOT NULL,
 PRIMARY KEY (ao_id));

-- implementation of inheritance using an earlier version of Oracle
-- or traditional relational databases

CREATE OR REPLACE TYPE Author_T AS OBJECT

(ao_id VARCHAR2(3),
 name VARCHAR2(10),
 address VARCHAR2(20))
/

Figure 3.36. Implementation of the case study in Oracle™

78 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3.36. (continued)

CREATE OR REPLACE TYPE Industry_Based_T AS OBJECT
(ao_id VARCHAR2(3),
 c_name VARCHAR2(10),
 c_address VARCHAR2(20),
 c_size VARCHAR2(10))
/

CREATE OR REPLACE TYPE Academic_T AS OBJECT
(ao_id VARCHAR2(3),
 i_name VARCHAR2(10),
 i_address VARCHAR2(20),
 no_student NUMBER,
 academic_type VARCHAR2(20))
/

CREATE OR REPLACE TYPE Research_Staff_T AS OBJECT
(ao_id VARCHAR2(3),
 topic VARCHAR2(20),
 director VARCHAR2(10))
/

CREATE OR REPLACE TYPE Contacts AS VARRAY(3) OF NUMBER
 /
CREATE OR REPLACE TYPE Teaching_Staff_T AS OBJECT

(ao_id VARCHAR2(3),
 total_hour NUMBER,
 contact_no Contacts)
/

CREATE TABLE Author OF Author_T
(ao_id NOT NULL,
 PRIMARY KEY (ao_id));

CREATE TABLE Industry_Based OF Industry_Based_T

(ao_id NOT NULL,
 PRIMARY KEY (ao_id),
 FOREIGN KEY (ao_id) REFERENCES author (ao_id)
 ON DELETE CASCADE);

CREATE TABLE Academic OF Academic_T

(ao_id NOT NULL,
 academic_type
 CHECK (academic_type IN (‘Research’, ‘Teaching’, NULL)),
 PRIMARY KEY (ao_id),
 FOREIGN KEY (ao_id) REFERENCES author (ao_id)
 ON DELETE CASCADE);

CREATE TABLE Research_Staff OF Research_Staff_T

(ao_id NOT NULL,
 PRIMARY KEY (ao_id),
 FOREIGN KEY (ao_id) REFERENCES author (ao_id)
 ON DELETE CASCADE);

Using Object-Oriented Features 79

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Teaching_Staff OF Teaching_Staff_T
(ao_id NOT NULL,
 PRIMARY KEY (ao_id),
 FOREIGN KEY (ao_id) REFERENCES author (ao_id)
 ON DELETE CASCADE);

-- implementation of one-to-many association using ref

CREATE OR REPLACE TYPE Subject_T AS OBJECT

(code VARCHAR2(10),
 sub_name VARCHAR2(20),
 venue VARCHAR2(10),
 lecturer REF Teaching_Staff_T)
/

-- implementation of aggregation using a nesting technique

CREATE OR REPLACE TYPE Chapter_T AS OBJECT
(c_no NUMBER,
 c_title VARCHAR2(20),
 page_no NUMBER)

/
CREATE OR REPLACE TYPE Chapter_Table_T AS TABLE OF Chapter_T
/

CREATE OR REPLACE TYPE Course_Manual_T AS OBJECT

(isbn VARCHAR2(10),
 title VARCHAR2(20),
 year NUMBER,
 chapter Chapter_Table_T)

/

CREATE TABLE Course_Manual OF Course_Manual_T

(isbn NOT NULL,
 PRIMARY KEY (isbn));

-- implementation of the Publish table

CREATE TABLE Publish

(author REF Author_T,
 course_manual REF Course_Manual_T);

CREATE TABLE Subject OF Subject_T

(code NOT NULL,
 PRIMARY KEY (code));

Figure 3.36. (continued)

80 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to determine types and tables that we will need to implement the model. For this
case, we need the types Author_T, Industry_T, Academic_T, Research_Staff_T,
Teaching_Staff_T, and Subject_T.
For each of them, we will create the table respectively. We also need a type
Contacts for the multiple-collection varray of the contact_no attribute in
Teaching_Staff_T. Finally, we will need type Course_Manual_T and its table,
and also Chapter_T type and Chapter_Table_T type if we decide to use the
nested-table implementation in an aggregation relationship.

• Inheritance relationship. There are two inheritance relationships in the
model. First is the inheritance between Author_T and the subclasses
Industry_T and Academic_T. Second is the inheritance between
Academic_T and its subclasses Research_Staff_T and Teaching_Staff_T.
We will show two methods of implementing inheritance in our sample
solution.

• Association relationship. There are two association relationships from
this model. The first one is between Author_T and Course_Manual_T. If
we use a nested table in implementing the aggregation relationship
between Course_Manual_T and Chapter_T, we will be able to create a
new table using the ref of Author_T and Course_Manual_T in it. The
second association is the relationship between Teaching_Staff_T and
Subject_T. As it is a one-to-many association, we will need to use the ref
of the one side, in this case Teaching_Staff_T, in the many side, Subject_T.

• Aggregation relationship. There is one homogeneous aggregation
relationship in this model. If we use a nested table, we have to create the
type and type table for the part class, and the type and table for the whole
class. If we use the clustering technique, we do not need the type, but we
do need to create the cluster beforehand using the primary key of the
whole class, Course_Manual, and then create an index after that.

• Complete solution. The complete solution is shown in Figure 3.36.

Using Object-Oriented Features 81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

Object-oriented features such as object types, object identity, object refer-
ences, and relationships are the new object-based features that have been
introduced in Oracle™ to enrich traditional RDBMSs with object-oriented
characteristics. Using these new features, complex relationships can be imple-
mented, including different semantics of inheritance, associations among differ-
ent collection types, and aggregation relationships. Although the latest object-
oriented Oracle™ has incorporated various object-model features, it still
maintains some basic concepts of the relational model such as data integrity and
the simplicity of the implementation.

References

Elmasri, R., & Navathe, S. B. (2000). Fundamentals of database systems
(3rd ed.). Addison Wesley.

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. A university has a number of books listed as textbooks, each of which may
be used by more than one university. A book is published by only one
publisher, but one publisher can publish more than one book. Show the
implementation of the association relationships above using object refer-

82 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ences. Assume that there are three object types, that is, University, Book,
and Publisher. Add any attribute where necessary.

2. The City College has just built a new computer laboratory. It has many
PCs in it with their own IDs, capacities, and brands. Although these PCs
are currently located in the new laboratory, they are removable to other
laboratories or offices. Using the clustering technique, show the imple-
mentation of the aggregation relationship described.

3. The Victorian state government stores geographic data in the ranking of
aggregation. Data of the state is an aggregation of the area data, and data
of the area is an aggregation of the suburb data. For the first implemen-
tation, each level contains only an ID and a name as the attributes. Using
a nested table, show the implementation of this case.

4. Saving supermarket is preparing many types of food hampers for the
Christmas season. Each hamper has its own ID and price. It contains items
that can be categorized into biscuit, confectionery, and deli products.
Each category has its own ID, name, and price. These part items can be
sold as a part of the hamper or sold separately. For this purpose,
implement the aggregation relationships as described.

5. The Animal class has attributes ID, name, and description. It has inherit-
ance to three other objects, that is, Fish, Bird, and Mammal. The Fish
object has an attribute of its own, water_habitat. The Bird object has
attributes color, sound, and fly. Mammal has attributes diet and size. Most
of the animals can be allocated to these three objects. However, there is
some problem when an animal like a whale is going to be inserted because
it can be categorized into two different objects. Show the object-oriented
diagram and the implementation for this inheritance relationship.

6. A researcher develops an object-based database for his collection of
technical papers. The attributes for the Technical_Papers object are titles
and authors. One object inherited from a technical paper is
Conference_Paper, which basically contains papers taken from a confer-
ence. The attributes for this object are conference name, conference year,
and conference venue. To make the database more detailed, he inserted
other objects that inherit from Conference_Papers. One of them is
OO_Conf_Papers, which contains all conference papers on object-
oriented topics. It has its local attribute imp_type. Show the diagram and
implementation of the inheritance relationship.

Using Object-Oriented Features 83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter Solutions

1. The OO diagram for the case is shown below.

1 1… 1… 1…
…used inpublished by

Publisher
p_name
p_address

Book
title
author
ISBN

University
u_name
u_city

CREATE OR REPLACE TYPE Publisher_T AS OBJECT
(p_id VARCHAR2(3),
 p_name VARCHAR2(20),
 p_address VARCHAR2(50))

/

CREATE OR REPLACE TYPE Book_T AS OBJECT
(b_id VARCHAR2(3),
 title VARCHAR2(50),
 author VARCHAR2(20),
 isbn VARCHAR2(10),
 published_by REF Publisher_T)

/
CREATE OR REPLACE TYPE University_T AS OBJECT

(u_id VARCHAR2(3),
 u_name VARCHAR2(20),
 u_city VARCHAR2(20))

/

CREATE TABLE Publisher OF Publisher_T
(p_id NOT NULL,
 PRIMARY KEY (p_id));

CREATE TABLE Book OF Book_T
(b_id NOT NULL,
 PRIMARY KEY (b_id));

CREATE TABLE University OF University_T
(u_id NOT NULL,
 PRIMARY KEY (u_id));

CREATE TABLE Used_in
(Book REF Book_T,

 University REF University_T);

84 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. The aggregation is shown below.

PC

Lab

CREATE CLUSTER Lab_Cluster
(lab_id VARCHAR2(3));

CREATE TABLE Lab
(lab_id VARCHAR2(3) NOT NULL,
 location VARCHAR2(20),
 PRIMARY KEY (lab_id))
CLUSTER Lab_Cluster(lab_id);

CREATE TABLE PC
(lab_id VARCHAR2(3) NOT NULL,
 pc_id VARCHAR2(3) NOT NULL,
 capacity VARCHAR2(10),
 brand VARCHAR2(20),
 PRIMARY KEY (lab_id, pc_id),
 FOREIGN KEY (lab_id) REFERENCES Lab (lab_id))
CLUSTER Lab_Cluster(lab_id);

CREATE INDEX Lab_Cluster_Index
ON CLUSTER Lab_Cluster;

3. Using a nested table, we need to create the object from the lowest part
object. For this case, it starts from suburb, then moves to area and then
state.

Area

State

Suburb

Using Object-Oriented Features 85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Suburb_T AS OBJECT
(sb_id VARCHAR2(3),
 sb_name VARCHAR2(30))

/

CREATE OR REPLACE TYPE Suburb_Table AS TABLE OF
Suburb_T
/

CREATE OR REPLACE TYPE Area_T AS OBJECT
(a_id VARCHAR2(3),
 a_name VARCHAR2(30),
 suburb Suburb_Table)

/

CREATE OR REPLACE TYPE Area_Table AS TABLE OF Area_T
/

CREATE TABLE State
(st_id VARCHAR2(3) NOT NULL,
 st_name VARCHAR2(30),
 areas Area_Table,
 PRIMARY KEY (st_id))
NESTED TABLE areas STORE AS Area_tab

(NESTED TABLE suburb STORE AS Suburb_tab);

4. To implement the case, we need to create an Aggregate table that stores
the whole and the part IDs as the primary keys. The figure below shows
the implementation for the case. Part_ID in the Aggregate table is the
primary key of each part table, and the part_type is the type of the part
itself.

Hamper
h_ID
h_price

Aggregate
h_ID
part_ID
part_type

Deli
d_ID
d_name
d_price

Confectionery
c_ID
c_name
c_price

Biscuit
b_ID
b_name
b_price

CREATE TABLE Hamper
(h_id VARCHAR2(3) NOT NULL,

86 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 h_price NUMBER,
 PRIMARY KEY (h_id));

CREATE TABLE Biscuit
(b_id VARCHAR2(3) NOT NULL,
 b_name VARCHAR2(20),
 b_price NUMBER,
 PRIMARY KEY (b_id));

CREATE TABLE Confectionery
(c_id VARCHAR2(3) NOT NULL,
 c_name VARCHAR2(20),
 c_price NUMBER,
 PRIMARY KEY (c_id));

CREATE TABLE Deli
(d_id VARCHAR2(3) NOT NULL,
 d_name VARCHAR2(20),
 d_price NUMBER,
 PRIMARY KEY (d_id));

CREATE TABLE Aggregate
(h_id VARCHAR2(3) NOT NULL,
 part_id VARCHAR2(3) NOT NULL,
 part_type VARCHAR2(20)CHECK (part_type IN

(‘biscuit’, ‘confectionery’, ‘deli’)),
 PRIMARY KEY (h_id, part_id),
 FOREIGN KEY (h_id) REFERENCES hamper (h_id));

5. The diagram for the inheritance is as follows.

mutual exclusive

Fish_Mammal

Animal
ID
name
description

Fish
water_habitat

Mammal
diet
size

Bird
color
sound
fly

Using Object-Oriented Features 87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There is a multiple inheritance of class Fish_Mammal that can inherit attributes
and methods from two classes, Fish and Mammal.

CREATE OR REPLACE TYPE Animal_T AS OBJECT
(id VARCHAR2(3),
 name VARCHAR2(20),
 description VARCHAR2(50),
 animal_type VARCHAR2(10))

/

CREATE OR REPLACE TYPE Fish_T AS OBJECT
(id VARCHAR2(3),
 water_habitat VARCHAR2(20))

/

CREATE OR REPLACE TYPE Bird_T AS OBJECT
(id VARCHAR2(3),
 color VARCHAR2(20),
 sound VARCHAR2(20),
 fly VARCHAR2(10))

/

CREATE OR REPLACE TYPE Mammal_T AS OBJECT
(id VARCHAR2(3),
 diet VARCHAR2(20),
 m_size VARCHAR2(10))

/

CREATE OR REPLACE TYPE Fish_Mammal_T AS OBJECT
(id VARCHAR2(3),
 lungs_capacity NUMBER)

/

CREATE TABLE Animal OF Animal_T
(id NOT NULL,
 PRIMARY KEY (id));

CREATE TABLE Fish OF Fish_T
(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Animal
 ON DELETE CASCADE);

CREATE TABLE Bird OF Bird_T
(id NOT NULL,
 PRIMARY KEY (id),

88 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 FOREIGN KEY (id) REFERENCES Animal
 ON DELETE CASCADE);

CREATE TABLE Mammal OF Mammal_T
(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Animal
 ON DELETE CASCADE);

CREATE TABLE Fish_Mammal OF Fish_Mammal_T
(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Animal
 ON DELETE CASCADE);

6. The diagram and the implementation of the inheritance case described can
be solved by using the Oracle™ inheritance facility.

Conference_Papers

Technical_Papers

OO_Conf_Papers

CREATE OR REPLACE TYPE Technical_Papers_T AS OBJECT
(title VARCHAR2(30),
 authors VARCHAR2(20)) NOT FINAL

/

CREATE OR REPLACE TYPE Conference_Papers_T
UNDER Technical_Papers_T

(conf_name VARCHAR2(20),
 conf_year NUMBER,
 conf_venue VARCHAR2(10))
NOT FINAL

/

CREATE OR REPLACE TYPE OO_Conf_Papers_T
UNDER Conference_Papers_T

(imp_type VARCHAR2(20));
/

Object-Oriented Methods 89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Object-Oriented
Methods

We recall that an object-oriented model consists of two major aspects: the
static and dynamic. The former covers the implementation of the data
structure, which includes the object’s attributes and relationships, whereas the
latter is concerned with the object’s operations, which is the implementation of
object-oriented methods using SQL and PL/SQL.
The static and dynamic parts of an object model actually form a nonseparated
unit since accesses to the attributes of an object must be done through the
available methods. This raises the concept of encapsulation.
In the object-relational database environment, there are two possible mecha-
nisms for implementing encapsulation.

• Encapsulation using stored procedures or functions and the grant mecha-
nism

• Encapsulation using member procedures or functions

The first mechanism has been adopted mostly by pure RDB systems. It allows
information hiding by managing the privileges of each method, as well as
ensuring correctness and consistency of the database by providing specific
methods for accessing the data.
The second mechanism, which is available in object-relational DBMSs such as
Oracle™ 8 and above, is called the member procedure or function. This

90 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mechanism allows us to define object types with their associated procedures
or functions together. Each of the two mechanisms will be described in the
following sections.

Implementation of Encapsulation Using
Stored Procedures or Functions

and Grant Mechanisms

Encapsulation in the relational world is not common, although it may be
implemented for the sake of security. We normally simulate encapsulation in
RDBs through the use of grants. Figure 4.1 gives an illustration of the overall
implementation of an object model into an object-relational system covering the
static and dynamic transformation and the use of grants for encapsulation.
In the following sections, we especially consider two aspects for achieving
encapsulation using this mechanism, namely, stored procedures or functions for
storing generic methods, and grants for maintaining encapsulation.

Stored Procedures or Functions

Stored procedures or functions are PL/SQL programs that are stored in RDBs
and subsequently can be invoked at any time. The benefit of stored procedures

assoc.part_of

is_a

No
GRANT

GRANT
EXECUTE

Table

Object-Oriented Conceptual Model Relational Model

Stored
Procedure

Stored
Procedure

Stored
Procedure

Object-Relational
Transformation

(Static)

Object-Relational
Transformation

(Dynamic)

User
Applications

Figure 4.1. Stored procedures and grants

Object-Oriented Methods 91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or functions is well perceived in a client-server environment as a call to a stored
procedure or function can be done in a single call, thereby minimizing network
traffic. Another benefit, which is more relevant to our transformation business,
is that methods of a class in an object-oriented model can be stored in stored
procedures.
In the following sections, we will use the Customer_T object (see Figure 4.2)
as a working example. This object has a number of methods. The detail
implementation and the parameters will depend on whether the first approach
(using the grant mechanism) or the second approach (using the member
procedures or functions mechanism) is used.
Section 4.1 shows how to implement methods when a grant mechanism is used
to simulate encapsulation in an object-relational database. Section 4.2 will
show how the methods are implemented if the member procedures or functions
mechanism is chosen.
The first code in Figure 4.3 shows how we implement the Add_Customer
method. We will need all necessary attributes as the parameters of the method.
Assume that table Customer of type Customer_T has already been created.
In the example of Add_Customer, the parameter types are written as “%type”
rather than the usual data types such as number, char, and so forth. When
%type is used, the procedure will copy whatever data types are used for the
associated attributes in the specified table. For example, the parameter
new_ID will use the data type of attribute ID in the Customer table, and so on.
The example in Figure 4.4 shows a stored procedure to update a customer’s
total bonus points. The method also handles an exception, where the customer

CUSTOMER _T

ID
last_name
first_name
total_ bonus_points

Add_ Customer
Update_ Customer_ Points
Delete_ Customer
Check_ Frequent_Customer
Bonus _Check
Customer _Info

Implementation of
Methods using Grant
Mechanism
(Section 4.1)

Implementation of
Methods using Member
Functions or Procedures
(Section 4 .2)

Figure 4.2. Two implementation techniques for Customer_T methods

92 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.3. Stored procedures for Add_Customer

CREATE OR REPLACE PROCEDURE Add_Customer(
new_id Customer.id%TYPE,
new_last_name Customer.last_name%TYPE,
new_first_name Customer.first_name%TYPE) AS

BEGIN
-- When inserting a new customer,
-- the initial default value for total_bonus_points is 0.

-- The Update_Customer_Points method can be used
-- to modify the total_bonus_points.

INSERT INTO Customer

(id, last_name, first_name, total_bonus_points)
VALUES (new_id, new_last_name, new_first_name, 0);

END Add_Customer;
/

Figure 4.4. Stored procedures for Update_Customer_Points

General Syntax of Exception:

EXCEPTION
WHEN <Exception_name> THEN <statements>

Example:

CREATE OR REPLACE PROCEDURE Update_Customer_Points(

new_id Customer.id%TYPE,
points Customer.total_bonus_points%TYPE) AS

old_bonus_points NUMBER;

BEGIN
SELECT total_bonus_points INTO old_bonus_points
FROM Customer
WHERE id = new_id;

UPDATE Customer
SET total_bonus_points = old_bonus_points + points
WHERE id = new_id;

EXCEPTION

WHEN NO_DATA_FOUND THEN
INSERT INTO Customer (id, total_bonus_points)
VALUES (new_id, points);

END Update_Customer_Points;
/

Object-Oriented Methods 93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ID to be updated is not found in the Customer table, in which case a new
customer record with the specified customer ID is created.
The example in Figure 4.5 demonstrates the use of the delete statement within
a stored procedure. When the customer is not found in the database, a message
will be displayed on the screen. Note that the statement
“DBMS_output.put_line” is used for displaying results on the screen.
In order to process an SQL statement, Oracle™ allocates an area of memory
known as the context area. The context area contains information necessary
to complete the processing, including the number of rows processed by the
statement, a pointer to the parsed representation of the statement, and in the
case of a query, the active set, which is the set of rows returned by the query.
A cursor is a handle, or pointer, to the context area. Through the cursor, a PL/
SQL program can control the context area and what happens to it as the
statement is processed. The cursor declaration is placed before the procedure
body.
The PL/SQL block in Figure 4.6 illustrates a cursor fetch loop, in which multiple
rows of data are returned from a query. Notice that we are using a separate
table, FreqClient, which has to be created first before we can execute the
procedure.
The example in Figure 4.7 shows a stored procedure that produces the output
to the screen rather than updating information in the database. A cursor is used

CREATE OR REPLACE PROCEDURE Delete_Customer(
delete_id Customer.id%TYPE,
delete_last_name Customer.last_name%TYPE) AS

BEGIN

DELETE FROM Customer
WHERE id = delete_id
AND last_name = delete_last_name;

EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(‘Customer does not exist …’);

END Delete_Customer;

/

Figure 4.5. Stored procedures for Delete_Customer

94 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

CREATE [OR REPLACE] PROCEDURE <procedure name> AS

CURSOR <cursor_name> IS

SELECT <statement>;

BEGIN

FOR <cursor variable> IN <cursor name> LOOP
IF <condition>

THEN <statement>
[ELSEIF <condition>

THEN <statement>]
END IF;

END LOOP;
END <procedure name>;

Example:

CREATE OR REPLACE PROCEDURE Check_Frequent_Customer AS

-- Procedure to store those customers that have collected
-- more than 100 points (frequent customer) into a separate
-- table (FreqClient table)

CURSOR c_customer IS
SELECT id, last_name, total_bonus_points
FROM Customer;

BEGIN
FOR v_customer_record IN c_customer LOOP

IF (v_customer_record.total_bonus_points > 100) THEN
INSERT INTO FreqClient
VALUES
(v_customer_record.id || ‘ ‘ ||
 v_customer_record.last_name || ‘ ‘ ||
' Frequent Customer! ');

END IF;
END LOOP;

END Check_Frequent_Customer;
/

Figure 4.6. Stored procedures for Check_Frequent_Customer

to iterate each record in the database table. When the selection predicate is
met, the record will be displayed on the screen.
Once a stored procedure is created, it is stored in the database. Hence, we can
retrieve the stored procedure using a normal SQL select statement. For
example, to retrieve the stored procedure Add_Customer, we can invoke the
following select statement interactively.

Object-Oriented Methods 95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The result of the select statement in Figure 4.8 is a complete listing of the
procedure Add_Customer. Each line begins with a line number. Users can also
invoke a stored procedure and function through an execute command from
SQL*Plus (Loney & Koch, 2000, 2002; ORACLE™ 8, 1997; Urman, 2000)
as is shown with an example in Figure 4.9.

EXECUTE Add_Customer('92111', ‘John’, ‘Done’);

Figure 4.9. Executing stored procedures

General Syntax:

SELECT line, text
FROM user_source
WHERE name = (stored procedure name)
[ORDER BY <attribute>];

Example:

SELECT line, text
FROM user_source
WHERE name = ‘Add_Customer’
ORDER BY line;

Figure 4.8. Retrieving stored procedure

CREATE OR REPLACE PROCEDURE Bonus_Check(
minbonus NUMBER) AS

CURSOR c_bonus IS

SELECT id, last_name, total_bonus_points
FROM Customer
WHERE total_bonus_points < minbonus;

BEGIN

FOR v_bonus_record IN c_bonus LOOP
DBMS_OUTPUT.PUT_LINE
(v_bonus_record.id||‘ ‘||v_bonus_record.last_name||
 ‘ ‘||v_bonus_record.total_bonus_points);

END LOOP;

END Bonus_Check;
/

Figure 4.7. Stored procedures for Bonus_Check

96 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE FUNCTION Customer_Info(
c_id Customer.id%TYPE,
req_points NUMBER)
RETURN VARCHAR2 IS

-- Returns ‘Gold Point’ if the Customer has completed all
-- required bonus points,
-- ‘Silver Point’ for over or equal to 75%,
-- ‘Bronze Point’ for less than 75% and greater than 50%, and
-- 'No Prize Yet’ if the points are less than or equal to 50%.

v_total_current_points NUMBER;
v_percent_completion NUMBER;

BEGIN

SELECT total_bonus_points
INTO v_total_current_points
FROM Customer
WHERE id = s_id;

-- Calculate the current percentage.

v_percent_completion :=

v_total_current_points / req_points * 100;

IF v_percent_completion = 100 THEN
RETURN ‘Gold Point’;

ELSIF v_percent_completion >= 75 THEN
RETURN ‘Silver Point’;

ELSIF v_percent_completion > 50 THEN
RETURN ‘Bronze Point’;

ELSE
RETURN 'No Prize Yet';

END IF;

END Customer_Info;

/

Apart from stored procedures, we can also create a stored function (see Figure
4.10). The following example is a function that can be used to get information
about a customer’s bonus points.
With a stored function, we can display the output using a query as shown in
Figure 4.11. The query will return a list of all customers in the Customer table

SELECT id, last_name, first_name, Customer_Info(id, 100)
FROM Customer;

Figure 4.11. Retrieving stored functions for Customer_Info

Figure 4.10. Stored functions for Customer_Info

Object-Oriented Methods 97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

together with their current bonus-point status. The required number of bonus
points to get a gold point is 100.

Grant

Grant is often used in conjunction with stored procedures in RDBs, particularly
in the context of data security. In Oracle™, one can restrict the database
operations that users can perform by allowing them to access data only through
procedures and functions (Loney & Koch, 2000, 2002; ORACLE™ 8, 1997;
Urman, 2000). For example, one can grant users access to a procedure that
updates one table, but not grant them access to the table itself. When a user
invokes the procedure, the procedure executes with the privileges of the
procedure’s owner. Users who have only the privilege of executing the
procedure (but not the privilege to query, update, or delete from the underlying
tables) can invoke the procedure, but they cannot manipulate the table data in
any other way (Loney & Koch; ORACLE™ 8; Urman).
In Oracle™ we can grant system, role, or object privileges to three different
types mentioned below.

• User. The privilege is given to particular users, and the user can then
exercise the privilege.

• Role. The privilege is given to particular roles, and the user who has been
granted the role will be able to exercise the privilege.

• Public. The privilege is given to all users.

A grant on a system privilege is the grant to carry out a basic system operation
such as create table, create procedure, and so forth. A grant on a role is the
grant to access the information of the particular role. Finally, a grant on an
object privilege is the grant to do a particular action to a particular object. Thus,
for a grant on an object privilege, we need to declare the schema of the grant-
object target. The general syntax for the grant statement is shown in Figure
4.12.
The use of grants to simulate object-oriented encapsulation is to grant users
with no access to tables, and to grant users with execute accesses to the stored
procedures where the methods are stored. Therefore, the tables are encapsu-
lated with the stored procedures. For example, we want to grant a particular

98 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.12. Grant general syntax

GRANT [system privilege|role] TO [user|role|PUBLIC];

GRANT [object privilege] <object schema> TO [user|role|PUBLIC];

Figure 4.13. Grant object privilege to user

GRANT EXECUTE ON <procedure_name> TO <user>;

user with an object privilege to execute a stored procedure as shown in Figure
4.13.

Implementation of Encapsulation using
Member Procedures or Functions

As mentioned previously, we can also implement object operations as member
procedures or functions. The following example demonstrates the implemen-
tation of the Customer_T object together with its member procedures and
functions. We reuse some of the routines defined in the previous section. Note
the changes required for the implementation.

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 last_name VARCHAR2(20),
 first_name VARCHAR2(20),
 total_bonus_points NUMBER,

 MEMBER PROCEDURE

Update_Customer_Points(c_points IN NUMBER),

 MEMBER FUNCTION

Customer_Info(c_req_points IN NUMBER)
RETURN VARCHAR2

)
/

Figure 4.14. Object with member procedures and functions

Object-Oriented Methods 99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.15. Method implementation of member procedures and functions

CREATE OR REPLACE TYPE BODY Customer_T AS

MEMBER PROCEDURE
Update_Customer_Points(c_points IN NUMBER) IS

BEGIN

total_bonus_points := total_bonus_points + c_points;
END Update_Customer_Points;

MEMBER FUNCTION Customer_Info(s_req_points IN NUMBER)

RETURN VARCHAR2 IS

v_percent_completion NUMBER;

BEGIN

-- Calculate the current percentage.

v_percent_completion :=

total_bonus_points / s_req_points * 100;

IF v_percent_completion = 100 THEN
RETURN ‘Gold Point’;

ELSIF v_percent_completion >= 75 THEN
RETURN ‘Silver Point’;

ELSIF v_percent_completion > 50 THEN
RETURN ‘Bronze Point’;

ELSE
RETURN 'No Prize Yet';

END IF;

END Customer_Info;

END;

/

Figure 4.16. Example of using self keyword

MEMBER PROCEDURE
Update_Customer_Points(s_points IN NUMBER) IS

BEGIN

self.total_bonus_points :=
self.total_bonus_points + s_points;

END Update_Customer_Points;

100 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.17. Syntax to call member procedures or functions

Object_name.member_procedure_name

Object_name.member_function_name

From the description in Figure 4.15, it is clear that the main difference between
the normal procedures and functions and the member procedures and functions
is the fact that we do not need to use the working object as a parameter in
member procedures and functions. It is automatically referenced by the current
working object, which eliminates the need to search for it first. Hence, the
parameter new_ID, which is used to locate the current working object, is no
longer necessary.
We can also use the keyword self to identify that the object we are referring
is the current working object. For example, the above member procedure
Update_Customer_Points can be written as follows.
In order to call or to use the above member functions or procedures, we need
a reference to a particular object instance (i.e., the current working object). For
example, in the above case, we need to instantiate a Customer_T object and
use the object to execute the procedures and functions. The syntax for calling
a member function or procedure is shown in Figure 4.16.
The procedure in Figure 4.17 shows how we can use the previous member
procedures and functions. Declarations after “declare” can be an object,
variables, or other declarations.
The example in Figure 4.18 shows how we can call member procedures and
functions by first constructing a single object and then calling the methods that
are applicable to that object. The result for the above procedure is shown after
the code.
The example in Figure 4.18 demonstrates the use of member procedures and
member functions using Option 1 in Figure 4.19.
In Option 2, the object is created from a record within a relational table. We
call the table here Customer and it is used to store customer records. The
following procedure shows how we apply the member procedures and
functions as defined earlier for the Customer_T object to manipulate records
from the Customer table.

Object-Oriented Methods 101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.18. Member procedure or function call using an object

General Syntax:

DECLARE <declarations>
BEGIN

<procedure body>
END;
/

Example:

DECLARE

-- Construct a Customer object a_Customer.
a_Customer Customer_T :=

Customer_T(‘980790X’, ‘Smith’, ‘John’, 50);

BEGIN

-- Call procedure to update a_Customer total bonus points
a_Customer.Update_Customer_Points(30);

DBMS_OUTPUT.PUT_LINE
(‘New total points is ‘|| a_Customer.total_bonus_points);

-- Call function to display the completion
DBMS_OUTPUT.PUT_LINE (a_Customer.Customer_Info(100));

END;
/

New total points is 50
No Prize Yet

As mentioned previously, there are some differences between the implemen-
tation of stored procedures or functions and member procedures or functions.

• Stored procedures or functions are mainly used for pure relational systems
where there is no member-object concept available. Obviously, member
procedures and member functions are used for systems with an object-
oriented feature, such as object-relational database systems.

• We do not need to use the working object as a parameter in member
procedures or functions. It automatically refers to the current working
object, which eliminates the need to search for it first.

102 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object
Object Type (Class)

Attributes

Member Functions/
Procedures

Object

Relational Table

Construct
Object from a
Procedure

Option 1

Option 2

Figure 4.19. Member procedure and function implementation options

• The %type cannot be applied to an attribute of an object type directly. It
must be applied to an attribute of an instantiation of an object type (i.e.,
a table). Therefore, for member routines, we need to directly clarify the
data type of each parameter.

Case Study

The Victorian tourism department stores the data of main tourist attractions in
a database that can be accessed from every tourist information centre across
the state. The database contains information about the name of the tourist
destination, location, tourism type, and season. For each destination, the
database provides the accommodations available around the area. The accom-
modation data includes the name, type, rate, address, and the contact details
of the accommodation. Currently, the database is stored in a pure RDB with the
E/R diagram shown next.

Object-Oriented Methods 103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are two query transactions that are frequently made by the users.

a. Given the ID, show the details of a tourist destination.
b. Given the accommodation ID, show its details including the name and the

location of the tourist destination associated with the accommodation.

Figure 4.20. Member procedure and function call using a relational table

DECLARE

CURSOR c_customer IS

SELECT id, last_name, first_name, total_bonus_points
FROM Customer;

-- Construct and initialise a_Customer object.
a_Customer Customer_T := Customer_T(NULL,NULL,NULL,0);

BEGIN

FOR v_customer_record IN c_customer LOOP

-- Assign values to a_Customer object.
a_Customer.id := v_customer_record.id;
a_Customer.last_name := v_customer_record.last_name;
a_Customer.first_name := v_customer_record.first_name;
a_Customer.total_bonus_points:=
v_customer_record.total_bonus_points;

DBMS_OUTPUT.PUT_LINE
(a_Customer.id||’ ’||a_Customer.last_name||’ ’||
a_Customer.total_bonus_points);

-- Call Update_Customer_Points to update a_Customer
-- total points with another 30 points.
a_Customer.Update_Customer_Credit(30);

DBMS_OUTPUT.PUT_LINE
(‘The new total points is ‘||
a_Customer.total_bonus_points);

-- Call Customer_Info function to display whether a_Customer
-- achieves a bonus prize. Gold Point is given for points
-- equal to 100.
DBMS_OUTPUT.PUT_LINE (a_Customer.Customer_Info(100));

END LOOP;

END;
/

104 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Due to the expansion of the database size, the department now wants to
transform the database system into an object-relational system, with frequent
procedures attached to the objects. The design of the object diagram is shown
in Figure 4.22.
We need to show the implementation of the databases using both stored
procedures of a pure relational system and member procedures of an object-
relational system.
First, we create the stored procedures for tables Tourist_Destination and
Accommodation. Assume that these tables already exist. The relational schema
is shown in Figure 4.23 along with the stored procedures. Note that there is a
foreign key of ID in the Accommodation table that references the attribute ID
in the Tourist_Destination table.
The next step is to implement the member procedure. For this step, we start
from the method declaration followed by the method implementation (see
Figure 4.24).

1…1
TOURIST

DESTINATION ACCOMMODATION

name location

type season

ID

acc_ID

acc_name

acc_type

acc_address
acc_rate

acc_contact

Figure 4.21. E/R diagram of the tourism-department case study

Figure 4.22. Object diagram of the tourism-department case study

1..* 1
Accommodation
acc_id
acc_name
acc_type
acc_rate
acc_address
acc_contact
show_accommodation

Tourist_Destination
id
name
location
type
season
show_tourist_dest

Object-Oriented Methods 105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relational Schemas

Tourist_Destination (ID, name, location, type, season)

Accommodation (acc_ID, acc_name, acc_type, acc_rate,
acc_address, acc_contact, ID)

Stored Procedures

CREATE OR REPLACE PROCEDURE Show_Tourist_Dest(
 new_id IN Tourist_Destination.id%TYPE) AS

new_name Tourist_Destination.name%TYPE;
new_location Tourist_Destination.location%TYPE;
new_type Tourist_Destination.type%TYPE;

BEGIN

SELECT name, location, type
INTO new_name, new_location, new_type
FROM Tourist_Destination
WHERE id = new_id;

DBMS_OUTPUT.PUT_LINE

(new_name||‘ ‘||new_location||’ ‘||new_type);

END Show_Tourist_Dest;
/

CREATE OR REPLACE PROCEDURE Show_Accommodation(

 new_id IN Accommodation.id%TYPE) AS

new_acc_name Accommodation.acc_name%TYPE;
new_acc_address Accommodation.acc_address%TYPE;
new_acc_contact Accommodation.acc_contact%TYPE;
new_destination_name Tourist_Destination.name%TYPE;
new_destination_location Tourist_Destination.location%TYPE;

BEGIN

SELECT a.acc_name, a.acc_address, a.acc_contact, b.name, b.location
INTO new_acc_name, new_acc_address, new_acc_contact,
new_destination_name, new_destination_location
FROM Accommodation a, Tourist_Destination b
WHERE a.id = b.id
AND b.id = new_id;

DBMS_OUTPUT.PUT_LINE
(new_acc_name||’ ‘||new_acc_address||’ ‘||new_acc_contact
||’ ‘||new_destination_name||’ ‘||new_destination_location)
END LOOP;

END Show_Accommodation;
/

Figure 4.23. Stored-procedures implementation for the tourism-
department case study

106 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.24. Member-methods implementation for the tourism-department
case study

Methods Declaration

CREATE OR REPLACE TYPE Tourist_Destination_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 location VARCHAR2(30),
 type VARCHAR2(20),
 season VARCHAR2(10),

 MEMBER PROCEDURE Show_Tourist_Dest)

/

CREATE TABLE Tourist_Destination OF
Tourist_Destination_T
(id NOT NULL,
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Accommodation_T AS OBJECT
(acc_id VARCHAR2(10),
 acc_name VARCHAR2(30),
 acc_type VARCHAR2(30),
 acc_rate NUMBER,
 acc_address VARCHAR2(30),
 acc_contact VARCHAR2(10),
 destination REF Tourist_Destination_T,

 MEMBER PROCEDURE Show_Accommodation)

/

CREATE TABLE Accommodation OF Accommodation_T
(acc_id NOT NULL,
 PRIMARY KEY (acc_id));

Methods Implementation
CREATE OR REPLACE TYPE BODY Tourist_Destination_T AS

MEMBER PROCEDURE Show_Tourist_Dest IS

BEGIN

DBMS_OUTPUT.PUT_LINE
(self.name||‘ ‘||self.location||‘ ‘||self.type);

END LOOP;

Object-Oriented Methods 107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4.24. (continued)

Summary

In a pure RDB system, packages such as stored procedures and functions are
used to implement operations. With the additional grant mechanism, data
security can be performed with stored procedures and functions so that only a
certain user or role is privileged to access the system, role, and object. In
ORDBMS, the concept of data security can be performed by having member
methods. With the encapsulation feature in the object-oriented model, we can
add member procedures and functions inside a class along with the member
attributes. The declaration and implementation of member methods are sepa-
rated as in other programming-language practices.

END Show_Tourist_Dest;
END;
/

CREATE OR REPLACE TYPE BODY Accommodation_T AS

MEMBER PROCEDURE Show_Accommodation IS

new_destination_name Tourist_Destination.name%TYPE;
new_destination_location Tourist_Destination.location%TYPE;

BEGIN

SELECT name, location
INTO new_destination_name, new_destination_location
FROM Tourist_Destination
WHERE destination.id = self.id;

BEGIN
DBMS_OUTPUT.PUT_LINE
(self.acc_name||‘ ‘||self.acc_address||‘ ‘||self.acc_contact
||‘ ‘||new_destination_name||‘ ‘||new_destination_location);

END Show_Accommodation;

END;
/

108 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Loney, K., & Koch, G. (2000). Oracle™ 8i: The complete reference.
Osborne McGraw-Hill.

Loney, K., & Koch, G. (2002). Oracle™ 9i: The complete reference.
Oracle Press.

ORACLE™ 8. (1997). Oracle™ 8 product documentation library. Red-
wood City, CA: Oracle Corporation.

Urman, S. (2000). Oracle™ 8i advanced PL/SQL programming. Oracle
Press, Osborne.

Chapter Problems

1. King Electronic is going to have its end-of-year 2005 sale. Every year the
owner keeps the record of each item to be put on sale. The data is placed
on an object-based database and table as follows.

item_code
item_name
quantity
price

 Sale2005_T

Sale2005
Item_Code Item_Name Quantity Price
SV101 VCR 20 150
SD101 DVD Player 20 225
SD102 DVD Player 2 10 350
ST101 TV 14” 15 400
ST102 TV 21” 20 700
ST103 TV 30” 10 1200
SP101 PS One 40 150
SP102 PS Two 20 450

Object-Oriented Methods 109

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a. Write a stored procedure to insert other sale items into the Sale2005
table.

b. Write a stored procedure to update the quantity of the item in the table
every time an item is sold or added to the sale stock.

2. From Question 1, write statements to grant the following.
a. Object privilege to execute Insert_Item to the user name Michael
b. Object privilege to execute Update_Stock to the role Sales
c. System privilege to create the user, type, and table to the role Admin.

3. The Victorian Department of Education and Training has records of every
university in the state with all their details. For the purpose of accessing
statistics quickly, the department develops an object University_T that
contains the main information about the university.

University_T
name
campus
no_of_students

University
Name Campus No_of_Students

Melbourne University Melbourne 28,000
Monash University Berwick, Caulfield,

 Clayton, Gippsland,
 Peninsula

45,000

La Trobe University Albury, Beechworth,
Bundoora, Bendigo,
Mildura,

22,000

Deakin University Burwood, Geelong,
Warrnambool

31,000

University of Ballarat Ararat, Ballarat,
Horsham

18,000

Royal Melb. Institute of
Tech.

Bundoora, Brunswick,
City

54,000

Swinburne University Hawthorn, Lilydale,
Prahran

10,000

Victoria University City, Footscray, Sunbury,
Sunshine, Werribee

50,000

Write a stored procedure to retrieve data from the University table so that
the names of those universities with more than 25,000 students are shown
on the screen.

110 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. Cinema Classic wants to develop an interactive Web site where custom-
ers can query the movies that are currently available. The Web developer
uses the movie database that has been used by Cinema Classic. The
database consists of the movie code, title, year, genre, directors, cast, and
rating. The examples of the records on the database are shown below.

Movie
Code Title Year Genre Director Cast Rating
G01 Gone with

the Wind
1939 Drama Cukor,

Fleming
Leigh,
Gable

PG

P07 Psycho 1960 Horror Hitchcock Perkins,
Miles

MA

S23 Star Wars 1977 Sci_Fi Lucas Hamill,
Ford

G

For this purpose, the Web developer wants to implement an object-
relational database. In the object, he has a member function that can show
the description of the ratings. The description of the ratings is shown in the
table below. For example, calling the member function with parameter G
will return the string “Suitable for all viewers.” Write the implementation
of the movie object and the body.

Rating
Rating Description
G Suitable for all viewers
PG Parental guidance recommended for children under 15 years of age
M Mature, recommended for audiences 15 years and over
MA Mature, accompanied by a parent or adult guardian
R Restricted to adults, no one under 18 may view these
X Restricted to adults, sexually explicit material

Object-Oriented Methods 111

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter Solutions

1. a. CREATE TYPE Sale2005_T AS OBJECT
(item_code VARCHAR2(10),
 item_name VARCHAR2(30),
 quantity NUMBER,
 price NUMBER)

/

CREATE TABLE Sale2005 OF Sale2005_T
(item_code NOT NULL);

CREATE OR REPLACE PROCEDURE Insert_Item(
new_item_code IN Sale2005.item_code%TYPE,
new_item_name IN Sale2005.item_name%TYPE,
new_quantity IN Sale2005.quantity%TYPE,
new_price IN Sale2005.price%TYPE) AS

BEGIN
INSERT INTO Sale2005

(item_code, item_name, quantity, price)
VALUES

(new_item_code, new_item_name, new_quantity,
 new_price);

END Insert_Item;
/

b. CREATE OR REPLACE PROCEDURE Update_Stock(
sold_item_code IN Sale2005.item_code%TYPE,
number_sold IN NUMBER) AS

old_quantity NUMBER;
new_quantity NUMBER;

BEGIN
SELECT quantity INTO old_quantity
FROM Sale2005
WHERE item_code = sold_item_code

FOR UPDATE OF quantity;
new_quantity := old_quantity – number_sold;
UPDATE Sale2005

SET quantity = new_quantity
WHERE item_code = sold_item_code;

END Update_Stock;
/

112 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. a. GRANT EXECUTE ON Insert_Item TO Michael;

b. GRANT EXECUTE ON Update_Stock TO Sales;

c. GRANT CREATE USER, CREATE TABLE, CREATE TYPE TO

Admin;

3. CREATE OR REPLACE PROCEDURE Above_25000 AS

CURSOR c_university IS
SELECT name, no_of_students
FROM University_T
WHERE no_of_students > 25000;

BEGIN
FOR v_uni_record IN c_university LOOP

DBMS_OUTPUT.PUT_LINE
(v_uni_record.name||‘
‘||v_uni_record.no_of_students);

END LOOP;
END Above_25000;
/

4. CREATE OR REPLACE TYPE Movie_T AS OBJECT
(code VARCHAR2(5),
 title VARCHAR2(40),
 year NUMBER,
 genre VARCHAR2(20),
 director VARCHAR2(20),
 cast VARCHAR2(50),
 rating VARCHAR2(3),

MEMBER FUNCTION Rating_Info
(rating_code IN VARCHAR2)

RETURN VARCHAR2)
/

CREATE OR REPLACE TYPE BODY Movie_T AS

MEMBER FUNCTION Rating_Info
(rating_code IN VARCHAR2)

RETURN VARCHAR2 IS

BEGIN
IF rating_code = ‘G’ THEN

RETURN ‘ Suitable for all viewers ‘;
ELSIF rating_code = ‘PG’ THEN

Object-Oriented Methods 113

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RETURN ‘Parental guidance recommended for
children under 15 years of age’;
ELSIF rating_code = ‘M’ THEN

RETURN ‘Mature, recommended for audiences 15
years and over’;
ELSIF rating_code = ‘MA’ THEN

RETURN ‘Mature, accompanied by a parent or
adult guardian’;
ELSIF rating_code = ‘R’ THEN

RETURN ‘Restricted to adults, no one under
18 may view these’;
ELSIF rating_code = ‘X’ THEN

RETURN ‘Restricted to adults, sexually
explicit material’;
ELSE

RETURN ‘No rating’;
END IF;

END Rating_Info;

END;
/

114 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Generic Methods

Generic methods are the methods used to access the attributes of an object.
The concept behind the need for generic methods is encapsulation, in which
attributes associated with an object can be accessed directly only by the
methods within the object itself. Therefore, each time an attribute is created
within an object, we will need generic methods to access the attribute. This is
the main difference between the standard relational techniques for implement-
ing operations vs. the object-oriented methods. In relational databases, users
normally can directly access attributes of a table by running SQL statements to
update, delete, or insert. This may generate problems when certain attributes
within an object have some constraints applied to them, and therefore the ad
hoc access may violate these constraints.
As discussed in Section 1.3.1, generic methods are tightly related to the update
and delete operations. Therefore, generic methods are associated with the
concept of referential integrity. As in conventional relational systems, for each
update and delete operation, there has to be an identified action to be carried
out (i.e., cascade, restrict, and nullify). The transformation of object structures,
including inheritance, aggregation, and association, involves primary-key and
foreign-key association or object references, depending on the techniques
used to represent the relationships. Therefore, for each object structure,
actions for the update and delete operations have to be identified. In this
section, we will show mainly the application of methods for updating and
deletion, and the actions taken to maintain the referential integrity.

Generic Methods 115

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additionally, the insert and retrieval operations, to some extent, also correlate
with referential integrity. An insertion to a foreign key is known to match with
the associated primary key of another table. A retrieval of a composite object
will need to form join operations between foreign keys and their matching
primary keys.
Figure 5.1 shows an overview of the implementation of generic methods. The
process consists of several steps. First, given an object-oriented model, data-
structure mapping is carried out. This basically applies the static transformation
procedures (Chapter 3). Second, the key elements of each generic method
(operations, parameters, constraints, etc.), which will be used as a basis for the
implementation of the methods, are identified.

Implementation of Methods in
Inheritance Hierarchies

There are some approaches that can be used for inheritance relationships
implementation into tables. The usage of these approaches can be explored
based on the types of inheritance: union inheritance, mutual-exclusion inherit-
ance, partition inheritance, and multiple inheritance. In this section, we are
going to see the implementation of generic methods in inheritance hierarchies.
Note that in Chapter III we described the two different ways of implementing
inheritance in Oracle™. The first method uses a shared ID, which is mainly used

Methods-
Declaration
and -Execution
Procedures

OO Methods
Implementation
(Chapter 4,5)

OO Model Data-
Structure
Implementation
(Chapter 3)

Relational Table

Class

Attributes

Methods

OO Class

SQL and PL/SQL
Member Methods
and Functions

References

Figure 5.1. Generic methods

116 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in earlier versions of Oracle™ (before Oracle™ 9) as well as other standard
relational database systems that do not support inheritance. The second
method uses the keyword under in Oracle™ 9 and above, which defines an
inheritance hierarchy. In the following sections we will show the implementation
of methods using both techniques.

Implementation of Methods in Union Inheritance

We recall from Chapter III that the first technique for implementing union
inheritance into relational tables is done by creating a separate table for the
superclass and a table for each of the subclasses. A shared ID is used to
preserve the identity of the objects across tables. Suppose Figure 5.2 is a union
inheritance. Each class, together with its local attributes in the inheritance
schema, is mapped into a table. This way of mapping is often called a vertical
division since the list of attributes of a subclass is divided into several classes.
In the example, the declaration of attributes or properties belonging to an
academic (i.e., ID, name, address, department) has to be divided into two
tables, namely, table Customer and table Academic. This kind of declaration
follows the way the class is declared. Since class Customer is already declared
first, class Academic that inherits from class Customer merely adds a few more
attributes. Inheritance provides a reuse mechanism whereby the definition of a
new class is based on some existing classes. Consequently, the creation of new
subclasses from scratch can be avoided; instead, some or all parts of the
existing classes can be reused in the new classes.
Figure 5.3 shows the results of the implementation of this union inheritance
including the methods. Note that we use member methods instead of an

union

Customer
ID
name
address

Commercial
ACN

Academic
department

Figure 5.2. Union inheritance

Generic Methods 117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ordinary stored procedure or function to put into practice the object-oriented
feature in Oracle™. The rules for member methods can be specified as follows.

• Methods Declaration. The declaration of the method is performed
during object type creation. Thus, when we create a type, we have to
know the name of the methods in it, whether it will be a procedure or a
function, and also the parameters needed.

• Methods Implementation. After the type is created, we will need to
specify the body of the type. In the body, the implementation details of the
member methods are specified.

There are a few things to observe from the implementation of the union
inheritance example as shown in Figure 5.3 and Figure 5.4.
First is that we provide not only the relational schemas, but also the SQL
statements to create and manipulate the schemas. Some sample records are
also provided to help readers visualise the implementation of union inheritance.
Second is that attribute ID of the subclass (e.g., class Commercial and
Academic) is also a foreign key referencing to the superclass. This is to ensure
that a subclass OID must exist as an OID in the superclass. Notice also that the

Relational Schemas

Customer (ID, name, address)
Commercial (ID, ACN)
Academic (ID, department)

Methods Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 address VARCHAR2(30),

 MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

 MEMBER PROCEDURE Delete_Customer)

/

Figure 5.3. Implementation of union inheritance relationship

118 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.3. (continued)

CREATE TABLE Customer OF Customer_T
(id NOT NULL,
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Commercial_T AS OBJECT

(id VARCHAR2(10),
 acn VARCHAR2(30),

 MEMBER PROCEDURE Insert_Commercial(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

 MEMBER PROCEDURE Delete_Commercial)
/

CREATE TABLE Commercial OF Commercial_T

(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Customer(id)
 ON DELETE CASCADE);

CREATE OR REPLACE TYPE Academic_T AS OBJECT
(id VARCHAR2(10),
 department VARCHAR2(30),

 MEMBER PROCEDURE Insert_Academic(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

 MEMBER PROCEDURE Delete_Academic)

/

CREATE TABLE Academic OF Academic_T
(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Customer(id)
 ON DELETE CASCADE);

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer_T AS

MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

Generic Methods 119

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.3. (continued)

BEGIN
INSERT INTO Customer
VALUES (new_id, new_name, new_address);

END Insert_Customer;

MEMBER PROCEDURE Delete_Customer IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id;

END Delete_Customer;

END;
/

CREATE OR REPLACE TYPE BODY Commercial_T AS

MEMBER PROCEDURE Insert_Commercial(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new_name, new_address);
INSERT INTO Commercial
VALUES (new_id, new_acn);

END Insert_Commercial;

MEMBER PROCEDURE Delete_Commercial IS

BEGIN
DELETE FROM Commercial

WHERE Commercial.id = self.id;
DELETE FROM Customer

WHERE
(Customer.id = self.id) AND
(Customer.id NOT IN

(SELECT Academic.id
 FROM Academic
 WHERE Academic.id = self.id)) AND

(Customer.id NOT IN
(<selection of any other sibling sub-classes>);

END Delete_Commercial;

END;
/

CREATE OR REPLACE TYPE BODY Academic_T AS

120 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.3. (continued)

MEMBER PROCEDURE Insert_Academic(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2) IS

BEGIN

INSERT INTO Customer
VALUES (new_id, new_name, new_address);
INSERT INTO Academic
VALUES (new_id, new_department);

END Insert_Academic;

MEMBER PROCEDURE Delete_Academic IS

BEGIN
DELETE FROM Academic

WHERE Academic.id = self.id;
DELETE FROM Customer

WHERE
(Customer.id = self.id) AND
(Customer.id NOT IN

(SELECT Commercial.id
 FROM Commercial
 WHERE Commercial.id = self.id)) AND

(Customer.id NOT IN
(<selection of any other sibling sub-classes>);

END Delete_Academic;

END;
/

Methods Execution Example

DECLARE

-- Construct objects, initialize them to null
a_customer Customer_T := Customer_T(NULL,NULL,NULL);
a_commercial Commercial_T := Commercial_T(NULL,NULL);
a_academic Academic_T := Academic_T(NULL, NULL);

BEGIN
-- Call member procedures to insert data into
-- Customer, Commercial, and Academic tables.
a_customer.Insert_Customer

(‘1’, ‘Myers Pty Ltd’, Melbourne’);
a_commercial.Insert_Commercial

(‘2’, ‘Coles Pty Ltd’, ‘Sydney, ‘443-765’);
a_academic.Insert_Academic

(‘3’ ‘La Trobe Univ’, ‘Bundoora’, ‘Comp Sc.’);

END;
/

Generic Methods 121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

referential integrity constraint is “delete cascade.” These imply that when a
superclass record is deleted, all matching subclass records are automatically
deleted as well.
Third is that union inheritance allows a new object Customer, not belonging to
any of the subclasses, to be inserted. Hence, we provide a member procedure
Insert_Customer that can be used for this purpose, along with Insert_Commercial
and Insert_Academic for subclass object insertion. Insert_Customer will not
be made available in other types of inheritance, especially partition inheritance.
This will be discussed later.
Fourth relates to insertion. For the insertion of subclass records, insertion to the
superclass has to be made first as the primary key of the subclass table is also
a foreign key of the superclass table. If this insertion order is not obeyed, the
insertion operation will fail due to the referential integrity enforced by the notion
of the foreign key in the subclass table. As we use the encapsulation method of
insertion (see Figure 5.3), we can only insert a record into one subclass because
the insertion to the superclass is done immediately before insertion to the
subclass. Insertion to another subclass will be restricted because there will be
duplication of the primary key in the superclass. Therefore, if we want to insert
a record into more than one subclass, after the first subclass, we can only use

Sample Records:

Customer
ID Name Address
1 Myer Pty Ltd. Melbourne
2 Coles Pty Ltd. Sydney
3 LaTrobe Univ. Bundoora
4 Monash Univ. Gippsland
5 RMIT Univ. Melbourne
6 Victoria Univ. Footscray
7 Holmes Inst. Melbourne
8 Federal Gov. Canberra

Commercial Academic

ID ACN ID Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
7 011-333 5 Comp. Sc.
 6 Informatics
 7 Info. Studies

Figure 5.4 Example of a union inheritance table

122 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Customer:
INSERT INTO Customer

VALUES (&new_id, &new_name, &new_address);

Commercial:
INSERT INTO Customer

VALUES (&new_id, &new_name, &new_address);
INSERT INTO Commercial

VALUES (&new_id, &new_acn);

Academic:
INSERT INTO Customer

VALUES (&new_id, &new_name, &new_address);
INSERT INTO Academic
VALUES (&new_id, &new_department);

Figure 5.5. Simple insertion generic method

the usual generic method. Examples of the usual generic methods are shown in
Figure 5.5. Notice that we use an ampersand in front of a user-defined variable.
Fifth is regarding deletion. Deleting customer records is straightforward, and
because delete is cascaded, the deletion will automatically be carried out to the
matching records in the subclasses. However, the deletion of subclass records
(such as deleting an academic object) is rather complex as we cannot apply the
same method as that for customer deletion. This is because the deleted subclass
records may still exist in other sibling subclasses in which the matched
superclass record should not be deleted. Therefore, we first delete the intended
subclass record, and then we check whether this record does not exist in other
sibling subclass tables. If it does not exist, we can delete the root record in the
superclass table.
Sixth, update methods are not provided because the OID is immutable and an
update to the OID is not permitted. The update of nonkey attributes is isolated
to the relevant table only; hence, no complexity arises in an update.
Finally, the sample records show that customer Holmes Institute is a commer-
cial as well as an academic customer, and customer Federal Government is
neither a commercial customer nor an academic customer (both examples are
printed in bold and italic). These two objects illustrate the fact that this is a union
inheritance.

Generic Methods 123

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methods Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 address VARCHAR2(30),

 MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

 MEMBER PROCEDURE Delete_Customer) NOT FINAL
/

CREATE TABLE Customer OF Customer_T

(id NOT NULL,
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Commercial_T UNDER Customer_T
(acn VARCHAR2(30),

 MEMBER PROCEDURE Insert_Commercial(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

Figure 5.6. Implementation of union inheritance relationship in newer
Oracle™

The implementation example mentioned in detail (see Figure 5.3) is made using
the older Oracle™ version, which does not provide the inheritance feature.
However, as mentioned previously, Oracle™ 9 and the newer version have
provided an inheritance relationship (see Figure 5.6).
To accommodate union inheritance with the newer Oracle™ version, we create
the tables for each type. However, we use a supertype table, Customer, only
for data that do not belong to any of the subtype classes. In the sample records
(see Figure 5.4), it will be the Federal Government. If we know that the data
belongs to any subtype class, we can use subtype member methods straight-
away. The weakness is that there will be repetition of a customer’s common
attributes in each of its subtype tables. This repetition is at a cost not only in
insertion time, but also in storage space. Nevertheless, it has benefits compared
with the previous Oracle™ version. We can insert into many subtype tables
using their member methods without having to use a simple generic method

124 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.6 . (continued)

MEMBER PROCEDURE Delete_Commercial)
/

CREATE TABLE Commercial OF Commercial_T

(id NOT NULL,
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Academic_T UNDER Customer_T
(department VARCHAR2(30),

 MEMBER PROCEDURE Insert_Academic(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

 MEMBER PROCEDURE Delete_Academic)

/

CREATE TABLE Academic OF Academic_T
(id NOT NULL,
 PRIMARY KEY (id));

Methods Implementation

CREATE OR REPLACE TYPE BODY Commercial_T AS

MEMBER PROCEDURE Insert_Commercial(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Commercial

VALUES (new_id, new_name, new_address, new_acn);
END Insert_Commercial;

MEMBER PROCEDURE Delete_Commercial IS

BEGIN

DELETE FROM Commercial
WHERE (Commercial.id = self.id);

END Delete_Commercial;

END;
/

Generic Methods 125

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.6. (continued)

CREATE OR REPLACE TYPE BODY Academic_T AS

MEMBER PROCEDURE Insert_Academic(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2)IS

BEGIN

INSERT INTO Academic
VALUES (new_id, new_name, new_address, new_department);

END Insert_Academic;

MEMBER PROCEDURE Delete_Academic IS

BEGIN

DELETE FROM Academic
WHERE (Academic.id = self.id);

END DeleteAcademic;

END;
/

Methods Execution Example

DECLARE

a_customer Customer_T := Customer_T(NULL,NULL,NULL);
a_commercial Commercial_T := Commercial_T(NULL,NULL,NULL,NU
a_academic Academic_T := Academic_T(NULL,NULL,NULL, NULL);

BEGIN
a_customer.Insert_Customer

(‘8’, ‘Federal Gov’, ‘Canberra’);
a_commercial.Insert_Commercial

(‘7’, ‘Holmes Inst’, ’Melbourne’, ‘011-333’);
a_academic.Insert_Academic

(‘7’, ‘Holmes Inst’, ’Melbourne’, ‘Info. Studies’);
END;
/

126 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

because the insertion of each table is done without first inserting into the
supertype table.

Implementation of Methods in Mutual-Exclusion
Inheritance

Handling mutual-exclusion inheritance without losing the semantic of the
relationship is achieved by adding an attribute that reflects the type of the
subclasses to the superclass table. Instead of union inheritance, suppose Figure
5.2 is of mutual-exclusion inheritance. The table Customer will have an
additional attribute called cust_type to ensure that every customer’s record in
the table has a definite type, either commercial or academic. There are no
customers that can refer simultaneously to both a commercial and an academic
customer. The transformation is shown in Figure 5.7. We also show a deletion
example using both the OID and non-OID.
A number of observations can be made regarding the above transformation
results. First, attribute cust_type in table Customer is added, and it includes a
check constraint in which a check for whether the value of this attribute is either
Commercial or Academic is carried out. Notice also that in the create-table
statement, attribute cust_type does not have a “not null” constraint in order to
allow a noncommercial or academic customer.
Second, the creation of subclass tables is identical to that in union inheritance.
In other words, referential integrity constraints are still upheld in this inherit-
ance.
Third, for insertion, an appropriate subclass name is inserted as attribute
cust_type. In the case where a customer has no subtype (e.g., customer
Federal Government of Canberra with ID 8), a null value is inserted. Notice
also that the order of subclass-records insertion is nontrivial as is that of union
inheritance.
Fourth, the deletion in mutual exclusion is much simpler than that of union
inheritance due to the fact that a subclass object belongs to only one subclass.
Deleting a subclass object can be done at once by deleting the root object in
the superclass table. Since deletion is cascaded, the matching subclass records
will be deleted automatically. Therefore, deletion in member procedures needs

Generic Methods 127

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.7. Implementation of mutual-exclusion inheritance relationship

Relational Schemas

Customer (ID, name, address, cust_type)
Commercial (ID, ACN)
Academic (ID, department)

Methods Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 address VARCHAR2(30),
 cust_type VARCHAR2(15),

 MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

 MEMBER PROCEDURE Delete_Customer_OID,

 MEMBER PROCEDURE Delete_Customer_non_OID(

deleted_attribute IN VARCHAR2)
/

CREATE TABLE Customer OF Customer_T

(id NOT NULL,
 cust_type CHECK (cust_type in ('Commercial', 'Academic', NULL)),
 PRIMARY KEY (id));

CREATE OR REPLACE TYPE Commercial_T AS OBJECT
(id VARCHAR2(10),
 acn VARCHAR2(30),

 MEMBER PROCEDURE Insert_Commercial(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2),

 MEMBER PROCEDURE Delete_Commercial_OID,

 MEMBER PROCEDURE Delete_Commercial_non_OID(

deleted_attribute IN VARCHAR2)
/

CREATE TABLE Commercial OF Commercial_T

(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Customer(id)
 ON DELETE CASCADE);

CREATE OR REPLACE TYPE Academic_T AS OBJECT

(id VARCHAR2(10),
 department VARCHAR2(30),

128 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.7. (continued)

MEMBER PROCEDURE Insert_Academic(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2),

 MEMBER PROCEDURE Delete_Academic_OID,

 MEMBER PROCEDURE Delete_Academic_non_OID(

deleted_attribute IN VARCHAR2))
/

CREATE TABLE Academic OF Academic_T

(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Customer(id)
 ON DELETE CASCADE);

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer_T AS

MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

BEGIN

INSERT INTO Customer
VALUES (new_id, new_name, new_address, NULL);

END Insert_Customer;

MEMBER PROCEDURE Delete_Customer_OID IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id
AND Customer.cust_type IS NULL;

END Delete_Customer_OID;

MEMBER PROCEDURE Delete_Customer_non_OID(

deleted_attribute IN VARCHAR2) IS

BEGIN
DELETE FROM Customer
WHERE self.<attribute> = deleted_attribute

AND self.cust_type IS NULL;
END Delete_Customer_non_OID;

END;
/

CREATE OR REPLACE TYPE BODY Commercial_T AS

Generic Methods 129

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.7. (continued)

MEMBER PROCEDURE Insert_Commercial(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES (new_id, new_name, new_address, 'Commercial');
INSERT INTO Commercial
VALUES (new_id, new_acn);

END Insert_Commercial;

MEMBER PROCEDURE Delete_Commercial_OID IS

BEGIN
DELETE FROM Customer
WHERE Customer.id = self.id
AND self.cust_type = 'Commercial';

END Delete_Commercial_OID;

MEMBER PROCEDURE Delete_Commercial_non_OID(

deleted_attribute IN VARCHAR2) IS

BEGIN
DELETE FROM Customer
WHERE Customer.id IN

(SELECT Commercial.id
 FROM Commercial
 WHERE self.<attribute> = deleted_attribute)
 AND self.cust_type = 'Commercial';

END Delete_Commercial_non_OID;

END;
/

CREATE OR REPLACE TYPE BODY Academic_T AS

MEMBER PROCEDURE Insert_Academic(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2) IS

BEGIN

INSERT INTO Customer
VALUES (new_id, new_name, new_address, 'Academic');
INSERT INTO Academic
VALUES (new_id, new_department);

END Insert_Academic;

MEMBER PROCEDURE Delete_Academic_OID IS

130 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.7. (continued)

Sample Records:

Customer
ID Name Address Cust_Type
1 Myer Pty Ltd. Melbourne Commercial
2 Coles Pty Ltd. Sydney Commercial
3 La Trobe

Univ.
Bundoora Academic

4 Monash Univ. Gippsland Academic
5 RMIT Univ. Melbourne Academic
6 Victoria Univ. Footscray Academic
8 Federal Gov. Canberra

Commercial Academic

ID ACN ID Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
 5 Comp. Sc.
 6 Informatics

Figure 5.8. Mutual-exclusion inheritance table example

BEGIN
DELETE FROM Customer
WHERE Customer.id = self.id
AND self.cust_type = 'Academic';

END Delete_Academic_OID;

MEMBER PROCEDURE Delete_Academic_non_OID(

deleted_attribute IN VARCHAR2) IS

BEGIN

DELETE FROM Customer
WHERE Customer.id IN

(SELECT Academic.id
 FROM Academic
 WHERE self.<attribute> = deleted_attribute)
 AND self.cust_type = 'Academic';

END Delete_Academic_non_OID;

END;
/

one “delete from” statement and varies the OID type to be deleted. Notice also
that an optional predicate in which the type is checked appears in the “delete
from” statements. This additional predicate is useful to ensure that the OID to
be deleted is of the correct subtype. Other than this, the additional predicate

Generic Methods 131

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

imposes an unnecessary overhead. The decision about whether or not to use
the additional predicate in the deletion is at the user’s discretion.
Finally, in the sample records, as this is a mutual-exclusion example, customer
Holmes Institute of ID 7 (see Figure 5.4) does not exist in Figure 5.8. This is
because this customer is not mutually exclusive to a subclass type. A nontype
customer with ID 8 still exists in the above example.
As in the union inheritance section, we also provide the example of implemen-
tation using the newer Oracle™ version (see Figure 5.9). Notice that we do not
need subtype tables because the records will be kept in supertype table
Customer only.
In this version, the data are kept only in the supertype table and there are no
subtype tables created. During insertion, we will need to clarify the type of data
that we want to insert. To retrieve the data, we cannot access the attribute of
the subtype because there is no column for that attribute in the supertable.
Therefore, to access them, we have to use object references such as value.
These object references will be introduced in the next chapter.

Methods Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 address VARCHAR2(30),
 cust_type VARCHAR2(15),

MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

MEMBER PROCEDURE Delete_Customer) NOT FINAL

/

CREATE TABLE Customer OF Customer_T

(id NOT NULL,
 cust_type CHECK (cust_type in ('Commercial', 'Academic',
NULL)),
 PRIMARY KEY (id));

Figure 5.9. Implementation of mutual-exclusion inheritance relationship
in newer Oracle™

132 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.9. (continued)

Subtypes Commercial_T and Customer_T are the same as in union
inheritance (Figure 5.6). However, unlike in union inheritance, no
subtype table is needed.

Methods Implementation

CREATE OR REPLACE TYPE BODY Customer_T AS

MEMBER PROCEDURE Insert_Customer(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

BEGIN

INSERT INTO Customer
VALUES (Customer_T(new_id, new_name, new_address, NULL));

END Insert_Customer;

MEMBER PROCEDURE Delete_Customer IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id;

END Delete_Customer;

END;
/

CREATE OR REPLACE TYPE BODY Commercial_T AS

MEMBER PROCEDURE Insert_Commercial(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2) IS

BEGIN
INSERT INTO Customer
VALUES
(Commercial_T(new_id, new_name, new_address,

‘Commercial’, new_acn));
END Insert_Commercial;

MEMBER PROCEDURE Delete_Commercial IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id;

END Delete_Commercial;

END;
/

CREATE OR REPLACE TYPE BODY Academic_T AS

MEMBER PROCEDURE Insert_Academic(

new_id IN VARCHAR2,

Generic Methods 133

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_department IN VARCHAR2)IS

BEGIN

INSERT INTO Customer
VALUES
(Academic_T(new_id, new_name, new_address,

‘Academic’, new_department));
END Insert_Academic;

MEMBER PROCEDURE DeleteAcademic IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id;

END DeleteAcademic;

END;
/

Implementation of Methods in Partition Inheritance

Similar to the other types of inheritance, mapping partition inheritance into
tables in the previous Oracle™ version is done by having one table for each
superclass and subclass. Like the mutual-exclusion type, an additional type
attribute is added to the superclass table. The difference is that this type
attribute has a “not null” constraint. This ensures that each superclass object
belongs to a particular subclass type. It also ensures that no superclass object
belongs to more than one subclass. Figure 5.10 shows an example of the
transformation of partition inheritance.
A number of observations for the above example can be made. First, the
relational schemas for partition inheritance are exactly the same as those for
mutual-exclusion inheritance, where an additional cust_type attribute is added
to the superclass table Customer.
Second, a “not null” constraint is added in the cust_type attribute during the
table creation. Other than this, everything regarding the table creation for
partition inheritance is identical to that of mutual exclusion. This includes the
checking of attribute cust_type, and foreign-key referential integrity for the
subclass tables Commercial and Academic.

Figure 5.9. (continued)

134 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relational Schemas

Similar to the one in mutual exclusion (Figure 5.6)

Methods Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(id VARCHAR2(10),
 name VARCHAR2(30),
 address VARCHAR2(30),
 cust_type VARCHAR2(15))

/

CREATE TABLE Customer OF Customer_T
(id NOT NULL,
 cust_type NOT NULL

 CHECK (cust_type in ('Commercial', 'Academic')),
 PRIMARY KEY (id));

The creation of commercial and academic subtypes and tables is the same
as in mutual-exclusion inheritance (Figure 5.6).

Methods Implementation

Methods implementation for commercial and academic subtypes is the same
as in mutual-exclusion inheritance (Figure 5.6).

Figure 5.10. Implementation of partition inheritance relationship

Third, as a nonspecialized object does not exist in a partition inheritance,
insertion into table Customer is not available. In other words, there is no
customer object that does not belong to any subclasses. Subclass object
insertion (insertion to subclass tables Commercial and Academic) is the same
as that of mutual-exclusion inheritance. For practical reasons, it is better to use
the encapsulation method of insertion because the insertion to the subclass table
is done immediately after the insertion to the superclass table. In other words,
there is no record that is inserted only into the superclass table without being
inserted into the subclass as well.
Fourth, like insertion, deletion in partition inheritance is applicable to the
deletion of subclass objects only (e.g., Commercial and Academic only). The
deletion of pure customer objects is not available.
Finally, the sample records show that there is no customer record that does not
exist in the subclass tables. Notice that customer Holmes Institute and customer
Federal Government do not exist in the sample records due to the above
reason.
An implementation example of partition inheritance using the newer Oracle™
version will not be shown here because it is very similar to the mutual-exclusion

Generic Methods 135

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

implementation in Figure 5.10. The only difference is the “not null” constraint
for the cust_type attribute during the table creation.

Implementation of Methods in Multiple Inheritance

Mapping multiple inheritance to tables is similar to that of union inheritance; that
is, no additional type attribute is necessary. We use the previous example and
assume that a new class Private_Ed inherits from classes Commercial and
Academic. As a result, a table for the new class is created. Figure 5.12 shows
an example of transforming multiple inheritance.
The following are the observations relating to the multiple-inheritance ex-
amples.
First, the relational schemas are identical to those of union inheritance with the
exception that here a new table is created to accommodate the subclass
inheriting from multiple superclasses. In this case, table Private_Ed is created.
Second, as the relational schemas for the first three tables are the same as those
in union inheritance, the table-creation statements for these tables are also the
same. The new table has its own create-table statement. One thing to note is
that the foreign key of this new table refers to table Customer only, although in
fact it has references to tables Commercial and Academic. However, in the
implementation, SQL allows one reference per foreign key.

Sample Records:

Customer
ID Name Address CustType

1 Myer Pty Ltd. Melbourne Commercial
2 Coles Pty Ltd. Sydney Commercial
3 LaTrobe Univ. Bundoora Academic
4 Monash Univ. Gippsland Academic
5 RMIT Univ. Melbourne Academic
6 Victoria Univ. Footscray Academic

Commercial Academic

ID ACN ID Department
1 123-423 3 Comp. Sc.
2 443-765 4 Info. Tech
 5 Comp. Sc.
 6 Informatics

Figure 5.11. Partition inheritance table example

136 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.12. Implementation of multiple inheritance relationship

Relational Schemas

Customer (ID, name, address)
Commercial (ID, ACN)
Academic (ID, department)
Private_Ed (ID, sponsor_board)

Methods Declaration

The creation of customer, commercial, and academic types is the same as
in union inheritance (Figure 5.3).

CREATE OR REPLACE TYPE Private_Ed_T AS OBJECT

(id VARCHAR2 (10),
 sponsor_board VARCHAR2(30),

 MEMBER PROCEDURE Insert_Private_Ed(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2,
new_department IN VARCHAR2,
new_sponsor_board IN VARCHAR2),

 MEMBER PROCEDURE Delete_Private_Ed)

/

CREATE TABLE Private_Ed OF Private_Ed_T
(id NOT NULL,
 PRIMARY KEY (id),
 FOREIGN KEY (id) REFERENCES Customer (id) ON DELETE CASCADE);

Methods Implementation

Methods implementation for customer, commercial, and academic is the
same as in union inheritance (Figure 5.3).

CREATE OR REPLACE TYPE BODY Private_Ed_T AS

MEMBER PROCEDURE Insert_Private_Ed(

new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_acn IN VARCHAR2,
new_department IN VARCHAR2,
new_sponsor_board IN VARCHAR2) IS

BEGIN

INSERT INTO Customer
VALUES (new_id, new_name, new_address);
INSERT INTO Commercial
VALUES (new_id, new_acn);
INSERT INTO Academic
VALUES (new_id, new_department);
INSERT INTO Private_Ed
VALUES (new_id, new_sponsor_board);

END Insert_Private_Ed;
MEMBER PROCEDURE Delete_Private_Ed IS

BEGIN

DELETE FROM Customer
WHERE Customer.id = self.id;

END Delete_Private_Ed;

END;
/

Generic Methods 137

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Third, the insertion of the first three tables is also identical to that of union
inheritance. The new insertion is applied to the new table. Notice that the
insertion order is top down from the least specialized class (table Customer) to
the table Private_Ed.
Fourth, like creation and insertion, the deletion of the first three tables is the
same as that of union inheritance. The deletion of records from the new table
is simplified, however, so as to delete the root record only. The effect is that
matching records of all tables underneath this root table will be deleted as well
due to the foreign-key referential integrity constraint where deletion is cas-
caded.
Finally, the sample records show that customer Holmes Institute appears in the
new table Private_Ed. It shows that Holmes Institute is a commercial customer
as well as an academic customer. It also belongs to the category private
educational institution, where private educational institution is both commercial
and academic.
We do not provide the implementation of multiple inheritance using newer
Oracle™ versions because at the time of this writing, there is still no support
for multiple inheritance.

Sample Records:

Customer
ID Name Address

1 Myer Pty Ltd. Melbourne
2 Coles Pty Ltd. Sydney
3 LaTrobe Univ. Bundoora
4 Monash Univ. Gippsland
5 RMIT Univ. Melbourne
6 Victoria Univ. Footscray
7 Holmes Inst. Melbourne
8 Federal Gov. Canberra

Commercial Academic Private_Ed

ID ACN ID Department ID Sponsor_Board
1 123-423 3 Comp. Sc. 7 Pratt Brothers
2 443-765 4 Info. Tech
7 011-333 5 Comp. Sc.
 6 Informatics
 7 Info. Studies

Figure 5.13. Multiple inheritance table example

138 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implementation of Methods in
Association Relationships

In this section, the object-oriented model as described in Chapter III, Figure
3.35, will be used. We are going to concentrate on the association relationships
between Author_T and Course Manual_T, which represents a many-to-many
association, and between Teaching_Staff_T and Subject_T, which depicts a
one-to-many association. Figure 5.14 shows the many-to-many association
relationship.
In this section, we focus on the implementation of association methods using the
latest object-relational technology, namely, object references. Please note that
the keyword ref is used to represent object references, as opposed to
references, which is used to represent the traditional way of representing
association using the foreign-key relationship.
Also note that we do not use the ao_ID and ISBN as the composite key in the
Publish table. This is to distinguish between the two concepts of foreign-key
references (using ID) and the object-references concept where internal refer-
ences are used. One weakness of this practice is that there is no restriction of
duplication of the same record as it would be restricted when we use primary
keys in a pure relational system. For example (see Figure 5.15), we cannot
insert the same record for the Author and Course_Manual tables, but we can
insert duplication to the Publish table.
In the insertion example above, the select statements must return one row only.
Thus, the specified attribute must be unique. It is recommended that a unique
ID be used here. The insertion method for encapsulation is also not all
straightforward from the simple generic method. We need to use variables in
order to be able to insert them into the Publish table.

1…1…

publishes

Course_Manual_T
ISBN
title
year

Author_T
name
address

Figure 5.14. Many-to-many association

Generic Methods 139

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.15. Implementation of a many-to-many association relationship

Relational Schemas

Author (ao_ID, name, address)
Course_Manual (ISBN, title, year)
Publish (author, course_manual)

Methods Declaration

CREATE OR REPLACE TYPE Author_T AS OBJECT
(ao_id VARCHAR2(3),
 name VARCHAR2(10),
 address VARCHAR2(20),

 MEMBER PROCEDURE Insert_Author(

new_ao_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2),

 MEMBER PROCEDURE Delete_Author)

/

CREATE TABLE Author OF Author_T

(ao_id NOT NULL,
 PRIMARY KEY (ao_id));

CREATE OR REPLACE TYPE Course_Manual_T AS OBJECT
(isbn VARCHAR2(10),
 title VARCHAR2(20),
 year NUMBER,

 MEMBER PROCEDURE Insert_Course_Manual(

new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER),

 MEMBER PROCEDURE Delete_Course_Manual)
/

CREATE TABLE Course_Manual OF Course_Manual_T

(isbn NOT NULL,
 PRIMARY KEY (isbn));

CREATE TABLE Publish
(author REF Author_T,
 course_manual REF Course_Manual_T);

Methods Implementation

CREATE OR REPLACE TYPE BODY Author_T AS

MEMBER PROCEDURE Insert_Author(

new_ao_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2) IS

140 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.15. (continued)

BEGIN
INSERT INTO Author
VALUES (new_ao_id, new_name, new_address);

END Insert_Author;

MEMBER PROCEDURE Delete_Author IS

BEGIN
DELETE FROM Publish
WHERE Publish.author IN

(SELECT REF(a)
 FROM Author a
 WHERE a.ao_id = self.author_id);

DELETE FROM Author
WHERE Author.ao_id = self.author_id;

END Delete_Author;

END;
/

CREATE OR REPLACE TYPE BODY Course_Manual_T AS

MEMBER PROCEDURE Insert_Course_Manual(

new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER) IS

BEGIN
INSERT INTO Course_Manual
VALUES (new_isbn, new_title, new_year);

END Insert_Course_Manual;

MEMBER PROCEDURE Delete_Course_Manual IS

BEGIN
DELETE FROM Publish
WHERE Publish.course_manual IN

(SELECT REF(b)
 FROM Course_Manual b
 WHERE b.isbn = self.course_id);

DELETE FROM Course_Manual
WHERE Course_Manual.isbn = self.course_id;

END Delete_Course_Manual;

END;
/

For the Publish table, we do not have member procedures so we use
ordinary stored procedures.

CREATE OR REPLACE PROCEDURE Insert_Publish(

new_ao_id IN VARCHAR2,
new_isbn IN VARCHAR2) AS

Generic Methods 141

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.15. (continued)

author_temp REF Author_T;
course_temp REF Course_Manual_T;

BEGIN

SELECT REF(a) INTO author_temp
FROM Author a
WHERE a.ao_id = new_ao_id;

SELECT REF(b) INTO course_temp
FROM Course_Manual b
WHERE b.isbn = new_isbn;

INSERT INTO Publish
VALUES (author_temp, course_temp);

END Insert_Publish;
/

CREATE OR REPLACE PROCEDURE Delete_Publish(

deleted_ao_id IN VARCHAR2,
deleted_isbn IN VARCHAR2) AS

BEGIN

DELETE FROM Publish
WHERE

Publish.author IN
(SELECT REF(a)
 FROM Author a
 WHERE a.ao_id = deleted_ao_id) AND
Publish.course_manual IN
(SELECT REF(b)
 FROM Course_Manual b
 WHERE b.isbn = deleted_isbn);

END Delete_Publish;
/

Methods Execution Example

For this method we use member procedures for the Author and Course_Manual
tables, and use stored procedure for the Publish table.

DECLARE

a_author Author_T := Author_T(NULL,NULL,NULL);
a_course_manual Course_Manual_T :=

Course_Manual_T(NULL,NULL,NULL);

BEGIN
a_author.Insert_Author (‘S2’, ‘Smith’, ‘Sydney’);
a_course_manual.Insert_Course_Manual

(‘1234’, ‘Database System’, 2002);

END;
/

EXECUTE Insert_Publish(‘S2’, ’1234’);

142 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The next example is the one-to-many association relationship (see Figure
5.17). The main difference in the implementation between this and the many-
to-many association is the fact that the ref attribute that forms the object
references is placed in the object that holds the many side. In the Figure 5.17
example, Subject_T will hold the object reference to Teaching_Staff_T. The
implementation of this association is shown in Figure 5.18.

Implementation of Methods in
Aggregation Relationships

In this section, we will concentrate on the aggregation relationship between
Course_Manual_T and Chapter_T of the object-oriented model described in
Figure 5.19.
As mentioned previously, there are two ways of implementing aggregation
relationships in Oracle™: the clustering technique and the nesting technique.
The associated methods to be implemented for each aggregation relationship
will be dependent on the technique used to represent the aggregation link.

Sample Records:

Author Course_Manual
ao_id name address isbn title year

S2 Smith Sydney 1234 Database System 2002

Publish
ao_id isbn

S2 1234

Figure 5.16. Example of a many-to-many association-relationship table

1…1
Subject_T
code
sub_name
venue

Teaching_Staff_T
total_hour
contact_no:
<varray>

Figure 5.17. One-to-many association

Generic Methods 143

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.18. Implementation of a one-to-many association relationship

Relational Schemas

Teaching_Staff (ao_ID, total_hour, contact_no)
Subject (code, sub_name, venue, lecturer)

Methods Declaration

CREATE OR REPLACE TYPE Contacts AS VARRAY(3) OF NUMBER
/

CREATE OR REPLACE TYPE Teaching_Staff_T AS OBJECT

(ao_id VARCHAR2(3),
 total_hour NUMBER,
 contact_no CONTACTS,

 MEMBER PROCEDURE Insert_Teaching_Staff(

new_ao_id IN VARCHAR2,
new_ttl_hour IN NUMBER,
new_number1 IN NUMBER,
new_number2 IN NUMBER,
new_number3 IN NUMBER),

 MEMBER PROCEDURE Delete_Teaching_Staff)
/

CREATE OR REPLACE TYPE Subject_T AS OBJECT

(code VARCHAR2(10),
 sub_name VARCHAR2(20),
 venue VARCHAR2(10),
 lecturer REF teaching_staff_T,

MEMBER PROCEDURE Insert_Subject(

new_code IN VARCHAR2,
new_sub_name IN VARCHAR2,
new_venue IN VARCHAR2,
teach_ao_id IN VARCHAR2),

MEMBER PROCEDURE Delete_Subject)

/

CREATE TABLE Teaching_Staff OF Teaching_Staff_T
(ao_id NOT NULL,
 PRIMARY KEY (ao_id));

CREATE TABLE Subject OF Subject_T
(code NOT NULL,
 PRIMARY KEY (code));

Methods Implementation

CREATE OR REPLACE TYPE BODY Teaching_Staff_T AS

144 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.18. (continued)

MEMBER PROCEDURE Insert_Teaching_Staff(
new_ao_id IN VARCHAR2,
new_ttl_hour IN NUMBER,
new_number1 IN NUMBER,
new_number2 IN NUMBER,
new_number3 IN NUMBER) IS

BEGIN
INSERT INTO Teaching_Staff
VALUES (new_ao_id, new_ttl_hour, Contacts

 (new_number1, new_number2, new_number3));
END Insert_Teaching_Staff;

MEMBER PROCEDURE Delete_Teaching_Staff IS

BEGIN

DELETE FROM Subject b
WHERE b.lecturer.ao_id = self.ao_id;
DELETE FROM Teaching_Staff a
WHERE a.ao_id = self.ao_id;

END Delete_Teaching_Staff;

END;
/

CREATE OR REPLACE TYPE BODY Subject_T AS

MEMBER PROCEDURE Insert_Subject(

new_code IN VARCHAR2,
new_sub_name IN VARCHAR2,
new_venue IN VARCHAR2,
teach_ao_id IN VARCHAR2) IS

new_lecturer REF Teaching_Staff_T;

BEGIN

SELECT REF(a) INTO new_lecturer
FROM Teaching_Staff a
WHERE ao_id = teach_ao_id;

INSERT INTO Subject
VALUES (new_code, new_sub_name, new_venue,

 new_lecturer);
END Insert_Subject;

MEMBER PROCEDURE Delete_Subject IS

Generic Methods 145

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
DELETE FROM Subject b
WHERE b.code = self.code;

END Delete_Subject;

END;
/

Figure 5.18. (continued)

Implementation of Methods in Aggregation
Relationships Using the Clustering Technique

In the clustering technique, the primary key of the whole table is specified as the
cluster key. This key will be the one that groups the part tables together.
Physically, this key is stored only once, and connected to it will be all the part
records that are associated with it. The implementation of Figure 5.19 using the
clustering technique is described in Figure 5.20.
The relational schemas for the clustering technique show that the cluster key,
ISBN (the primary key of the whole table), will be carried by each of the part
tables. If we have more than one part table in the example, then each of them
will have ISBN as one of the attributes. Note that c_no by itself is not a primary
key (not unique) for the Chapter table; however, c_no combined with ISBN is
unique within the Chapter table.
The generic method of implementation in relational tables using the clustering
technique is not different from that of the standard insert, delete, and update

1
1…

Course_Manual_T
ISBN
title
year

Chapter_T
chapter_no
chapter_title
page_no

Figure 5.19. Aggregation relationship

146 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

procedures. We can simply ignore the cluster when we perform the data
manipulation as a cluster key is an internal structure needed to make data
storage and retrieval more efficient when a particular model is implemented.

Implementation of Methods in Aggregation
Relationships Using the Nesting Technique

Figure 5.22 shows the nested-table technique. The attribute chapter within the
Course_Manual table is an object reference that is referencing to a nested table
called Chapter. We cannot place the attribute of Chapter (e.g., c_no) in
Course_Manual as we usually do in a foreign-key relationship. This is because
c_no is not a primary key of Chapter. There may be course manuals with the
same chapter numbers but entirely different contents. In addition, the link
between Course_Manual and Chapter is established through object references

Figure 5.20. Implementation of an aggregation relationship using the
clustering technique

Relational Schemas

Course_Manual (ISBN, title, year)
Chapter (ISBN, c_no, c_title, c_page_no)

SQL Create Statements

The following create statements show how we create the
cluster, tables, and index. It has been explained in
Section 3.3.

CREATE CLUSTER CM_Cluster

(isbn VARCHAR2(10));

CREATE TABLE Course_Manual
(isbn VARCHAR2(10) NOT NULL,
 title VARCHAR2(20),
 year NUMBER,
 PRIMARY KEY (isbn))
CLUSTER CM_Cluster(isbn);

CREATE TABLE Chapter

(isbn VARCHAR2(10) NOT NULL,
 c_no VARCHAR2(10) NOT NULL,
 c_title VARCHAR2(25),

Generic Methods 147

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.20. (continued)

 c_page_no NUMBER,
 PRIMARY KEY (isbn, c_no),
 FOREIGN KEY (isbn) REFERENCES Course_Manual(isbn))
CLUSTER CM_Cluster(isbn);

CREATE INDEX CM_Cluster_Index
ON CLUSTER CM_Cluster;

Methods Implementation

CREATE OR REPLACE PROCEDURE Insert_Course_Manual(
new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER) AS

BEGIN

INSERT INTO Course_Manual
VALUES (new_isbn, new_title, new_year);

END Insert_Course_Manual;
/

CREATE OR REPLACE PROCEDURE Insert_Chapter(

new_isbn IN VARCHAR2,
new_c_no IN NUMBER,
new_c_title IN VARCHAR2,
new_c_page_no IN NUMBER) AS

BEGIN

INSERT INTO CHAPTER
VALUES (new_isbn, new_c_no, new_c_title,

 new_c_page_no);
END Insert_Chapter;

CREATE OR REPLACE PROCEDURE Delete_Course_Manual(
deleted_isbn IN VARCHAR2) AS

BEGIN

DELETE FROM Course_Manual
WHERE isbn = deleted_isbn;

END Delete_Course_Manual;
/

CREATE OR REPLACE PROCEDURE Delete_Chapter(

deleted_c_no IN NUMBER) AS

BEGIN

DELETE FROM Chapter
WHERE c_no = deleted_c_no;

END Delete_Chapter;
/

148 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sample Records:

Course_Manual
ISBN Title Year
1234 Database System 2002

Chapter
ISBN C_No C_Title Page_No
1234 1 Introduction 20
1234 2 Database Concepts 50

Figure 5.21. Clustering aggregation-relationship table example

Methods Execution Example

As using the clustering technique, we do not have member procedures; to
execute the procedures we just use execute statements.

EXECUTE Insert_Course_Manual (‘1234’, ’Database System’, 2002);

EXECUTE Insert_Chapter (‘1234’, 1, ‘Introduction’, 10);

EXECUTE Insert_Chapter (‘1234’, 2, ‘Database Concepts’, 30);

Figure 5.20. (continued)

(the internal reference of each individual chapter) rather than through the
attribute value. Note also that there is no primary key in the Chapter table.
From the implementation above, note that we cannot insert new chapters
without an associating course manual. This enforces the existence-dependent
concept, where the existence of each part object is dependent on its associated
whole object.
The keyword the in the above insert statement is used to represent the nested
table Chapter. Since Chapter is not a standard table, we cannot use its name
in order to populate it. The use of the (we can also use table instead) also
ensures that each record within the nested table has an associated record from
the whole table, in this case the Course_Manual table. Note also that the select
statement must return one row only; otherwise, the query will return an error.
To avoid this problem, we usually use a primary key as the selection attribute
to ensure uniqueness.
Figure 5.23 describes the relationship between the whole table and its nested
table (part table).

Generic Methods 149

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.22. Implementation of an aggregation relationship using the
nesting technique

Relational Schemas

Course_Manual (ISBN, title, year, chapter)
Chapter (c_no, c_title, page_no)

Methods Declaration

CREATE OR REPLACE TYPE Chapter_T AS OBJECT
(c_no NUMBER,
 c_title VARCHAR2(20),
 c_page_no NUMBER)

/

CREATE OR REPLACE TYPE Chapter_Table_T AS TABLE OF Chapter_T
/

CREATE OR REPLACE TYPE Course_Manual_T AS OBJECT

(isbn VARCHAR2(10),
 title VARCHAR2(20),
 year NUMBER,
 chapter Chapter_Table_T,

 MEMBER PROCEDURE Insert_Course_Manual(

new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER,
new_c_no IN NUMBER,
new_c_title IN VARCHAR2,
new_c_page_no IN NUMBER),

MEMBER PROCEDURE Delete_Course_Manual,

MEMBER PROCEDURE Insert_Chapter(

new_isbn IN VARCHAR2,
new_c_no IN NUMBER,
new_c_title IN VARCHAR2,
new_c_page_no IN NUMBER),

MEMBER PROCEDURE Delete_Chapter)

/

CREATE TABLE Course_Manual OF Course_Manual_T

(isbn NOT NULL,
 PRIMARY KEY (isbn))
NESTED TABLE chapter STORE AS chapter_tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Course_Manual_T AS

150 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.22. (continued)

MEMBER PROCEDURE Insert_Course_Manual(
new_isbn IN VARCHAR2,
new_title IN VARCHAR2,
new_year IN NUMBER,
new_c_no IN NUMBER,
new_c_title IN VARCHAR2,
new_c_page_no IN NUMBER) IS

BEGIN

INSERT INTO Course_Manual
VALUES (new_isbn, new_title, new_year,

Chapter_Table_T(Chapter_T(new_c_no, new_c_title,
new_c_page_no)));

END Insert_Course_Manual;

MEMBER PROCEDURE Delete_Course_Manual

BEGIN

DELETE FROM Course_Manual a
WHERE a.isbn = self.isbn;

END Delete_Course_Manual;

MEMBER PROCEDURE Insert_Chapter(

new_isbn IN VARCHAR2,
new_c_no IN NUMBER,
new_c_title IN VARCHAR2,
new_c_page_no IN NUMBER) IS

BEGIN

INSERT INTO THE
(SELECT c.chapter
 FROM Course_Manual c
 WHERE c.isbn = new_isbn)

VALUES (new_c_no, new_c_title, new_c_page_no);
END Insert_Chapter;

MEMBER PROCEDURE Delete_Chapter IS

BEGIN

DELETE FROM THE
(SELECT c.chapter
 FROM Course_Manual c
 WHERE c.isbn = self.isbn);

END Delete_Chapter;

END;
/

Generic Methods 151

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Case Study

Recall the AEU case study in Chapter 1. The union wants to add generic
methods in its object-relational database. However, only objects with frequent
changes will have member procedures attached to them. Figure 5.24 shows the
partition of the AEU database diagram with the object attributes and object
methods.
To implement the object-oriented model, we will follow the systematic steps
that follow.

• Type and table. For this case, we need the types Employee_T,
Office_Staff_T, Organizer_T, Teacher_T, and School_T. For each of
them, we will create the table respectively. For this case study, we will use
a nested table; thus, we need to add type Area_T and its table, and also
the Suburb_T type and Suburb_Table_T for the aggregation relationship.

• Inheritance relationship. There is one mutual-exclusion inheritance rela-
tionship between Employee_T and its subclasses. We have to add another
attribute in the Employee_T class, emp_type, to perform the mutual-
exclusive feature.

COURSE_MANUAL Table
(Whole Table)

CHAPTER Nested Table
(Part Table)
- called The table in queries -

Figure 5.23. “The” table

152 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1
assigned in

1

1…

1

represents

1…

1…
Teacher_T
teacher_ID
teacher_name
teacher_address
insert_teacher
delete_teacher

School_T
sch_ID
sch_type
sch_name
sch_address
insert_sch
delete_sch

mutual exclusive

Employee_T
emp_ID
emp_name
emp_address
insert_emp
delete_emp

Office_Staff_T
emp_ID
skills
insert_off
delete_off

Organizer_T
emp_ID
length_service
insert_org
delete_org 1

1…
1

Area_T
area_ID
area_name
insert_area
delete_area

Suburb_T
sub_ID
sub_name
insert_sub
delete_sub

teaches in

Figure 5.24. AEU case study with generic-method implementation

• Association relationship. There are three association relationships from
this model. First is the one-to-many association between Organizer_T
and Teacher_T. A ref of the one side, Organizer_T, is needed in the many
side. Next, the association is many to many between Teacher_T and
School_T. For this association relationship, we need to add a table to
keep the ref to both classes. Finally, there is a one-to-one association
between Organizer_T and Area_T. We will use the object reference of
Organizer_T in Area_T because Area_T has total participation.

• Aggregation relationship. There is one homogeneous aggregation rela-
tionship in this model. We will use a nested table, so we have to create the
type and type table for the part class, and the type and table for the whole
class.

• Complete solution. The complete solution is shown in Figure 5.25.

Generic Methods 153

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.25. Implementation of the case study in Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Employee_T AS OBJECT

(emp_id VARCHAR2(10),
 emp_name VARCHAR2(30),
 emp_address VARCHAR2(30),
 emp_type VARCHAR2(15),

 MEMBER PROCEDURE Insert_Emp(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2),

 MEMBER PROCEDURE Delete_Emp) NOT FINAL

/

CREATE TABLE Employee OF Employee_T
(emp_id NOT NULL,
 emp_type CHECK (emp_type IN (‘Office Staff’, ‘Organizer’, NULL)),
 PRIMARY KEY (emp_id));

CREATE OR REPLACE TYPE Office_Staff_T UNDER Employee_T
(skills VARCHAR2(50),

 MEMBER PROCEDURE Insert_Off(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_skills IN VARCHAR2),

MEMBER PROCEDURE Delete_Off)
/

CREATE OR REPLACE TYPE Organizer_T UNDER Employee_T

(length_service VARCHAR2(10),

 MEMBER PROCEDURE Insert_Org(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_length_service IN VARCHAR2),

 MEMBER PROCEDURE Delete_Org)
/

CREATE OR REPLACE TYPE Teacher_T AS OBJECT
(teacher_id VARCHAR2(10),
 teacher_name VARCHAR2(20),
 teacher_address VARCHAR2(10),
 representation REF Organizer_T,

 MEMBER PROCEDURE Insert_Teacher(

new_teacher_id IN VARCHAR2,
new_teacher_name IN VARCHAR2,
new_teacher_address IN VARCHAR2,
representation_emp_id IN VARCHAR2),

154 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5.25. (continued)

 MEMBER PROCEDURE Delete_Teacher)
/

CREATE TABLE Teacher OF Teacher_T

(teacher_id NOT NULL,
 PRIMARY KEY (teacher_id));

CREATE OR REPLACE TYPE School_T AS OBJECT

(sch_id VARCHAR2(10),
 sch_name VARCHAR2(20),
 sch_address VARCHAR2(30),
 sch_type VARCHAR2(15),

 MEMBER PROCEDURE Insert_Sch(

new_sch_id IN VARCHAR2,
new_sch_name IN VARCHAR2,
new_sch_address IN VARCHAR2,
new_sch_type IN VARCHAR2),

MEMBER PROCEDURE Delete_Sch)
/

CREATE TABLE School OF School_T

(sch_id NOT NULL,
 sch_type CHECK (sch_type IN (‘Primary’, ‘Secondary’, ‘TechC’)),
 PRIMARY KEY (sch_id));

CREATE TABLE Teach_In
(teacher REF Teacher_T,
 school REF School_T);

CREATE OR REPLACE TYPE Suburb_T AS OBJECT

(sub_id VARCHAR2(10),
 sub_name VARCHAR2(20))

/

CREATE OR REPLACE TYPE Suburb_Table_T AS TABLE OF Suburb_T
/

CREATE OR REPLACE TYPE Area_T AS OBJECT

(area_id VARCHAR2(10),
 area_name VARCHAR2(20),
 suburb Suburb_Table_T,
 assigned_org REF Organizer_T,

 MEMBER PROCEDURE Insert_Area(

new_area_id IN VARCHAR2,
new_area_name IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2,
assigned_org_id IN VARCHAR2),

Generic Methods 155

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE Delete_Area,

 MEMBER PROCEDURE Insert_Suburb(

new_area_id IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2),

 MEMBER PROCEDURE Delete_Suburb

/

CREATE TABLE Area OF Area_T
(area_id NOT NULL,
 PRIMARY KEY (area_id))
NESTED TABLE suburb STORE AS suburb_tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Employee_T AS

MEMBER PROCEDURE Insert_Emp(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2) IS

BEGIN

INSERT INTO Employee
VALUES (new_emp_id, new_emp_name, new_emp_address, NULL);

END Insert_Emp;

MEMBER PROCEDURE Delete_Emp IS

BEGIN

DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id
AND Employee.emp_type IS NULL;

END Delete_Emp;

END;
/

CREATE OR REPLACE TYPE BODY Office_Staff_T AS

MEMBER PROCEDURE Insert_Off(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_skills IN VARCHAR2) IS

BEGIN
INSERT INTO Employee
VALUES Office_Staff_T(new_emp_id, new_emp_name, new_emp_address,

'Office_Staff', new skills);
END Insert_Off;

MEMBER PROCEDURE Delete_Off IS

BEGIN

Figure 5.25. (continued)

156 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END Delete_Off;

END;

/

CREATE OR REPLACE TYPE BODY Organizer_T AS

MEMBER PROCEDURE Insert_Org(

new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_length_service IN VARCHAR2) IS

BEGIN

INSERT INTO Employee
VALUES (new_emp_id, new_emp_name,

 new_emp_address, 'Organizer', new_length_service);
END Insert_Org;

MEMBER PROCEDURE Delete_Org IS

BEGIN

DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END Delete_Org;

END;
/

CREATE OR REPLACE TYPE BODY Teacher_T AS

MEMBER PROCEDURE Insert_Teacher(

new_teacher_id IN VARCHAR2,
new_teacher_name IN VARCHAR2,
new_teacher_address IN VARCHAR2,
representation_emp_id IN VARCHAR2) IS

new_organizer REF Organizer_T;

BEGIN
SELECT REF(a) INTO new_organizer
FROM Organizer a
WHERE emp_id = representation_emp_id;

INSERT INTO Teacher
VALUES (new_teacher_id, new_teacher_name,

 new_teacher_address, new_organizer);
END Insert_Teacher;

Figure 5.25. (continued)

Generic Methods 157

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MEMBER PROCEDURE Delete_Teacher IS

BEGIN

DELETE FROM Teacher
WHERE Teacher.teacher_id = self.teacher_id;

END Delete_Teacher;

END;
/

CREATE OR REPLACE TYPE BODY School_T AS

MEMBER PROCEDURE Insert_Sch(

new_sch_id IN VARCHAR2,
new_sch_name IN VARCHAR2,
new_sch_address IN VARCHAR2,
new_sch_type IN VARCHAR2) IS

BEGIN

INSERT INTO School
VALUES (new_sch_id, new_sch_name, new_sch_address, new_sch_type);

END Insert_Sch;

MEMBER PROCEDURE Delete_Sch IS

BEGIN
DELETE FROM Teach_In
WHERE Teach_In.school IN

(SELECT REF(a)
 FROM School a
 WHERE a.sch_id = self.sch_id);

DELETE FROM School
WHERE School.sch_id = self.sch_id;

END Delete_Sch;

END;
/

CREATE OR REPLACE PROCEDURE Insert_Teach_In(
new_teacher_id IN VARCHAR2,
new_sch_id IN VARCHAR2) AS

teacher_temp REF Teacher_T;
school_temp REF School_T;

BEGIN

SELECT REF(a) INTO teacher_temp
FROM Teacher a
WHERE a.teacher_id = new_teacher_id;

SELECT REF(b) INTO school_temp
FROM School b
WHERE b.sch_id = new_sch_id;

INSERT INTO Teach_In
VALUES (teacher_temp, school_temp);

Figure 5.25. (continued)

158 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

END Insert_Teach_In;
/

CREATE OR REPLACE PROCEDURE Delete_Teach_In(

deleted_teacher_id IN VARCHAR2,
deleted_sch_id IN VARCHAR2) AS

BEGIN
DELETE FROM Teach_In
WHERE

Teach_In.teacher IN
(SELECT REF(a)
 FROM Teacher a
 WHERE a.teacher_id = deleted_teacher_id) AND
Teach_In.school IN
(SELECT REF(b)
 FROM School b
 WHERE b.sch_id = deleted_sch_id);

END Delete_Teach_In;
/

CREATE OR REPLACE TYPE BODY Area_T AS

MEMBER PROCEDURE Insert_Area(

new_area_id IN VARCHAR2,
new_area_name IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2,
assigned_org_id IN VARCHAR2) IS

new_organizer REF Organizer_T;

BEGIN
SELECT REF(a) INTO new_organizer
FROM Organizer a
WHERE emp_id = assigned_org_id;

INSERT INTO Area
VALUES (new_area_id, new_area_name,

Suburb_Table_T(Suburb_T(new_sub_id,
new_sub_name)),new_organizer);

END Insert_Area;

MEMBER PROCEDURE Delete_Area IS

BEGIN
DELETE FROM Area a
WHERE a.area_id = self.area_id;

END Delete_Area;

Figure 5.25. (continued)

Generic Methods 159

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

One type of dynamic aspect implemented in an object-relational system is the
generic method. Generic methods are basically simple methods that are needed
for operations such as retrieval, update, deletion, and insertion. For these
methods, the concept of referential integrity is crucial and thus they need to be
considered and designed accurately before implementation. In addition, differ-
ent types of object structures or relationships (inheritance, association, and
aggregation) will result in different types of generic-method implementations as
well.

Chapter Problems

1. Giant Travel is a well-known travel agency that operates guided tours.
With offices around the world, they maintain accurate and detailed

MEMBER PROCEDURE Insert_Suburb(
new_area_id IN VARCHAR2,
new_sub_id IN VARCHAR2,
new_sub_name IN VARCHAR2) IS

BEGIN

INSERT INTO THE
(SELECT a.Suburb
 FROM Area a
 WHERE a.area_id = new_area_id)

VALUES (new_sub_id, new_sub_name);
END Insert_Suburb;

MEMBER PROCEDURE Delete_Suburb IS

BEGIN

DELETE FROM THE
(SELECT a.Suburb
 FROM Area a
 WHERE a.area_id = self.area_id);

END Delete_Suburb;

END;
/

Figure 5.25. (continued)

160 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

employee data. The employee data are kept in an object Employee_T and
can be divided into two child objects: Guide_T and Admin_T. An
employee can be categorized as a guide or an administration staff, but he
or she can also be both. This is important because in the peak season, an
administration worker might be needed to guide the tours and vice versa.
The objects and the attributes are shown below.

Admin_T
ID
comp_skills
office_skills
insert_admin
delete_admin

union

Employee_T
ID
name
address
salary
insert_employee
delete_employee

Guide_T
ID
language
country
insert_guide
delete_guide

Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Guide.

2. Continuing the case of Giant Travel in Question 1, management now wants
employees’ roles to become more specialized based on their major
potentials. Since one employee can be only a guide or an administration
staff, for that purpose, another attribute emp_type must be added to the
Employee_T object. However, there are some records in the Employee
table that are not categorized into the Guide or Admin object, that is, the
managers.
Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Admin.

3. Continuing the case of Giant Travel in the previous questions, management
now wants to create another object under the Employee_T object named
Management_T, which obviously contains all the data of the managers. All
employees must be categorized in one, and only one, child type.

Generic Methods 161

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

partition

Admin_T
ID
comp_skills
office_skills
insert_admin
delete_admin

Employee_T
ID
name
address
salary
insert_employee
delete_employee

Guide_T
ID
language
country
insert_guide
delete_guide

Management_T
ID
department
year_service
insert_manag
delete_manag

Assume that the tables for each object have been created; write the
implementation of insertion into and deletion from tables Employee and
Management. Note that we want to delete the managers’ records from the
finance department.

4. The following figure shows the relationship among objects Supervisor_T,
Student_T, and Subject_T in a university. A student can take many
subjects, and a subject can be taken by many students. For every subject
a student takes, there is a mark given.
In another relationship, a student can be supervised by only one supervi-
sor, but a supervisor can supervise many students. Assume that objects
have been created and the tables from these objects are shown.

1…

1…

1…1

enrolls_insupervised_by

Subject_T
subject_ID
subject_name
insert_subject
delete_subject

Student_T
student_ID
student_name
insert_student
delete_student

Supervisor_T
spv_ID
spv_name
insert_spv
delete_spv

162 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Supervisor Student
Spv_ID Spv_Name Student_ID Student_Name

1001 Steve Donaldson 11013876 Robert Tan
1003 Erin Goldsmith 11014832 Julio Fernandez
1007 Tony Wibowo 11014990 Colin Brown

Subject
Subject_ID Subject_Name
CSE31DB Database System
CSE31UIE User Interface Engineering
CSE42ADB Advanced Database

Enrolls_In
Student_ID Subject_Code Mark
11013876 CSE31DB 86
11013876 CSE31UIE 90
11014832 CSE31ADB 78
11014990 CSE31DB 74
11014990 CSE31UIE 70

a. Write generic methods to insert into and delete from table Enrolls_In.
b. Write generic member methods to insert into and delete from table

Supervisor.
5. Village Records’ database keeps its artists as objects. Every artist has

recorded and released at least one album. This album is kept as a nesting
table inside the artist object.

1

1…

Artist
code
name
residence
contract_no
insert_artist
delete_artist
insert_album
delete_album

Album
album_code
album_no
album_title
album_year

Generic Methods 163

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Assume that the tables are created already.
a. Write the member procedures to insert into and delete from the

nested table Album.
b. Write the stored procedure that takes one parameter, the artist’s

name, and shows the album name and years that he or she has
recorded.

6. If the implementation for the aggregation relationship of Village Records
in the previous question is done by using the clustering technique, and
assuming that the cluster, tables, and index have been created, complete
the following.
a. Write the stored procedures to insert into and delete from the whole

table Artist.
b. Write the stored procedures to insert into and delete from the part

table Album.

Chapter Solutions

1. CREATE OR REPLACE TYPE BODY Employee_T AS

MEMBER PROCEDURE Insert_Employee(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN NUMBER) IS

BEGIN
INSERT INTO Employee

VALUES (new_id, new_name, new_address, new_salary);
END Insert_Employee;

MEMBER PROCEDURE Delete_Employee IS

BEGIN
DELETE FROM Employee
WHERE Employee.id = self.id;

END Delete_Employee;

END;

164 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

/

CREATE OR REPLACE TYPE BODY Guide_T AS

MEMBER PROCEDURE Insert_Guide(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN VARCHAR2,
new_language IN VARCHAR2,
new_country IN VARCHAR2) IS

BEGIN
INSERT INTO Guide

VALUES (new_id, new_name, new_address, new_salary,
new_language, new_country);

END Insert_Guide;

MEMBER PROCEDURE Delete_Guide IS

BEGIN
DELETE FROM Guide

WHERE Guide.id = self.id;
END Delete_Guide;

END;
/

2. CREATE OR REPLACE TYPE BODY Employee_T AS

MEMBER PROCEDURE Insert_Employee(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN NUMBER) IS

BEGIN
INSERT INTO Employee

VALUES (new_id, new_name, new_address, new_salary,
NULL);

END Insert_Employee;

MEMBER PROCEDURE Delete_Employee IS

BEGIN

Generic Methods 165

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DELETE FROM Employee
WHERE Employee.ID = self.id
AND Employee.employee_type IS NULL;

END Delete_Employee;

END;
/

CREATE OR REPLACE TYPE BODY Admin_T AS

MEMBER PROCEDURE Insert_Admin(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN VARCHAR2,
new_comp_skills IN VARCHAR2,
new_office_skills IN VARCHAR2) IS

BEGIN
INSERT INTO Employee

VALUES (new_id, new_name, new_address, new_salary,
‘Admin’);
INSERT INTO Admin
VALUES (new_id, new_comp_skills, new_office_skills);

END Insert_Admin;

MEMBER PROCEDURE Delete_Admin IS

BEGIN

DELETE FROM Employee
WHERE Employee.id = self.id
AND Employee.employee_type = ‘Admin’;

END Delete_Admin;

END;
/

3. CREATE OR REPLACE TYPE BODY Management_T AS

MEMBER PROCEDURE Insert_Manag(
new_id IN VARCHAR2,
new_name IN VARCHAR2,
new_address IN VARCHAR2,
new_salary IN VARCHAR2,
new_department IN VARCHAR2,
new_year_service IN VARCHAR2) IS

166 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
INSERT INTO Management
VALUES (new_id, new_name, new_address, new_salary,

new_department, new_year_service);
END Insert_Manag;

MEMBER PROCEDURE Delete_Manag IS

BEGIN
DELETE FROM Management

WHERE Management.id = self.id;
END Delete_Manag;

END;
/

4. a. CREATE OR REPLACE PROCEDURE Insert_Enrolls_In(

new_student_id IN VARCHAR2,
new_subject_id IN VARCHAR2) AS

student_temp REF Student_T;
subject_temp REF Subject_T;

BEGIN
SELECT REF(a) INTO student_temp
FROM Student a
WHERE a.student_id = new_student_id;

SELECT REF(b) INTO subject_temp
FROM Subject b
WHERE b.subject_id = new_subject_id;

INSERT INTO Enrolls_In
VALUES (student_temp, subject_temp);

END Insert_Enrolls_In;
/

CREATE OR REPLACE PROCEDURE Delete_Enrolls_In(
deleted_student_id IN VARCHAR2,
deleted_subject_id IN VARCHAR2) AS

BEGIN
DELETE FROM Enrolls_In
WHERE

Enrolls_In.student IN

Generic Methods 167

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(SELECT REF(a)
 FROM Student a
 WHERE a.student_id = deleted_student_id) AND
Enrolls_In.subject IN
(SELECT REF(b)
 FROM Subject b
 WHERE b.subject_id = deleted_subject_id);

END Delete_Enrolls_In;

/

b. CREATE OR REPLACE TYPE BODY Supervisor_T AS

MEMBER PROCEDURE insert_spv(
new_spv_id IN VARCHAR2,
new_spv_name IN NUMBER) IS

BEGIN
INSERT INTO Supervisor
VALUES (new_spv_id, new_spv_name);

END insert_spv;

MEMBER PROCEDURE delete_spv IS

BEGIN
— Supervised_by is the ref of Supervisor in the
Student_T object.
DELETE FROM Student b
WHERE b.supervised_by.spv_id = self.spv_id;
DELETE FROM Supervisor a
WHERE a.spv_id = self.spv_id;

END delete_spv;

END;
/

5. a. CREATE OR REPLACE TYPE BODY Artist_T AS

MEMBER PROCEDURE Insert_Album(
new_code IN VARCHAR2,
new_album_code IN VARCHAR2,
new_album_no IN NUMBER,
new_album_title IN VARCHAR2,
new_album_year IN NUMBER),

BEGIN

INSERT INTO THE

168 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(SELECT a.album
 FROM Artist a
 WHERE a.code = new_code)

VALUES (new_album_code, new_album_no,
 new_album_title, new_album_year);

END Insert_Album;

— This procedure deletes all albums of the artist.

MEMBER PROCEDURE Delete_Album IS

BEGIN
DELETE FROM THE

(SELECT a.Album
 FROM Artist a
 WHERE a.code = self.code);

END Delete_Album;

END;
/

b. CREATE OR REPLACE PROCEDURE Show_Album(
new_artist_name IN VACRHAR2) AS

CURSOR c_album IS
SELECT album_title, album_year

FROM THE

(SELECT album
 FROM Artist
 WHERE artist_name = new_artist_name);

BEGIN
FOR v_curs IN c_album LOOP

DBMS_OUTPUT.PUT_LINE
(v_curs.album_title||‘ ‘||v_curs.album_year);

END LOOP;
END Show_Album;

/

6. a. CREATE OR REPLACE PROCEDURE Insert_Album(

new_code IN VARCHAR2,
new_album_code IN VARCHAR2,
new_album_no IN NUMBER,
new_album_title IN VARCHAR2,
new_album_year IN VARCHAR2) AS

Generic Methods 169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
INSERT INTO Album
VALUES (new_code, new_album_code, new_album_no,

 new_album_title, new_album_year);
END Insert_Album;

/

CREATE OR REPLACE PROCEDURE Delete_Album(
deleted_album_code IN NUMBER) AS

BEGIN
DELETE FROM Album
WHERE album_code = deleted_album_code;

END Delete_Album;
/

b. CREATE OR REPLACE PROCEDURE Insert_Artist(
new_code IN VARCHAR2,
new_name IN VARCHAR2,
new_residence IN VARCHAR2,
new_contract_no IN VARCHAR2) AS

BEGIN

INSERT INTO Artist
VALUES (new_code, new_name, new_residence,

new_contract_no);
END Insert_Artist;

/

CREATE OR REPLACE PROCEDURE Delete_Artist(
deleted_code IN VARCHAR2) AS

BEGIN

DELETE FROM Artist
WHERE code = deleted_code;

END Delete_Artist;
/

170 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

User-Defined Queries

This chapter describes object-based user-defined queries in Oracle™. The
queries will vary based on the hierarchy of the object model. We will show
different categories of queries along the object-oriented relationships of
inheritance, association, and aggregation.
These queries can be performed as ad hoc queries or implemented as methods.
User-defined methods are methods whereby users define algorithms or the
processes to be carried out by the methods. Since these methods involve
operations specified by the users, they are called user-defined methods. As an
example, we will use the case study of the authorship of the course manual in
Chapter III as a working example for this chapter. Some queries discussed here
are based on the DDL specified in Figure 3.36.

User-Defined Queries in
Inheritance Hierarchies

In this section, different queries along inheritance hierarchies will be described.
User-defined queries along inheritance hierarchies can be divided into two
categories: subclass queries and superclass queries. Note that because there
are two ways of implementing inheritance, using the shared ID between the

User-Defined Queries 171

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

primary key and foreign key or using the “under” keyword, we will show user-
defined queries for both techniques in the following sections.

Subclass Query

User-defined queries in an inheritance hierarchy are queries that involve
attributes of the class where the methods reside and attributes of their
superclasses. Since a number of classes (at least two) are involved, a join
operation to link all of these classes becomes necessary. The general format for
the representation of user-defined queries in an inheritance hierarchy is as
follows.
In the From clause, a list of tables is produced. These tables include all
intermediate tables between a subclass (table1) and a super-class (tablen). The
inheritance join expression can be a join predicate to join all tables listed if
the shared ID technique is used. Alternatively, if the latest Oracle™ is used,
then it can be a treat expression to cast the selection from one class type to
another within the inheritance hierarchy.
A subclass query is a query that retrieves information from the subclass(es),
where the selection predicates are originated at the superclass. Figure 6.2
shows the flow of a query in a subclass query.
The query representation for a subclass query is shown in Figure 6.3, while
Figure 6.4 shows the example of a subclass query and the results.
The subclass-query representation (see Figure 6.3) is applicable if we imple-
ment the superclass and subclass as two different tables. If we use the under
features provided by Oracle™ 9 and above, we can use the treat keyword in
the query. The general syntax of such a type of query is as follows.

SELECT <function or expression>
FROM <table1, table2, …, tablek, …, tablen>
WHERE <inheritance join expression>
AND <tablek.OID = &input_OID>

Figure 6.1. User-defined inheritance query representation

172 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Superclass Query

A superclass query retrieves information from the superclass(es), where the
selection predicates are originated at a subclass (see Figure 6.7).
The query representation for a superclass query using the shared ID is shown
in Figure 6.8, while Figure 6.9 shows the example of a superclass query.
It is important to note that in inheritance queries, join operations have to be
performed to link the superclass to the subclasses. When the hierarchy is deep,
a number of join operations may be needed to perform a query. The fact that
all of the join operations are carried out on primary keys of the tables makes
the operations inexpensive in terms of performance cost.

Superclass

Subclass Subclass

Subclass Subclass

Selection Predicate

Subclass
Queries

Figure 6.2. Subclass query flow

SELECT <sub-class attributes>
FROM <table1, table2,………,tablen>
WHERE <join predicates>
AND <tablen.attr = &input_super-class_selection_predicates>

where: Table1, …, table n-1 are subclass tables, and

tablen is a superclass table.

Figure 6.3. Subclass-query representation (using shared ID)

User-Defined Queries 173

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.4. Subclass-query example (using shared ID)

Example 1:
Find the contact number(s) of an author whose name is David Taniar.

SELECT contact_no
FROM Author a, Teaching_Staff b
WHERE a.ao_id = b.ao_id
AND a.name = ‘David Taniar;

The above query shows that we only need to join based on the common
shared ID, which is ao_ID. Since the contact number is a varray, the above
query will show the following result:

CONTACT_NO

CONTACTS (99059693, 94793060)

Example 2:
Find the institution of an author whose name is David Taniar.

SELECT TREAT(VALUE(a) as Academic_T).i_name
FROM Author a
WHERE a.name = ’David Taniar’;

The above query shows the following result:

i_name

Monash University

Figure 6.6. Subclass-query example (using treat)

SELECT TREAT(VALUE(<alias>) AS <sub-type name>).<sub-class attribute>
FROM <table name>
WHERE <table.attr = &input_super-class_selection_predicates>;

Figure 6.5. Query representation (using treat)

With Oracle™ 9 and above, we can implement an inheritance relationship using
one table only. The table will be of the supertype, in this case, Author. Thus,
neither the subclass query nor the superclass query needs a join operation.
Another possibility of a superclass query in Oracle™ 9 and above is the use of
“is of.” This type of predicate tests object instances for the level of specializa-

174 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 3:
Find the details of the author(s) whose institution name is Monash
University.

SELECT a.name, a.address
FROM Author a, Academic b
WHERE a.ao_id = b.ao_id
AND b.i_name = ‘Monash University’;

Figure 6.9. Superclass-query example

SELECT <super-class attributes>
FROM <table1, table2, …, tablen>
WHERE <join predicates>
AND <sub-class table.attr =

&input_sub-class_selection_predicates>

where: Table1, …, table n-1 are subclass tables, and

tablen is a superclass table.

Figure 6.8. Superclass-query representation (using shared ID)

Superclass

Subclass Subclass

Subclass Subclass

Selection Predicate Superclass
Queries

Figure 6.7. Superclass-query flow

User-Defined Queries 175

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion of its type along with any other further subclasses of the subclass. The
general syntax of such a query is as follows.

User-Defined Queries in
Association Relationships

In this section, different queries along association relationships will be de-
scribed. They can be divided into two categories: referencing queries and
dereferencing queries. Each of these types will be discussed in the following
sections.

Referencing Query

A referencing query is a query from a class that holds the object reference (ref)
to a class that is being referenced. The class that is being referenced is the class

Example 4:
Find the details of authors who belong to the industry-based type.

SELECT a.name, a.address
FROM Author a
WHERE VALUE(a) IS OF (Industry_Based_T)

Figure 6.12. Superclass-query example (using “is of”)

SELECT <super-class attribute>
FROM <table name>
WHERE VALUE(<alias>) IS OF (Sub-class name);

Figure 6.11. Superclass-query representation (using “is of”)

SELECT a.name, a.address
FROM Author a
WHERE TREAT(VALUE(a) as Academic).i_name = ‘Monash University’;

Figure 6.10. Superclass-query example (using treat)

176 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 5:
SELECT b.lecturer.total_hour
FROM Subject b
WHERE b.sub_name = ‘Databases’;

Figure 6.15. Referencing-query Example 1

SELECT <referencing class attributes>
FROM <referencing table>
WHERE <referencing table path expression>
[AND <class table.attr = &input_class_selection_predicates>]

where: The referencing table or class is the one that holds the many side in an

association relationship.

Figure 6.14. Referencing-query representation

Class X Class Y
1…

Selection Predicate

Referencing Query

1

Selection Predicate

Figure 6.13. Referencing-query flow

that holds the one side in a one-to-many relationship. Figure 6.13 depicts a
referencing query.
The query representation for referencing a query is shown in Figure 6.14, while
Figure 6.15 shows an example of this query type.
In the previous example, no join is performed. Rather, we are using object
referencing from Teaching Staff to Subject through the lecturer attribute, which
is of ref data type.
Example 6 (Figure 6.16) also shows a referencing type of query whereby a path
traversal through the object references is used rather than the usual join
operation. Without the facility of object references (ref) in Oracle™, we would

User-Defined Queries 177

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have to use a join operation between Subject and Teaching Staff to perform the
above queries.

Dereferencing Query

A dereferencing query is a query from the referred class to a class that holds
the object reference (ref). In a many-to-many relationship, both classes that are
connected are the referred classes. Figure 6.17 below shows two types of
dereferencing queries.

Figure 6.17. Dereferencing-query flow

Class Y

1…

Class XY

1…

Selection PredicateSelection Predicate

Class X

Dereferencing Query

b. Dereferencing query in a many-to-many relationship with a virtual class XY

Selection PredicateSelection Predicate

Class Y
1…1

Class X

a. Dereferencing query in a one-to-many relationship

Example 6:
Display all subject details along with the teaching staff responsible for
the subject, showing only those subjects in which the teaching staff’s
total contact hours is more than 5.

SELECT b.code, b.subname, b.venue, b.lecturer.name
FROM Subject b
WHERE b.lecturer.TotalHour > 5;

Figure 6.16. Referencing-query Example 2

178 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.19. Dereferencing-query Example 1

Example 7:
In the relationship between Course Manual and Author, display all course
manuals written by John Smith.

SELECT a.title
FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)
AND c.author = REF(b)
AND b.name = ‘John Smith’;

Figure 6.18. Dereferencing-query representation

SELECT <class table attributes>
FROM <referring table>, <referred table>
WHERE <referencing join>
[AND <class table.attr = &input_class_selection_predicates>]

where:

The referencing join takes the form of
<referring class attribute = REF(referred class)>.

The query representation for a dereferencing query is shown in Figure 6.18,
while Figure 6.19 shows an example of this query type.
Similar to the previous dereferencing example, the above example also
performs linking through object referencing rather than a join operation.
Note that in the previous example, both links are performed through object
references. The Publish table holds two object references, one to
Course_Manual_T and another one to Author_T. This situation is established
in a many-to-many association relationship.

User-Defined Queries in
Aggregation Hierarchies

In this section, we will describe different queries along aggregation hierarchies.
These queries can be divided into two categories: part queries and whole
queries. Each of the above types will be discussed in the following sections.

User-Defined Queries 179

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.20. Dereferencing-query Example 2

Example 8:
In the relationship between Course Manual and Author, display all course
manuals along with the names of the author(s), showing only those authors
who live in Melbourne.

SELECT a.title, b.name
FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)
AND c.author = REF(b)
AND b.address LIKE ‘%Melbourne’;

Figure 6.21. Dereferencing-query Example 3
Example 9:
In the relationship between Course Manual and Author, display all course
manuals along with the name(s) and address(es) of the author(s).

SELECT a.title, b.name, b.address
FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)
AND c.author = REF(b);

Part Query

A part query is an aggregation-hierarchy query used to retrieve information of
part classes, where the selection predicates are originated at the whole class.
Figure 6.22 shows a part-query flow in a nesting technique.
The query representation for a part query is shown in Figure 6.23, while Figure
6.24 shows the example of a part query.
In the nesting technique, as mentioned in Chapter 5, we use the keyword “the”
for querying the nested tables. Figure 6.24 shows that the selection predicate
is located in the whole table Course_Manual.
Part queries can also appear in aggregation relationships implemented using the
clustering technique. Figure 6.25 shows the query representation for a part
query using the clustering technique, while Figure 6.26 shows an example of the
query.
Note that when a clustering technique is used, the queries to access the data
along the aggregation hierarchy are simply standard queries to join the whole
table with its associated parts. However, the cluster index actually causes the
queries to perform much better than those without it.

180 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 10:
In the relationship between Course Manual and Chapter implemented using the
nesting technique, display the chapter number and chapter title of a
course-manual titled Object-Relational Databases.

SELECT c_no, c_title
FROM THE (SELECT a.chapter

FROM Course_Manual a
WHERE a.title = ‘Object-Relational Databases’);

Figure 6.24. Part-query example using the nesting technique

Figure 6.23. Part-query representation using the nesting technique

SELECT <“part” class attributes>
FROM THE (SELECT “whole” class nested table attribute

FROM <“whole” class table>
WHERE <”whole” class table.attr =

&input_class_selection_predicates>)

Figure 6.22. Part-query flow

Whole
Class Part

Nested table

Selection Predicate Part Query

Figure 6.25. Part-query representation using the clustering technique

SELECT <“part” class attributes>
FROM <table1, table2, …, tablen>
WHERE <join predicates>
AND <”whole” class table.attr = &input_class_selection_predicates>

where: Table1, …, tablen-1 are part-class tables,

and tablen is a whole-class table.

User-Defined Queries 181

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Whole Class

Part
Nested table

Selection PredicateWhole Query

Figure 6.27. Whole-query flow

Whole Query

A whole query is the aggregation-hierarchy query to retrieve information from
the whole class, where the selection predicates are originated at the part class.
Figure 6.27 shows a whole-query flow in a nesting technique.
The technique we are using for solving a whole query in a nesting technique is
called unnesting. It is because the nested table cannot be accessed except
through the whole class, and yet we want to be able to access a selection
predicate in the nested table (i.e., the part table). In this case, we need to unnest
the nesting structure.
Figure 6.28 shows the query representation for a whole query using the nesting
technique, while Figure 6.29 shows the example of the query.
Figure 6.29 shows how we can unnest a nested table structure in order to
access its attributes directly. Figure 6.30 shows how we can run a query to
retrieve the whole information within a nested structure.
Obviously, the above result is not very easy to interpret. In order to come up
with a better display, we can also use the unnesting technique for the above

Figure 6.26. Part-query example in the clustering technique

Example 11:
In the relationship between Course Manual and Chapter implemented using the
clustering technique, display the chapter number and chapter title of a
course manual titled Object-Relational Databases.

SELECT a.c_no, a.c_title
FROM Chapter a, Course_Manual b
WHERE a.isbn = b.isbn
AND b.title = ‘Object-Relational Databases’;

182 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

query. Nevertheless, the query will show a repetition of whole-table attributes
if it has a number of parts (see Figure 6.31).
In the clustering technique, whole queries are implemented in a very similar
manner as that of part queries. Figure 6.32 shows the query representation for
a whole query using the nesting technique, while Figure 6.33 shows an example
of the query.

Example 13:
In the relationship between Course Manual and Chapter implemented using the
nesting technique, display all course manuals together with their
associated chapters.

SELECT *
FROM Course_Manual;

This example will give the following result:

ISBN TITLE YEAR CHAPTER(C_NO, C_TITLE, PAGE_NO)
--
111xx Databases 1993 CHAPTER_TABLE_T(CHAPTER_T(1, 'OODB', 1))

Figure 6.30. Query for whole information in the table using the nesting
technique

Example 12:
In the relationship between Course Manual and Chapter implemented using the
nesting technique, display the course-manual ISBN and course-manual title
that has an associated chapter-number 1 entitled “Introduction to Object-
Relational.”

SELECT a.isbn, a.title
FROM Course_Manual a, TABLE(a.chapter) b
WHERE b.c_no = 1
AND b.c_title = ‘Introduction to Object-Relational’;

Figure 6.29. Whole-query example using the nesting technique

SELECT <“whole” class attributes>
FROM < “whole” class table, TABLE(“whole” class nested table

attribute)>
WHERE <”part” class table.attr = &input_class_selection_predicates>

Figure 6.28. Whole-query representation using the nesting technique

User-Defined Queries 183

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 14:
In the relationship between Course Manual and Chapter implemented using the
clustering technique, display the course-manual ISBN and course-manual
title that has an associated chapter-number 1 entitled “Introduction to
Object-Relational.”

SELECT a.isbn, a.title
FROM Course_Manual a, Chapter b
WHERE a.isbn = b.isbn

AND b.c_no = 1
AND b.c_title = ‘Introduction to Object-Relational’;

Figure 6.33. Whole-query example using the clustering technique

SELECT <“whole” class attributes>
FROM <table1, table2, …, tablen>
WHERE <join predicates>
AND <”part” class table.attr = &input_class_selection_predicates>

where: Table1 is a whole-class table,

and table2, …, tablen are part-class tables.

Figure 6.32. Whole-query representation using the clustering technique

SELECT a.isbn, a.title, a.year, b.c_no, b.c_title,
 b.page_no

FROM Course_Manual a, TABLE(a.chapter) b;

The above query will give the following result:

ISBN TITLE YEAR C_NO C_TITLE PAGE_NO

111xx Databases 1993 1 OODB 1

Figure 6.31. Query for whole information using the nesting technique by
unnesting

There is one limitation of the nesting-technique query that can be solved by
using the clustering technique. With the nesting technique, during DML opera-
tion, the nested table locks the parent row. Thus, only one modification can be
made to the particular nested table at a time. It shows that the part query in the
nesting technique is not optimum compared with the clustering technique.
Nevertheless, the whole query of the nesting technique can perform as good as
in the clustering technique. It is shown in the following example.

184 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

User-Defined Queries Using
Multiple Collection Types

Oracle™ has also introduced collection types as alternative data types. They
are other features of an object-oriented database that need to be adopted by
RDBMSs. One of the types, which is the nested table, has been mentioned
previously when we discussed aggregation relationships. In this section, we will
discuss multiple collection types that can increase the power of ORDBMS
application.

Varray Collection Type

One of the new collection types introduced by Oracle™ is an array type called
varray. This type can be stored in database tables. When used as an attribute
type in a table, varray is stored in line with the other attributes within the table.
Example 1 (see Section 6.1.1) demonstrates a subclass query that retrieves an
array type of attribute. Retrieving the whole array can be done through SQL
queries. The following example shows how we can retrieve information when
the selection predicate is of the varray type.
It is not possible to access an individual element of an array type using an SQL
query only. As shown above, we need to use a procedure whereby we can
retrieve and manipulate the array elements. Furthermore, we have to make sure
that during the insertion of the varray in the above example, there are three
values to input. If there are only two contact numbers, the third value, null,
should be inserted. It is needed to avoid error during the query process. The

Figure 6.34. Whole query from multiple part tables

Example 15:
Assume there is another nested table Preface under Course Manual. Display
the course-manual ISBN and course-manual title that has an associated
chapter-number 1 entitled “Introduction to Object-Relational” and a preface
entitled “Acknowledgement.”

SELECT a.isbn, a.title
FROM Course_Manual a, TABLE(a.chapter) b, TABLE(a.preface) c
WHERE b.c_no = 1
AND b.c_title = ‘Introduction to Object-Relational’
AND c.p_title = ‘Acknowledgement’;

User-Defined Queries 185

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.35. Varray collection-type example

Example 16:
Find the details of authors whose contact numbers include 94793060.

DECLARE

CURSOR c_contact IS

SELECT a.name, a.address, b.contact_no
FROM Author a, Teaching_Staff b
WHERE a.ao_id = b.ao_id;

BEGIN

FOR v_contactrec IN c_contact LOOP
IF (v_contactrec.contact_no(1) = 94793060) OR

(v_contactrec.contact_no(2) = 94793060) OR
(v_contactrec.contact_no(3) = 94793060) THEN

DBMS_OUTPUT.PUT_LINE(‘AuthorName:’||
v_contactrec.name||’Author Address:’||
v_contactrec.address);

END IF;
END LOOP;

END;
/

Example 17:
Update one of the contact numbers of an author whose ao_ID is 123 from
94793060 to 94793000.

DECLARE

Contacts Teaching_Staff.contact_no%TYPE;

BEGIN
SELECT b.contact_no
INTO contacts
FROM Author a, Teaching_Staff b
WHERE a.ao_id = b.ao_id
AND a.ao_id = ‘123’;

FOR i IN 1..3 LOOP

IF (contacts(i) = 94793060) THEN
contacts(i) := 94793000;

END IF;
DBMS_OUTPUT.PUT_LINE (‘New Contact Number ‘||i||

’:’||contacts(i));
END LOOP;

END;
/

Figure 6.36. Example of a varray collection-type manipulation

186 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

following example shows how we can select a stored varray in a variable so that
it can be manipulated.
Note that because the main purpose of this section is to demonstrate collection
types, we will assume that each table that is needed for the examples has
already been created. Whenever access to an inheritance hierarchy is used in
the examples, we will assume the implementation method uses a shared ID. For
example, in the defined cursor of Figure 6.35, we will need to use treat if we
only implement one superclass table for the inheritance hierarchy (as shown in
Figure 6.5).
Varray has several methods that can be used for accessing elements. Some of
the methods are shown below.

First, Last returns the index of the first (or last) element within the array
Next, Prior returns the index of the next (or prior) element within an array,

relative to a specified element
Exists returns ”true” if the entry exists in the array
Count returns the total number of elements within an array
Limit returns the maximum number of elements of an array
Extend adds elements to an array
Trim removes elements from the end of an array
Delete removes specified elements from an array

The following example shows how we can display the last element of an array
using the “last” keyword for collection types. Note that the last element may not
necessarily be the upper boundary of the varray. For example, we may define
a varray of three elements, but since there are only two elements loaded in an
array, the last element will be element number 2.

Nested-Table Collection Type

In Section 6.3, we have seen how we can manipulate a nested table using SQL
queries as one of the methods for an aggregation relationship. Another way of
manipulating a nested-table structure is by retrieving the whole nested table into

User-Defined Queries 187

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a variable, and then manipulating the values within a procedure. The following
example shows how we can manipulate a nested table.
Note that we use the method Last in the above example to check for the last
record within the nested table. All the methods that are applicable for varray
are applicable for the nested table except for Limit. This method will return null
in a nested table because there is no explicit maximum size for a nested table.
Unlike varray that retains the ordering of its elements when stored, a nested
table does not preserve its ordering in the database storage. This is because
varray maintains its element in line within the main table, whereas a nested table
is stored independently of the associated main table.

User-Defined Queries with
Object References

So far we have seen how we can create association relationships with object
references using REF. REF is not the only object references feature available.
Oracle™ also provides other operators that will allow us to navigate object
references. The operators include VALUE, DEREF, and IS DANGLING. We
will consider each operator in the following section:

Example 18:
Find the last contact number of an author whose ao_ID is 123

DECLARE

Contacts Teaching_Staff.contact_no%TYPE;

BEGIN
SELECT b.contact_no
INTO contacts
FROM Author a, Teaching_Staff b
WHERE a.ao_id = b.ao_id
AND a.ao_id = ‘123’;

DBMS_OUTPUT.PUT_LINE (‘Last Contact No:’||

Contacts(contacts.LAST));

END;
/

Figure 6.37. Varray collection-type method example

188 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VALUE

Value is used to retrieve the value of row objects. It is only applicable to object
type, and thus it will be invalid to use for retrieving row tables. This operator
might be useful to compare objects and find whether they have the same values.

Figure 6.39. Value example

Example 20:
using value to compare the return value of a query

SELECT a.sub_name, a.venue
FROM Subject a, Teaching_Staff b
WHERE a.lecturer = REF(b)
AND VALUE(a) =

(SELECT VALUE(c)
 FROM Subject c
 WHERE c.code = ‘CSE42ADB’);

Example 19:
Find the total number of chapters in a course manual published by an author
with ao_ID 123.

DECLARE

v_chapters Course_Manual.chapter%TYPE;

BEGIN

SELECT a.chapter
INTO v_chapters
FROM Course_Manual a, Author b, Publish c
WHERE c.course_manual = REF(a)
AND c.author = REF(b)
AND b.ao_id = ‘123’;

IF v_chapters IS NOT NULL THEN

DBMS_OUTPUT.PUT_LINE
(‘The number of chapters is:’||v_chapters.LAST);

END IF;

END;
/

Figure 6.38. Example of a nested-table manipulation

User-Defined Queries 189

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.41. “Is dangling” example

Example 22:
Check whether or not there is any dangling reference from Subject to
Teaching Staff (notice that Subject has an attribute called lecturer, which
is of type ref).

SELECT s.sub_name, s.venue
FROM Subject s
WHERE s.lecturer IS DANGLING;

Figure 6.42. Example of “is dangling”

Example 23:
Copy a subject into a new subject if the code is CSE42ADB and the venue is
ELT2.

DECLARE

S1 Subject_T;

BEGIN

SELECT VALUE(s) INTO S1
FROM Subject s, Teaching_Staff t
WHERE s.lecturer = REF(t);
AND s.code = ‘MAT42’
AND s.venue = ‘ELT2’;

END;
/

Figure 6.40. Deref example

Example 21:
Retrieve the information about the teaching staff using a deref to Subject.

SELECT DEREF(a.lecturer) FROM Subject a;

The above query returns the following results:

DEREF(LECTURER)(AO_ID, TOTAL_HOUR, CONTACT_NO)
--
TEACHING_STAFF_T('p1', 20, CONTACTS(94675810, 93452341, NULL))
TEACHING_STAFF_T('p5', 30, CONTACTS(92318406, 93510365, NULL))
TEACHING_STAFF_T('p8', 35, CONTACTS(92638475, 92345678, NULL))

190 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DEREF

Deref is used to return the object of an object reference. Note that a Deref of
a ref is the same as a value.

IS DANGLING

Whenever an object has an object reference (ref) pointing to it, this object is
not supposed to be deleted. If it is deleted, the reference is said to be dangling
or pointing to nothing. “Is dangling” is used to check whether or not a particular
reference is pointing to an existing object.
Unfortunately, in the implementation of object references, there is no implicit
referential integrity checking such as the one found in primary-key and foreign-
key relationships. The ref operator does not automatically avoid any deletion
of the referenced objects in the earlier version of Oracle™. However, new
releases after Oracle™ 8 provide referential integrity checking with object
references.

Figure 6.43. Object-table example

Example 24a:
Create an object table Author with all the attributes
as specified in Chapter 3 (Case Study).

CREATE OR REPLACE TYPE Author_T AS OBJECT
(ao_id VARCHAR2(3),
 name VARCHAR2(10),
 address VARCHAR2(20))

/

CREATE TABLE Author OF Author_T

(ao_id NOT NULL,
 PRIMARY KEY (ao_id));

Author

Author Table
Object Type Object Table

ao_ID
name
address

Ao_ID Name Address

User-Defined Queries 191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.45. Object-attribute query example

Example 25:
Find all information about course-manual ISBN number 1268-9000.

SELECT *
FROM Course_Manual;

The query will return the following result:

ISBN TITLE YEAR COURSE_AUTHOR(AOID, NAME, ADDRESS)
--
1268-9000 Parallel Database 1998 AUTHOR_T('123', 'D Taniar',
'Clayton')

Figure 6.44. Object attribute
Example 24b:
Create an object attribute Author within the table Course_Manual.

CREATE TABLE Course_Manual
(isbn VARCHAR2(10),
 title VARCHAR2(20),
 year NUMBER,
 course_author AUTHOR_T);

Author
Course_Manual Table

Object Type Object Attribute

ao_ID
name
address

ISBN Title Course_AuthorYear

Object Table vs. Object Attribute

We have seen in most of our examples how to create and manipulate an object
table. An object table (or often called a row object) is a database table created
based on an object type. Thus, each row within the table actually represents the
values of an object.
Another technique of making an object persistent in object-relational data-
bases is by creating an object attribute (or often called a column object). An
object attribute is actually an attribute of a relational table that is of object type.

192 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following examples 24a and 24b show the differences between an object
table and object attribute.
Example 24b shows how we can have an attribute of an object type in our
relational table. This notion of object attributes can also be used to link a table
with an object, for example, to link Course_Manual and Author. However,
when using object attributes, there is no table created for the object attribute.
Therefore, we can only retrieve the author information through the
Course_Manual table. If we need to be able to index and manipulate author
information independently, then we need to create a separate table for
Author_T and define a link between the tables.
Although we cannot manipulate the Author object attribute within the
Course_Manual table, we still can display the value of the object attribute using
a simple SQL query as shown below.
We can also have a collection of object attributes. In other words, we can have
an attribute whose value is a collection of objects instead of just a single object.
Example 26 shows how we can create a varray of Authors objects.

Figure 6.46. Varray inside object-attribute example

Example 26:
Create a varray of object attributes Authors within the Course_Manual
table.

CREATE OR REPLACE TYPE Authors AS VARRAY(3) OF Author_T
/

CREATE TABLE Course_Manual

(isbn VARCHAR2(10),
 title VARCHAR2(20),
 year NUMBER,
 course_author Authors);

By running the following query to display the new contents of
Course_Manual, we will get results like it is shown in the following
display.

SELECT *
FROM Course_Manual;

ISBN TITLE YEAR COURSE_AUTHOR(AOID,
NAME, ADDRESS)
--
--
1268-9000 Parallel Database 1998 AUTHORS(AUTHOR_T('123',
'D Taniar', 'Clayton'), AUTHOR_T('567', 'W Rahayu', 'Bundoora'))

User-Defined Queries 193

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Clustering Technique vs.
Index-Organization Table

We have introduced the use of clusters in the previous chapters, mainly in the
context of the implementation of aggregation hierarchies. The clustering tech-
nique, as opposed to the nesting technique, is more of a physical mechanism in
which the database engine will cluster together rows that are connected using
the same cluster key.
While the clustering technique can be very useful in implementing aggregation
hierarchies, Oracle™ actually supports another physical mechanism of cluster-
ing rows together called an index-organization table. It allows us to physically
cluster and order a table based on its primary key. The main difference between
clustering and index organization is that clustering allows multiple table clusters,
whereas the index-organization table allows only a single table cluster.
This difference is the main reason why index-organization tables may not be
suitable for the implementation of aggregation hierarchies. In most situations,
aggregation hierarchies consist of many different parts connected to a whole
object. However, if what we have is a homogenous aggregation, with one whole
object and one part object, then the following index-organization structure can
be used.

Figure 6.47. Index-organization table example

Example 27:
using index organization to implement an aggregation hierarchy between
Course_Manual_T and Chapter_T.

CREATE TABLE Course_Manual
(isbn VARCHAR2(10) NOT NULL,
 title VARCHAR2(20),
 year NUMBER,
 PRIMARY KEY (isbn));

CREATE TABLE Chapter

(isbn VARCHAR2(10) NOT NULL,
 c_no VARCHAR2(10) NOT NULL,
 c_title VARCHAR2(25),
 page_no NUMBER,
 PRIMARY KEY (isbn, c_no),
 FOREIGN KEY (isbn) REFERENCES Course_Manual(isbn)) ORGANIZATION
INDEX;

194 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the Chapter 3 case study, we have a homogenous aggregation between
Course_Manual_T and Chapter_T. We will see here how we can also
implement the aggregation hierarchy using index organization.
In example 27, each row of the Chapter table is physically stored together with
the associated Course_Manual row as specified in the primary key of Chapter.
This certainly increases performance in accessing the records of the tables
whenever they need to be accessed together. However, in cases where we
have homogenous aggregation with a possible future extension of the model,
where we may extend the aggregation with one or more part objects, then the
index-organization table may not be a suitable solution. When deciding which
structure to use, we need to also carefully consider any possible future
extension of the model. For example, in the above Course_Manual_T whole
object, we may want to add the Preface_T object and Bibliography_T object
as part objects. The aggregation hierarchy is no longer a homogenous aggre-
gation.

Case Study

Recall the AEU case study in Chapters 1 and 5. The union now wants to add
some user-defined methods for several queries that are often made. These
queries will be implemented as member methods of the classes. The user-
defined queries that will be implemented are listed as follows.

• Query to show the price, date of purchase, and the brand of a vehicle. It
is a superclass query and will be implemented as a member method in the
subclass Vehicle_T.

• Query to show the details of a property building. It is a subclass query and
will be implemented as a member method in the superclass Property_T.

• Query to find the organizer’s name and her or his address for a particular
teacher. It is a referencing query and will be implemented as a member
method in the class that holds the object reference, Teacher_T.

• Query to find the details of the union where a particular employee works.
It is a referencing query and will be implemented as a member method in
the class that holds the object reference, Employee_T.

User-Defined Queries 195

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.49. Implementation of the case study in Oracle™

Methods Declaration

CREATE OR REPLACE TYPE Union_T AS OBJECT
(union_id VARCHAR2(10),
 union_state VARCHAR2(20),
 union_head VARCHAR2(30),

 MEMBER PROCEDURE show_ttl_prop)

/

CREATE TABLE Union_Table OF Union_T

(union_id NOT NULL,
 PRIMARY KEY (union_id));

CREATE OR REPLACE TYPE Employee_T AS OBJECT

(emp_id VARCHAR2(10),
 emp_name VARCHAR2(30),
 emp_address VARCHAR2(30),
 emp_type VARCHAR2(15),
 work_in REF Union_T,

 MEMBER PROCEDURE show_union_emp) NOT FINAL

/

assigned in
represents

mutual exclusive

hasworks

mutual exclusive

1

1

1…
1

1

1…

1…

1…

1 1

1… 1…

1…
1

Suburb_T
sub_ID
sub_name

Area_T
area_ID
area_name
show_sub_area

Teacher_T
teacher_ID
teacher_name
teacher_address
show_org_teacher

School_T
sch_ID
sch_type
sch_name
sch_address

Office_Staff_T
emp_ID
skills

Organizer_T
emp_ID
length_service
show_teacher_org

Employee_T
emp_ID
emp_name
emp_address
show_union_emp

Union_T
union_ID
union_state
union_head
show_ttl_prop

Property_T
prop_ID
prop_price
prop_date
show_building

Vehicle_T
prop_ID
brand
show_vehicle_detail

Room_T
prop_ID
room_no
room_occupant

Building_T
prop_ID
bld_name
bld_address
show_room

Figure 6.48. AEU case study with user-defined method implementation

196 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Employee OF Employee_T
(emp_id NOT NULL,
 emp_type CHECK (emp_type IN

(‘Office Staff’, ‘Organizer’, NULL)),
 PRIMARY KEY (emp_id));

CREATE OR REPLACE TYPE Office_Staff_T UNDER Employee_T
(skills VARCHAR2(50))

/

CREATE OR REPLACE TYPE Organizer_T UNDER Employee_T
(length_service VARCHAR2(10),

 MEMBER PROCEDURE show_teacher_org)

/

CREATE OR REPLACE TYPE Teacher_T AS OBJECT
(teacher_id VARCHAR2(10),
 teacher_name VARCHAR2(20),
 teacher_address VARCHAR2(10),
 representation REF Organizer_T,

 MEMBER PROCEDURE show_org_teacher)

/

CREATE TABLE Teacher OF Teacher_T
(teacher_id NOT NULL,
 PRIMARY KEY (teacher_id));

CREATE OR REPLACE TYPE Schools_T AS OBJECT

(sch_id VARCHAR2(10),
 sch_name VARCHAR2(20),
 sch_address VARCHAR2(30),
 sch_type VARCHAR2(15))

/

CREATE TABLE Schools OF Schools_T

(sch_id NOT NULL,
 sch_type CHECK (sch_type IN (‘Primary’, ‘Secondary’, ‘TAFE’)),
 PRIMARY KEY (sch_id));

CREATE TABLE Teach_In
(teacher REF Teacher_T,
 school REF Schools_T);

CREATE OR REPLACE TYPE Suburb_T AS OBJECT
(sub_id VARCHAR2(10),
 sub_name VARCHAR2(20))

/

CREATE OR REPLACE TYPE Suburb_Table_T AS TABLE OF Suburb_T
/

Figure 6.49. (continued)

User-Defined Queries 197

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Area_T AS OBJECT
(area_id VARCHAR2(10),
 area_name VARCHAR2(20),
 suburb Suburb_Table_T,
 assigned_org REF Organizer_T,

 MEMBER PROCEDURE show_sub_area)

/

CREATE TABLE Area OF Area_T

(area_id NOT NULL,
 PRIMARY KEY (area_id))
NESTED TABLE suburb STORE AS suburb_tab;

CREATE OR REPLACE TYPE Property_T AS OBJECT
(prop_id VARCHAR2(10),
 prop_price NUMBER,
 prop_date DATE,
 prop_type VARCHAR2(15),
 in_union REF Union_T,

 MEMBER PROCEDURE show_building)

/

CREATE TABLE Property OF Property_T

(prop_id NOT NULL,
 prop_type CHECK (prop_type IN (‘Vehicle’, ‘Building’, NULL)),
 PRIMARY KEY (prop_id));

CREATE OR REPLACE TYPE Vehicle_T AS OBJECT
(prop_id VARCHAR2(10),
 brand VARCHAR2(20),

 MEMBER PROCEDURE show_vehicle_detail)

/

CREATE TABLE Vehicle OF Vehicle_T
(prop_id NOT NULL,
 PRIMARY KEY (prop_id),
 FOREIGN KEY (prop_id) REFERENCES Property(prop_id)

 ON DELETE CASCADE);

CREATE OR REPLACE TYPE Buildings_T AS OBJECT
(prop_id VARCHAR2(10),
 bld_name VARCHAR2(20),
 bld_address VARCHAR2(30),

 MEMBER PROCEDURE show_room)

/

Figure 6.49. (continued)

198 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE CLUSTER Buildings_Cluster
(prop_id VARCHAR2(10));

CREATE TABLE Buildings OF Buildings_T
(prop_id NOT NULL,
 PRIMARY KEY (prop_id),
 FOREIGN KEY (prop_id) REFERENCES Property(prop_id))
CLUSTER Buildings_Cluster(prop_id);

CREATE OR REPLACE TYPE Room_T AS OBJECT
(prop_id VARCHAR2(10),
 room_no VARCHAR2(10),
 room_occupant VARCHAR2(30))

/

CREATE TABLE Room OF Room_T

(prop_id NOT NULL,
 room_no NOT NULL,
 PRIMARY KEY (prop_id, room_no),
 FOREIGN KEY (prop_id) REFERENCES Property(prop_id))
CLUSTER Buildings_Cluster(prop_id);

CREATE INDEX Buildings_Cluster_Index

ON CLUSTER Buildings_Cluster;

Methods Implementation

CREATE OR REPLACE TYPE BODY Union_T AS

MEMBER PROCEDURE show_ttl_prop IS

v_total NUMBER;

BEGIN

SELECT SUM(b.prop_price) INTO v_total
FROM Union_Table a, Property b
WHERE b.in_union = REF(a)
AND a.union_id = self.union_id;

END show_ttl_prop;

END;
/

CREATE OR REPLACE TYPE BODY Employee_T AS

MEMBER PROCEDURE show_union_emp IS

v_state VARCHAR2(20);

BEGIN

Figure 6.49. (continued)

User-Defined Queries 199

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SELECT a.union_state INTO v_state
FROM Union_Table a, Employee b
WHERE b.work_in = REF(a)
AND b.emp_id = self.emp_id;

END show_union_emp;

END;
/

CREATE OR REPLACE TYPE BODY Organizer_T AS

MEMBER PROCEDURE show_teacher_org IS

CURSOR c_show_teacher_org IS

SELECT TREAT (VALUE(a) AS Organizer).emp_name, d.sch_name
FROM Employee a, Teacher b, Teach_In c, Schools d
WHERE b.representation = REF(a)
AND c.teacher = REF(b)
AND c.school = REF(d)
AND a.emp_id = self.emp_id;

BEGIN
FOR v_show_teacher_org IN c_show_teacher_org LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_teacher_org.emp_name||‘ ‘||
 v_show_teacher_org.sch_name);

END LOOP;
END show_teacher_org;

END;
/

CREATE OR REPLACE TYPE BODY Teacher_T AS

MEMBER PROCEDURE show_org_teacher IS

CURSOR c_show_org_teacher IS

SELECT TREAT (VALUE(a) AS Organizer).emp_name, TREAT (VALU
Organizer).emp_address
FROM Employee a, Teacher b
WHERE b.representation = REF(a)
AND b.teacher_id = self.emp_id;

BEGIN
FOR v_show_org_teacher IN c_show_org_teacher LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_org_teacher.emp_name||‘ ‘||
 v_show_org_teacher.emp_address);

END LOOP;
END show_org_teacher;

Figure 6.49. (continued)

200 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

END;
/

CREATE OR REPLACE TYPE BODY Area_T AS

MEMBER PROCEDURE show_sub_area IS

CURSOR c_show_sub_area IS

SELECT b.sub_id, b.sub_name
FROM Area a, TABLE(a.suburb) b
WHERE a.area_name = self.area_name

BEGIN
FOR v_show_sub_area IN c_show_sub_area LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_sub_area.sub_id||‘ ‘||
 v_show_sub_area.sub_name);

END LOOP;
END show_sub_area;

END;
/

CREATE OR REPLACE TYPE BODY Property_T AS

MEMBER PROCEDURE show_building IS

CURSOR c_show_building IS

SELECT b.bld_name, b.bld_address
FROM Property a, Buildings b
AND a.prop_id = b.prop_id;

BEGIN
FOR v_show_building IN c_show_building LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_building.bld_name||‘ ‘||
 v_show_building.bld_address);

END LOOP;
END show_building;

END;
/

CREATE OR REPLACE TYPE BODY Vehicle_T AS

MEMBER PROCEDURE show_price_date IS

CURSOR c_show_price_date IS

SELECT a.prop_price, a.prop_date
FROM Property a, Vehicle b

Figure 6.49. (continued)

User-Defined Queries 201

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Query to show the name of the teachers that are represented by an
organizer. It will also need to show the school where those teachers are
working. It is a dereferencing, subclass query and will be implemented as
a member method in the class that is referenced, Organizer_T.

• Query to show the total property value of a particular state union. It is a
dereferencing query and will be implemented as a member method in the
class that is referred, Union_T.

• Query to show all the suburb names for a particular area. It is a part query
that will be implemented as a member method in the whole class Area_T.

WHERE a.prop_id = b.prop_id
AND a.prop_id = self.prop_id;

BEGIN
FOR v_show_price_date IN c_show_price_date LOOP

DBMS_OUPUT.PUT_LINE
(v_show_price_date.prop_price||‘ ‘||
 v_show_price_date.prop_date||‘ ‘||
 v_show_price_date.brand);

END LOOP;
END show_vehicle_detail;

END;
/

CREATE OR REPLACE TYPE BODY Buildings_T AS

MEMBER PROCEDURE show_room IS

CURSOR c_show_room IS

SELECT room_no, room_occupant
FROM Room
WHERE prop_id = self.bld_id;

BEGIN
FOR v_show_room IN c_show_room LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_room.room_no||‘ ‘||
 v_show_room.room_occupant);

END LOOP;
END show_room;

END;
/

Figure 6.49. (continued)

202 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Query to show the details of an organizer who is in charge in a particular
suburb. It is a whole query combined with a dereferencing query and
superclass query at the same time. It will be implemented as a member
method in the part class Suburb_T.

• Query to show the room number and its occupant given a building ID as
the parameter. It is a part query that will be implemented as a member
method in superclass Building_T.

Figure 6.48 shows the AEU database diagram with the attributes and methods.
For simplicity, we ignore the generic methods implemented in Chapter 5.
For the implementation section, we will re-create the class and tables so that
we can see the user-defined methods declarations. In this case, the declarations
will not include the generic member methods as shown in the Chapter 5 case
study. Figure 6.49 shows the whole implementation for the user-defined
methods in this case study.

Summary

Another type of dynamic aspect in ORDBMSs is user-defined methods. While
generic methods are used for the simple operations of retrieval, updating,
deletion, and insertion, user-defined methods are used for performing defined
algorithms specified by the users. For this method, issues to be considered
include the structure of the relationships, the data types, and also the referenc-
ing methods implemented inside the classes.

Chapter Problems

1. The animal pound (AP) has always maintained records of every animal
they have had. They keep the records in a hierarchical relationship. Some
examples of the data kept in the tables are shown below.
a. Create a superclass query to retrieve the date_in of all big dogs

(height is more than 35 cm).

User-Defined Queries 203

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

b. Create a sub- and superclass query to retrieve the age of the small
dogs (height is less than 25 cm or weight is less than 10 kg).

union

mutual
exclusive

Cats
breed

Dogs
breed
height
weight

Pet_Animal
diet
age

Wild_Animal
diet
habitat

Animal
ID
sex
date_in

Animal
ID Sex Date_In

a243 M 7/12/01
a244 M 9/12/01
a245 F 3/1/02
a246 F 3/1/02
a247 F 3/1/02
a248 M 10/1/02

Pet Animal
ID Diet Age Pet_Type Breed Height Weight

a243 meat 1 dogs Labrador
retriever

40 10

a244 meat 5 dogs Pugs 30 8
a246 meat 7 dogs German

shepherd
60 25

a247 meat 2 dogs Fox terrier 20 8
a248 grain 1 null

2. Ryan Bookstore keeps a record of their books in three different object
tables: Author, Book, and Publisher. The object diagram and sample of
the records are shown below.
a. Create a referencing query to retrieve the name and the city of the

publisher that publishes Les Miserables.
b. Create a dereferencing query to retrieve the title and the publishing

year of the books published by Harper Collins, New York.
c. Create a dereferencing query to retrieve the titles, authors, and prices

of the books that were published after 1985.

written bypublished by Author
a_ID
a_name
a_residence

Publisher
p_ID
p_name
p_city

Book
b_ID
b_title
b_year
b_price

204 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Publisher Author
P_ID P_Name P_City A_ID A_Name A_Residence
H01 Harper Collins NYC A23 Allende, Isabel Spain
K02 Knopf London B35 Bronte, Charlotte UK
L02 Little, Brown, & Co Boston B36 Bronte, Emily UK
P02 Penguin Classic London C28 Courtenay, Bryce Australia
P04 Penguin Australia Sydney H09 Hugo, Victor France
S02 Simon and Schuster NYC K04 King, Stephen USA

Book Written_By

B_ID B_Title B_Year B_Price Publish Book Author
F123 The Complete Story 1980 16 P02 F123 B35
F342 The Potato Factory 1998 18 P04 F123 B36
F345 Dreamcatcher 2000 15 S02 F342 C28
F453 Les Miserables 1980 12 P02 F345 K04
F488 The House of the

Spirits
1985 12 K02 F453 H09

F499 Daughter of Fortune 1999 19 H01 F488 A23
F560 Solomon’s Songs 1999 19 P04 F499 A23

 F560 C28

3. Village Records, as mentioned in the sample questions for Chapter 5, uses
the following object diagram to keep their artist and album records, and
they use the nesting technique for the implementation. Some of the records
are shown below.
a. Create a part query to retrieve the album number, title, and year of the

artist Bryan King.
b. Create a whole query to retrieve the names and the contract numbers

of the artists who have recorded more than two albums.

1

1…

Artist
code
name
residence
contract_no

Album
album_code
album_no
album_title
year

Artist
Code Name Residence Contract_No Album
BK Bryan King Tamworth 13576345
PA Paige Alexander Sydney 14534321
R Rogue Melbourne 12093722
TB Tim Ball Melbourne 12092834
VQ Valerie Quinton Melbourne 12098546

1
2
3
4
5

User-Defined Queries 205

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Artist
Album_Code Album_No Album_Title Year

BK1 1 Bryan King 1999
PA1 1 Paige Alexander 1999
PA2 2 Paige 2001
R1 1 Rogue 2001

TB1 1 Tim Ball Vol 1 1997
TB2 2 Tim Ball Vol 2 1999
TB3 3 Tim Ball Vol 3 2002
VQ1 1 Valerie 2002

1
2

3
4

5

4. Village Records wants to expand their stock by selling videos of the artists.
Therefore, they want to use a clustering technique instead of a nesting table.
Below are the new tables.

Artist
Code Name Residence Contract_No
BK Bryan King Tamworth 13576345
PA Paige

Alexander
Sydney 14534321

R Rogue Melbourne 12093722
TB Tim Ball Melbourne 12092834
VQ Valerie Quinton Melbourne 12098546

Album

Artist_Code Album_Code Album_No Album_Title Year
BK BK1 1 Bryan King 1999
PA PA1 1 Paige Alexander 1999
PA PA2 2 Paige 2001
R R1 1 Rogue 2001

TB TB1 1 Tim Ball Vol 1 1997
TB TB2 2 Tim Ball Vol 2 1999
VQ VQ1 1 Valerie 2002

Video
Artist_Code Video_Code Video_No Video_Title

BK VBK1 1 Bryan King in Concert
PA VPA1 1 Paige
R VR1 1 Rogue in Rod Laver Arena
R VR2 2 Rogue World

TB VTB1 1 Sydney Concert Tim Ball
TB VTB2 2 Tim Acoustic

a. Create a part query to retrieve the album title and video of the artist
with contract number 12093722.

b. Create a whole query to retrieve the details of the artists for whom
there are both an album and a video in stock

5. A real-estate agency keeps records of its tenants, which include the
tenant_number, tenant_name, tenant_address, tenant_co_number, and
ref_list. Ref_list is a type of varray of two references of the tenants.

206 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a. Create the objects and tables of Tenant and Reference.
b. Create a procedure to show the details of the tenants who have at

least one reference from a landlord.
6. Following Question 5 above, the real-estate company wants to extend its

ref_list attribute of the tenant object. Ref_list is a varray of a reference
object. The reference object has the attributes of reference_number,
reference_name, relationship, reference_contact_no, and reference_date.
Create the new object and table for the tenants and references.

7. Show the difference between an object table and object attribute by
implementing the relation between two objects, Person and Land. A
person can own more than one piece of land, but one piece of land can be
owned by only one person. The details of these two objects are shown
below.

1 1…
Person

p_ID
p_name
p_address
p_contact_no

Land
l_ID
l_address
l_price

Chapter Solutions

1. a. SELECT a.id, a.date_in
FROM Animal a
WHERE TREAT(VALUE(a) AS dog_t).height > 35;

b. SELECT p.id, p.age
FROM Pet_Animal p
WHERE TREAT(VALUE(p) AS dog_t).height < 25 OR
TREAT(VALUE(p) AS dog_t).weight < 10);

2. a. SELECT b.pub_by.p_name, b.pub_by.p_city
FROM Book b
WHERE b.b_title = ‘Les Miserables’;

b. SELECT b.b_title, b.b_year
FROM Book b
WHERE b.pub_by.p_id = ‘P04’;

c. SELECT b.b_title, a.a_name, b.b_price
FROM Author a, Book b, Written_By w

User-Defined Queries 207

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WHERE w.author = REF(a)
AND w.book = REF(b)
AND b.b_year > 1985;

3. a. SELECT album_no, album_title, year
FROM THE (SELECT album

FROM Artist
WHERE name = ‘Bryan King’);

b. SELECT DISTINCT a.name, a.contract_no
FROM Artist a, TABLE (a.album) b
WHERE b.album_no > 2;

4. a. SELECT b.album_title, c.video_title
FROM Artist a, Album b, Video c
WHERE a.code = b.artist_code
AND a.code = c.artist_code
AND a.contract_no = 12093722;

b. SELECT *
FROM Artist
WHERE code IN (SELECT artist_code

FROM Album)
AND code IN (SELECT artist_code

FROM Video);

5. a. CREATE OR REPLACE TYPE References AS VARRAY(2) OF
VARCHAR2(20)
/

CREATE OR REPLACE TYPE Tenants_T AS OBJECT
(tenant_number VARCHAR2(3),
 tenant_name VARCHAR2(20),
 tenant_address VARCHAR2(30),
 tenant_contact_no NUMBER,
 ref_list References)

/

CREATE TABLE Tenants OF Tenants_T
(tenant_number NOT NULL,
 PRIMARY KEY (tenant_number));

b. DECLARE

CURSOR c_tenants IS
SELECT tenant_number, tenant_name, tenant_address,

tenant_contact_no, ref_list
FROM Tenants;

BEGIN

208 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

FOR v_tenants IN c_tenants LOOP
IF (v_tenants.ref_list(1) = ‘Landlord’) OR
(v_tenants.ref_list(2) = ‘Landlord’) THEN

DBMS_OUTPUT.PUT_LINE
(v_tenants.tenant_number||’’||
 v_tenants.tenant_name||’’||
 v_tenants.tenant_address||’’||
 v_tenants.tenant_contact_no);

END IF;
END LOOP;

END;
/

6. CREATE OR REPLACE TYPE Reference_T AS OBJECT
(reference_number VARCHAR2(3),
 reference_name VARCHAR2(20),
 relationship VARCHAR2(20),
 reference_contact_no NUMBER,
 reference_date DATE)

/

CREATE OR REPLACE TYPE References AS VARRAY(2) OF
Reference_T
/

CREATE OR REPLACE TYPE Tenants_T AS OBJECT
(tenant_number VARCHAR2(3),
 tenant_name VARCHAR2(20),
 tenant_address VARCHAR2(30),
 tenant_contact_no NUMBER,
 ref_list References)

/

CREATE TABLE Tenants OF Tenants_T
(tenant_number NOT NULL,
 PRIMARY KEY (tenant_number));

7. Object Table: Two tables are created from objects Person_T and
Land_T. Therefore, we have to create the object first, followed by the
tables. Notice that we use ref in connecting the two objects.

CREATE OR REPLACE TYPE Person_T AS OBJECT
(p_id VARCHAR2(3),
 p_name VARCHAR2(10),
 p_address VARCHAR2(20),
 p_contact_no NUMBER)

/

User-Defined Queries 209

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Land_T AS OBJECT
(l_id VARCHAR2(3),
 l_address VARCHAR2(20),
 l_price NUMBER,
 owner REF Person_T)

/

CREATE TABLE Person OF Person_T
(p_id NOT NULL,
 PRIMARY KEY (p_id));

CREATE TABLE Land OF Land_T
(l_id NOT NULL,
 PRIMARY KEY (l_id));

Object Attribute: We create only one table. In this case, as there is only
one person who owns each piece of land, we create an object attribute of
Person_T inside the Land table. Notice we are not using ref in connecting
the object.

CREATE OR REPLACE TYPE Person_T AS OBJECT
(p_id VARCHAR2(3),
 p_name VARCHAR2(10),
 p_address VARCHAR2(20),
 p_contact_no NUMBER)

/

CREATE OR REPLACE TYPE Land_T AS OBJECT
(l_id VARCHAR2(3),
 l_address VARCHAR2(20),
 l_price NUMBER,
 owner Person_T)

/

CREATE TABLE Land OF Land_T
(l_id NOT NULL,

 PRIMARY KEY (l_id));

210 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

University Case Study

Our intention in the previous chapters was to give some understanding of the
ORDB concept and its implementation using Oracle™. Examples, case
studies, and questions based on these chapters have been relatively simplified
in order to explain one concept at a time. However, in the real world, often we
find far more complex cases that may involve the integration of every concept
that we have already discussed. In this chapter, we will consider a bigger case
study that uses most of the ORDB concepts.
In addition, we will also demonstrate the implementation of a big case study into
one application that can be more user friendly. For this purpose, we will use a
package that is also provided by Oracle™.

Problem Description

City University (CU) keeps an extensive database for daily operational
purposes. The database includes information pertaining to the campuses,
faculties, buildings, personnel, degrees, and subjects offered, and other data
derived from them. Information Technology Services (ITS), responsible for
maintaining the database system within the university, decided to use an ORDB
and Oracle™ for the database implementation.

University Case Study 211

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CU has eight campuses around the state of Victoria. The Campus database is
linked to the Building and Person databases. Although each campus offers
different degree courses and has different faculties, at this stage, there is no
direct link from these data to the Campus table. Figure 7.1 shows the sample
data for this table.
CU has five faculties, each of which is an aggregation of a different department,
school, and research centre. Each of them is implemented as a separate object
and has derived object tables. As we do not need to access the data of the
departments, schools, and research centres directly for this database system,
the data is implemented using a nested table. Figure 7.2 shows the sample for
the Faculty table and its nested tables. Note that the attributes school_prof and
dept_prof are themselves objects. Thus, they have their own attributes includ-
ing name, contact, and year of inauguration. An attribute unit in the
Research_Centre nested table will have more than one value and thus needs to
be implemented using collection types.
Each campus has several buildings, each of which is an aggregation of different
rooms such as offices, classrooms, and labs. The faculty can occupy many
buildings. However, one building can only be allocated to one faculty. Note that
there is an attribute bld_location, which is the location of the building on the
particular campus map.
As mentioned previously, a building can be divided into offices, classrooms,
and labs, each with its own attributes. Figure 7.4 shows the sample for the
Office, Classroom, and Lab tables. Note that the attribute lab_equipment in
Labs has to be implemented using collection types. For this aggregation, we are
using the clustering technique instead of a nested table because there will be
association relationships needed between the part table Office and another
table to show the staff who occupies the office.

Campus
Campus_Location Campus_Address Campus_Phone Campus_Fax Campus_Head
Albury/Wodonga Parkers Road

Wodonga VIC
3690

61260583700 620260583777 John Hill

City 215 Franklin St.
Melb VIC 3000

61392855100 6103 92855111 Michael A.
O’Leary

Mildura Benetook Ave.
Mildura VIC 3502

61350223757

61350223646 Ron Broadhead

Figure 7.1. Campus table

212 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.3. Building table
Building

Bld_ID Bld_Name Bld_Location Bld_Level Campus_Location Fac_ID
BB1 Beth Gleeson D5 4 Bundoora 4
BB2 Martin

Building
F5 4 Bundoora 3

BB3 Thomas
Cherry

D4 4 Bundoora 1

BB4 Physical
Science 1

D5 3 Bundoora 4

Faculty
Fac_I

D
Fac_Name Fac_Dean Department School Research_Centre

1 Health Sciences S. Duckett
2 Humanity & Social Sc. J. A. Salmond
3 Law & Management G. C. O’Brien Nested Tables
4 Science, Tech. & Eng. D. Finlay
5 Regional Department L. Kilmartin

School (Nested Table)

School_ID School_Name School_Head School_Prof
1-1 Human

Biosciences
Chris Handley Chris Handley

1-2 Human Comm.
Sciences

Elizabeth
Lavender

Sheena Reilly, Alison Perry, Jan
Branson

Department (Nested Table)

Dept_ID Dept_Name Dept_Head Dept_Prof
4-1 Agricultural

Sciences
Mark
Sandeman

4-2 Biochemistry Nick
Hoogenraad

Nick Hoogenraad, Robin Anders,
Claude Bernard, Bruce Stone

Research_Centre (Nested Table)

RC_ID RC_Name RC_Head RC_Unit
1-1 Australian

Research Centre
in Sex, Health &
Society

Marian Pitts SSAY Projects
HIV Futures
Australian Study of Health and
Relationships

1-2 Australian
Institute for
Primary Care

Hal Swerissen Centre for Dev. and Innovation in
Health
Centre for Quality in Health &
Community Svc.
Lincoln Gerontology Centre

Figure 7.2. Faculty table and the nested tables

University Case Study 213

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Every faculty offers students a number of degrees. The information about the
degree is stored in the Degree table (see Figure 7.5). Obviously, one particular
degree can be offered by only one faculty.
One substantial part of the database is the personnel data. The university
personnel can be categorized into two major types: staff and student. A staff
can be categorized in more detail into administrator, technician, lecturer, and
tutor. A lecturer can further be categorized into senior lecturer and associate
lecturer. A tutor, on the other hand, can also be a student and, thus, has to be
implemented in a multiple inheritance relationship.
While Figure 7.6 shows the Person table, Figure 7.7 shows the tables for its
subclasses. Empty fields show that the attribute can be null.

Degree
Deg_ID Deg_Name Deg_Length Deg_Prereq Fac_ID
D100 Bachelor of Comp. Sci 3 Year 12 or equivalent 4
D101 Master of Comp. Sci 2 Bach of Comp. Sci 4

Figure 7.5. Degree table

Figure 7.6. Person table

Person
Pers_ID Pers_

Surname
Pers_

Fname
Pers_
Title

Pers_Address Pers_Phone Pers_
Postcode

Campus_
Location

01234234 Grant Felix Mr 2 Boadle Rd
Bundoora VIC

0398548753 3083 Bundoora

10008895 Xin Harry Mr 6 Kelley St
Kew VIC

0398875542 3088 Bundoora

10002935 Jones Felicity Ms 14 Rennie St
Thornbury VIC

0398722001 3071 Bundoora

Figure 7.4. Office, Classroom, and Lab tables

Office Classroom
Bld_ID Off_No Off_Phone Bld_ID Class_No Class_Capacity

BB4 BG207 94791118 BB3 TCLT 50
BB4 BS208 94792393 BB3 TC01 30

Lab
Bld_ID Lab_No Lab_Capacity Lab_Equipment

BB1 BG113 25 25 PC, 1 Printer
BB1 BG114 20 21 PC

214 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.7. Person’s subclass tables

Staff Student
Pers_ID Bld_ID Off_No Staff_Type Pers_ID Year

10008895 BB1 BG212 Lecturer 01234234 2000
10002935 BB4 BG210 Admin 01958652 2000

Admin

Pers_ID Admin_Title Comp_Skills Office_Skills
10002935 Office Manager Managerial
10008957 Receptionist MS Office Customer Service, Phone

Technician

Pers_ID Tech_Title Tech_Skills
10005825 Network Officer UNIX, NT
10015826 Photocopy Technician Electrician

Lecturer

Pers_ID Area Lect_Type
10008895 Software Engineering Associate
10000255 Business Information Senior

Senior Lecturer

Pers_ID No_Phd No_Master No_Honours
10000255 2 5 7
10000258 1 5

Associate Lecturer Tutor

Pers_ID No_Honours Year_Join Pers_ID No_Hours Rate
10008895 2 1999 01234234 10 20.00
10006935 2001 01958652 30 35.00

Figure 7.8. Subject table

Subject
Subj_ID Subj_Name Subj_Credit Subj_Prereq Pers_ID

CSE21NET Networking 10 CSE11IS 10008895
CSE42ADB Advanced Database 15 CSE21DB 10006935

Figure 7.9. Enrolls_In and Takes tables

Enrolls_In Takes
Student Degree Student Subject Marks

01234234 D101 01234234 CSE42ADB 70
10012568 D101 10012568 CSE42ADB 80

University Case Study 215

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Student_T class is linked to the Degree_T class. One student can take
more than one degree at a time. The Student_T class is also linked to another
class, Subject_T. It contains the information about the subject ID, subject
name, subject credit, subject prerequisite, and its description. On the other
hand, the Subject_T class is linked to the Lecturer_T class, which obviously
shows the lecturer in charge of the subject. Figure 7.8 shows the Subject table
Figure 7.9 shows the tables associated with the Student table: respectively, the
Enrolls_In table that is formed by the association to the Degree table, and the
Takes table that is formed by the association to the Subject table. Note that the
tables do not exactly store only the ID, for example, student_ID in the
Enrolls_In table. The whole object with the particular ID is being referenced
because of the implementation of object references.
ITS implements the generic methods inside the classes, which will need a lot of
updates. They include Subject_T, Degree_T, and all the classes derived from
Person_T. There are also generic stored procedures for insertion and deletion
into tables that are not derived from objects, that is, table Enrolls_In and table
Takes.
Beside the generic methods, there are some user-defined queries that are
frequently made for this database. These user-defined queries will be imple-
mented as user-defined methods, listed below.

• Method to show the names and the heads of the schools, departments, and
research centres of a faculty. This method is implemented in Faculty_T.

• Method to insert the data of a building into a new table, namely,
Building_Details. This method will be implemented in Building_T.

• Method to display the details of the offices and their occupants. This
method will be implemented in the Office_T class.

• Method to save into a new table, namely, Degree_Records, which will
store the degree details and the number of students enrolled in it. This
method will be implemented in the Degree_T class.

• Method to show the details of the lecturer that will be implemented in the
Lecturer_T class

216 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1…
1…

1
1

1…
1…

1…

1

1…

1

1…

1

1…

1…

1…

1

1…

1…
1…

1…

1

1…
1…

1…

1…
1

1
1

ta
ke

s

en
ro

lls
_i

n

un
io

n

pa
rti

tio
n

pa
rti

tio
n

Se
ni

or
_L

ec
tu

re
r_

T
n o

_p
hd

no
_m

as
te

r,
no

_h
on

ou
rs

in
se

rt_
se

ni
or

_l
ec

tu
re

r
de

le
te

_s
en

io
r_

le
ct

ur
er

A
ss

oc
ia

te
_L

ec
tu

re
r_

T
no

_h
on

ou
rs

ye
ar

_j
oi

n
in

se
rt_

as
so

ci
at

e_
le

ct
ur

er
de

le
te

_a
ss

oc
ia

te
_l

ec
tu

re
r

Te
ch

ni
ci

an
_T

t e
ch

_t
itl

e
te

ch
_s

ki
lls

in
se

rt_
te

ch
ni

ci
an

de
le

te
_t

ec
hn

ic
ia

n

A
dm

in
_T

ad
m

in
_t

itl
e

co
m

p_
sk

ill
s

of
fic

e_
sk

ill
s

in
se

rt_
ad

m
in

de
le

te
_a

dm
in

Tu
to

r_
T

no
_h

ou
rs

ra
te

in
se

rt_
tu

to
r

d e
le

te
_t

ut
or

Le
ct

ur
er

_T

a r
ea

le
ct

_t
yp

e
sh

ow
_

le
ct

ur
er

Su
bj

ec
t_

T
su

bj
_I

D
su

bj
_n

am
e

su
bj

_c
re

di
t

su
bj

_p
re

re
q

in
se

rt_
su

bj
ec

t
de

le
te

_s
ub

je
ct

St
af

f_
T

st
af

f_
ty

pe
St

ud
en

t_
T

ye
ar

in
se

rt_
st

ud
en

t
de

le
te

_s
tu

de
nt

D
eg

re
e_

T
de

g_
ID

de
g_

na
m

e
de

g_
le

ng
th

de
g_

pr
er

eq

in
se

rt_
de

gr
ee

de
le

te
_d

eg
re

e
sh

ow
_d

eg
_r

ec
or

d

Pr
of

es
so

r_
T

pr
of

_I
D

pr
of

_n
am

e
pr

of
_c

on
ta

ct
pr

of
_r

es
ea

rc
h

pr
of

_y
ea

r

O
ffi

ce
_T

o f
f_

no
of

f_
ph

on
e

sh
ow

_o
ffi

ce

C
la

ss
ro

om
_T

c l
as

s_
no

cl
as

s_
ca

pa
ci

ty

La
b_

T

l a
b_

no
la

b_
ca

pa
ci

ty
la

b_
eq

ui
pm

en
t

B
ui

ld
in

g_
T

bl
d_

ID
, b

ld
_n

am
e

bl
d_

lo
ca

tio
n

bl
d_

le
ve

l
sh

ow
_b

ld
_d

et
ai

ls

Pe
rs

on
_T

pe
rs

_I
D

pe
rs

_s
ur

na
m

e
pe

rs
_f

na
m

e
pe

rs
_t

itl
e

pe
rs

_a
dd

re
ss

pe
rs

_p
ho

ne
pe

rs
_p

os
tc

od
e

i n
se

rt_
pe

rs
on

de
le

te
_p

er
so

n

C
am

pu
s_

T
ca

m
pu

s_
lo

ca
tio

n
c a

m
pu

s_
ad

dr
es

s
ca

m
pu

s_
ph

on
e

ca
m

pu
s_

fa
x

ca
m

pu
s_

he
ad

Fa
cu

lty
_T

fa
c_

ID
fa

c_
na

m
e

fa
c_

de
an

sc
ho

ol
de

pa
rtm

en
t

re
se

ar
ch

_c
en

tre
sh

ow
_p

ro
fe

ss
or

D
ep

ar
tm

en
t_

T
de

pt
_I

D
de

pt
_n

am
e

de
pt

_h
ea

d
de

pt
_p

ro
f

Sc
ho

ol
_T

sc
ho

ol
_I

D
sc

ho
ol

_n
am

e
sc

ho
ol

_h
ea

d
sc

ho
ol

_p
ro

f

R
es

ea
rc

h_
C

en
tre

_T
rc

_I
D

rc
_n

am
e

rc
_h

ea
d

rc
_u

ni
t

Figure 7.10. Object-oriented diagram of CU

University Case Study 217

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Problem Solution

The first thing to do in solving this problem is to design the database. We
provide the design in an object-oriented diagram (see Figure 7.10). Note that
the diagram does not indicate the number of tables that we need to create. We
have to also consider the cardinality of the relationships before determining the
number of tables. The diagram shows two aggregation relationships. We use
the clustering technique for the Building_T-class aggregation because there is
an association relationship needed to the part class, in this case, the Office_T
class to the Lecturer_T class. On the other side, we will use the nested
technique for the Faculty_T class.
To ensure a clearer step-by-step development, the solution will be imple-
mented for one class at a time. It starts with the object creation, then progresses
to the table creation and then, where applicable, the method creation. Note that
the table for the many-to-many relationship will be implemented along with the
implementation of the second class.

Campus_T Table

The implementation of the Campus_T class and the table derived from the class
is shown below. There are no generic methods needed for this class because
insertion or deletion of a campus database is not a frequent operation.

Relational Schemas
Faculty (campus_location, campus_address,
campus_phone,

 campus_fax, campus_head)

Class and Table Declaration
CREATE OR REPLACE TYPE Campus_T AS OBJECT

(campus_location VARCHAR2(20),
 campus_address VARCHAR2(50),
 campus_phone VARCHAR2(12),
 campus_fax VARCHAR2(12),
 campus_head VARCHAR2(20))

/

218 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Campus OF Campus_T
(campus_location NOT NULL,
 PRIMARY KEY (campus_location));

Faculty_T Class and Part Classes

The Faculty table contains three nested tables, and thus the classes for each of
them have to be created first. The attributes school_prof, dept_prof, and
rc_unit are collection types and will be implemented using varray. In addition,
the first two are varrays of Professor_T. Therefore, we have to create this
object first before creating the object of the collection types.
It is the same with the Campus_T class; we do not use generic methods
frequently for these classes, so there will be no generic member methods
implemented. However, as it is required, a user-defined method is implemented
to show the names and the heads of the schools, departments, and research
centres, given the faculty ID.

Relational Schemas
Faculty (fac_ID, fac_name, fac_dean, school,
department,

research_centre)
School (school_ID, school_name, school_head,

school_prof)
Dept (dept_ID, dept_name, dept_head, dept_prof)
Research_Centre (rc_ID, rc_name, rc_head, rc_unit)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Professor_T AS OBJECT
(prof_id VARCHAR2(10),
 prof_name VARCHAR2(20),
 prof_contact VARCHAR2(12),
 prof_year NUMBER)

/

CREATE OR REPLACE TYPE Professors AS VARRAY(5) OF
Professor_T

/

CREATE OR REPLACE TYPE Units AS VARRAY(5) OF
VARCHAR2(50)
/

University Case Study 219

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE School_T AS OBJECT
(school_id VARCHAR2(12),
 school_name VARCHAR2(20),
 school_head VARCHAR2(20),
 school_prof Professors)

/

CREATE OR REPLACE TYPE School_Table_T AS TABLE OF
School_T

/

CREATE OR REPLACE TYPE Department_T AS OBJECT
(dept_id VARCHAR2(12),
 dept_name VARCHAR2(20),
 dept_head VARCHAR2(20),
 dept_prof Professors)

/

CREATE OR REPLACE TYPE Department_Table_T AS TABLE OF
Department_T

/

CREATE OR REPLACE TYPE Research_Centre_T AS OBJECT
(rc_id VARCHAR2(12),
 rc_name VARCHAR2(20),
 rc_head VARCHAR2(20),
 rc_unit Units)

/

CREATE OR REPLACE TYPE Research_Centre_Table_T AS
TABLE OF Research_Centre_T

/

CREATE OR REPLACE TYPE Faculty_T AS OBJECT
(fac_id VARCHAR2(10),
 fac_name VARCHAR2(20),
 fac_dean VARCHAR2(20),
 school School_Table_T,
 department Department_Table_T,
 research_centre Research_Centre_Table_T,

 MEMBER PROCEDURE show_parts)
/

CREATE TABLE Faculty OF Faculty_T
(fac_id NOT NULL,

220 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 PRIMARY KEY (fac_id))
NESTED TABLE school STORE AS school_tab
NESTED TABLE department STORE AS dept_tab
NESTED TABLE research_centre STORE AS rc_tab;

Methods Implementation

CREATE OR REPLACE TYPE BODY Faculty_T AS

— We need three different cursors for the
different nested tables.

MEMBER PROCEDURE show_parts IS

CURSOR c_school IS
SELECT school_name, school_head
FROM THE

(SELECT school FROM Faculty
 WHERE fac_id = self.fac_id);

CURSOR c_dept IS
SELECT dept_name, dept_head
FROM THE

(SELECT department FROM Faculty
 WHERE fac_id = self.fac_id);

CURSOR c_rc IS
SELECT rc_name, rc_head
FROM THE

(SELECT research_centre FROM Faculty
 WHERE fac_id self.fac_id);

BEGIN
DBMS_OUTPUT.PUT_LINE

(‘Part Name’||’ ‘||’Head Name’);
DBMS_OUTPUT.PUT_LINE

(‘————————————————’);
FOR v_school IN c_school LOOP

DBMS_OUTPUT.PUT_LINE
(v_school.school_name||’
‘||v_school.school_head);

END LOOP;

FOR v_dept IN c_dept LOOP
DBMS_OUTPUT.PUT_LINE

University Case Study 221

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(v_dept.dept_name||’
‘||v_dept.dept_head);

END LOOP;

FOR v_rc IN c_rc LOOP
DBMS_OUTPUT.PUT_LINE

(v_rc.rc_name||’ ‘||v_rc.rc_head);
END LOOP;

END show_parts;

END;
/

Building_T Class and Part Classes

For the Building_T class and the part classes, we use the clustering technique,
so in each part table, there is a whole-class primary key included. Again, there
is no generic member method required in this class. Nevertheless, we still need
a user-defined method to save into the new table, namely, Building_Details. We
need to create this table first before being able to implement the member-
method body.

Relational Schemas
— Note that the first primary key in each part class
is also a foreign
— key to the whole class. The relationship from
Building_T to other
— classes is made using object references in in_campus
and
— for_faculty respectively for the Campus_T class and
Faculty_T class.

Buildings (bld_ID, bld_name, bld_location,
bld_level,

 in_campus, for_faculty)
Office (bld_ID, off_no, off_phone)
Classroom (bld_ID, class_no, class_capacity)
Lab (bld_ID, lab_no, lab_capacity, lab_equipment)

Class, Table, and Method Declaration
— Equipments is a collection type of array to store
— the attribute lab_equipment of Lab_T.

222 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Equipments AS VARRAY(3) OF
VARCHAR2(20)

/

CREATE OR REPLACE TYPE Building_T AS OBJECT
(bld_id VARCHAR2(10),
 bld_name VARCHAR2(20),
 bld_location VARCHAR2(10),
 bld_level NUMBER,
 in_campus REF Campus_T,
 for_faculty REF Faculty_T,

 MEMBER PROCEDURE show_bld_details)
/

CREATE CLUSTER Building_Cluster
(bld_id VARCHAR2(10));

CREATE TABLE Building OF Building_T
(bld_id NOT NULL,
 PRIMARY KEY (bld_id))
CLUSTER Building_Cluster(bld_id);

CREATE OR REPLACE TYPE Office_T AS OBJECT
(bld_id VARCHAR2(10),
 off_no VARCHAR2(10),
 off_phone VARCHAR2(12),

 MEMBER PROCEDURE show_office)
/

CREATE TABLE Office OF Office_T
(bld_id NOT NULL,
 off_no NOT NULL,
 PRIMARY KEY (bld_id, off_no),
 FOREIGN KEY (bld_id) REFERENCES
Building(bld_id))
CLUSTER Building_Cluster(bld_id);

CREATE OR REPLACE TYPE Classroom_T AS OBJECT
(bld_id VARCHAR2(10),
 class_no VARCHAR2(10),
 class_capacity NUMBER)

/

University Case Study 223

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Classroom OF Classroom_T
(bld_id NOT NULL,
 class_no NOT NULL,
 PRIMARY KEY (bld_id, class_no),
 FOREIGN KEY (bld_id) REFERENCES
Building(bld_id))
CLUSTER Building_Cluster(bld_id);

CREATE OR REPLACE TYPE Lab_T AS OBJECT
(bld_id VARCHAR2(10),
 lab_no VARCHAR2(10),
 lab_capacity NUMBER,
 lab_equipment Equipments)

/

CREATE TABLE Lab OF Lab_T
(bld_id NOT NULL,
 lab_no NOT NULL,
 PRIMARY KEY (bld_id, lab_no),
 FOREIGN KEY (bld_id) REFERENCES
Building(bld_id))
CLUSTER Building_Cluster(bld_id);

CREATE INDEX Building_Cluster_Index
ON CLUSTER Building_Cluster;

— The Building_Details table has to be created before
we
— create the implementation of show_bld_details.

CREATE TABLE Building_Details
(Building_Name VARCHAR2(20),
 Building_Location VARCHAR2(10));

Method Implementation
CREATE OR REPLACE TYPE BODY Building_T AS

MEMBER PROCEDURE show_bld_details IS

BEGIN
INSERT INTO Building_Details
VALUES (self.bld_name, self.bld_location);

END show_bld_details;

END;
/

224 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

— Before implementing this method, we need to create
the

— tables for Person and Staff first. Otherwise, there
will

— be a warning message during the procedure compilation.

CREATE OR REPLACE TYPE BODY Office_T AS

MEMBER PROCEDURE show_office IS

CURSOR c_office IS
SELECT c.pers_surname, b.off_no, b.off_phone
FROM Building a, Office b, Person c, Staff d
WHERE a.bld_id = self.bld_id AND a.bld_id =

b.bld_id
AND c.pers_id = d.pers_id AND d.in_office = REF

(b);

BEGIN
DBMS_OUTPUT.PUT_LINE

(‘Surname’||’ ‘||’Office no’||’ ‘||‘Office
Phone’);
DBMS_OUTPUT.PUT_LINE

(‘————————————————————’);
FOR v_office IN c_office LOOP

DBMS_OUTPUT.PUT_LINE
(v_office.pers_surname||’ ‘||
 v_office.off_no||’ ‘||

v_office.off_phone);
END LOOP;

END show_office;

END;
/

Degree_T Class

For the Degree_T class, we will need the generic member method. In addition,
there is also a user-defined method to store the data into the new table every
time a new student has enrolled. For this purpose, we need to create a table
named Degree_Records beforehand.

University Case Study 225

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relational Schemas
— The relationship from Degree_T to Faculty_T is
made
— using object references on attribute in_faculty.

Degree (deg_ID, deg_name, deg_length, deg_prereq,
in_faculty)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Degree_T AS OBJECT

(deg_id VARCHAR2(10),
 deg_name VARCHAR2(30),
 deg_length VARCHAR2(10),
 deg_prereq VARCHAR2(50),
 in_faculty REF Faculty_T,

 MEMBER PROCEDURE insert_degree(
new_deg_id IN VARCHAR2,
new_deg_name IN VARCHAR2,
new_deg_length IN VARCHAR2,
new_deg_prereq IN VARCHAR2,
new_fac_id IN VARCHAR2),

 MEMBER PROCEDURE delete_degree,
 MEMBER PROCEDURE show_deg_record)

/

CREATE TABLE Degree OF Degree_T
(deg_id NOT NULL,
 PRIMARY KEY (deg_id));

— The Degree_Records table has to be created before
we
— create the implementation of show_degree_records.

CREATE TABLE Degree_Records
(deg_name VARCHAR2(30),
 deg_length VARCHAR2(10),
 deg_prereq VARCHAR2(50),
 total_student NUMBER);

Method Implementation
— Before implementing this method, we need to create
the
— table for Person and Staff first.

226 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE BODY Degree_T AS

MEMBER PROCEDURE insert_degree(
new_deg_id IN VARCHAR2,
new_deg_name IN VARCHAR2,
new_deg_length IN VARCHAR2,
new_deg_prereq IN VARCHAR2,
new_fac_id IN VARCHAR2) IS

faculty_temp REF Faculty_T;

BEGIN
SELECT REF(a) INTO faculty_temp
FROM Faculty a
WHERE a.fac_id = new_fac_id;

INSERT INTO Degree
VALUES (new_deg_id, new_deg_name, new_deg_length,

 new_deg_prereq, faculty_temp);
END insert_degree;

MEMBER PROCEDURE delete_degree IS

BEGIN
DELETE FROM Degree
WHERE deg_id = self.deg_id;

END delete_degree;

MEMBER PROCEDURE show_deg_record IS

v_total INTEGER;

SELECT COUNT (*) AS Total_Student
INTO v_total
FROM Degree a, Enrolls_In b
WHERE b.degree = REF(a)
GROUP BY a.deg_id;

BEGIN
INSERT INTO Degree_Records
VALUES (self.deg_name, self.deg_length,

 self.deg_prereq, v_total);
END show_deg_record;

END;
/

University Case Study 227

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Person_T Class, the Subclasses, and the Enrolls_In
Table

The database for personal details is the biggest database needed for this case
study. This is mainly because it involves multilevel inheritance. Person_T has
union inheritance to its subclasses because a person can be a member of more
than one subclass. Staff_T has partition inheritance to its subclasses because
a staff can be the member of one, and only one, subclass. Finally, the inheritance
type for Lecturer_T is also a partition type of inheritance.
Below is the implementation of these classes and their tables. Obviously, we
will need the member method for insertion and deletion to most of these classes.
In addition, according to the requirements, we need to add a user-defined
method to display the details of the lecturers, their type, and their campus inside
the Lecturer_T class.

Relational Schemas
— Note that the association relationship between
Person_T and Campus_T
— and between Staff_T to Office_T is made using
object references
— respectively in attributes in_campus and
in_office.

Person (pers_ID, pers_surname, pers_fname, pers_title,
pers_address, pers_phone, pers_postcode, in_campus)
Staff (pers_ID, in_office, staff_type)
Student (pers_ID, year)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Person_T AS OBJECT

(pers_id VARCHAR2(10),
 pers_surname VARCHAR2(20),
 pers_fname VARCHAR2(20),
 pers_title VARCHAR2(10),
 pers_address VARCHAR2(50),
 pers_phone VARCHAR2(12),
 pers_postcode NUMBER,
 in_campus REF Campus_T,

 MEMBER PROCEDURE insert_person(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,

228 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2),

 MEMBER PROCEDURE delete_person) NOT FINAL
/

CREATE TABLE Person OF Person_T
(pers_id NOT NULL,
 PRIMARY KEY (pers_id));

— There is no generic method in Staff_T since it has
partition
— inheritance. Insertion and deletion have to be done
from the
— the subclasses.

CREATE OR REPLACE TYPE Staff_T UNDER Person_T
(in_office REF Office_T,
 staff_type VARCHAR2(20)) NOT FINAL

/

CREATE TABLE Staff OF Staff_T
(pers_id NOT NULL,
 staff_type NOT NULL
CHECK (staff_type IN ‘Admin’, ‘Technician’,
‘Senior_Lecturer’, ‘Associate_Lecturer’, ‘Tutor’)),
 PRIMARY KEY (pers_id));

CREATE OR REPLACE TYPE Student_T UNDER Person_T
(year NUMBER,

 MEMBER PROCEDURE insert_student(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER),

University Case Study 229

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE delete_student)
/

CREATE TABLE Student OF Student_T
(pers_id NOT NULL,
 PRIMARY KEY (pers_id));

CREATE OR REPLACE TYPE Admin_T UNDER Staff_T
(admin_title VARCHAR2(10),
 comp_skills VARCHAR2(50),
 office_skills VARCHAR2(50),

 MEMBER PROCEDURE insert_admin(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_admin_title IN VARCHAR2,
new_comp_skills IN VARCHAR2,
new_office_skills IN VARCHAR2),

 MEMBER PROCEDURE delete_admin)
/

CREATE OR REPLACE TYPE Technician_T UNDER Staff_T
(tech_title VARCHAR2(10),
 tech_skills VARCHAR2(50),

 MEMBER PROCEDURE insert_technician(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_tech_title IN VARCHAR2,

230 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_tech_skills IN VARCHAR2),

 MEMBER PROCEDURE delete_technician)
/

— There is no generic method in Lecturer_T because
it has partition
— inheritance. Update operations are done through the
subclasses.

CREATE OR REPLACE TYPE Lecturer_T UNDER Staff_T
(area VARCHAR2(50),
 lect_type VARCHAR2(20),

 MEMBER PROCEDURE show_lecturer) NOT FINAL
/

CREATE OR REPLACE TYPE Senior_Lecturer_T UNDER
Lecturer_T

(no_phd NUMBER,
 no_master NUMBER,
 no_honours NUMBER,

 MEMBER PROCEDURE insert_senior_lecturer(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_phd IN NUMBER,
new_no_master IN NUMBER,
new_no_honours IN NUMBER),

 MEMBER PROCEDURE delete_senior_lecturer)
/

CREATE OR REPLACE TYPE Associate_Lecturer_T UNDER
Lecturer_T

(no_honours NUMBER,
 year_join NUMBER,

University Case Study 231

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE insert_associate_lecturer(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_honours IN NUMBER,
new_year_join IN NUMBER),

 MEMBER PROCEDURE delete_associate_lecturer)
/

CREATE OR REPLACE TYPE Tutor_T UNDER Staff_T
(no_hours NUMBER,
 rate NUMBER,

 MEMBER PROCEDURE insert_tutor(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_year IN NUMBER, — from Student_T class
new_no_hours IN NUMBER,
new_rate IN NUMBER),

 MEMBER PROCEDURE delete_tutor)
/

— The Enrolls_In table is derived from the relationship
— between the Student_T and Degree_T classes.

CREATE TABLE Enrolls_In
(student REF Student_T,
 degree REF Degree_T);

232 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methods Implementation
CREATE OR REPLACE TYPE BODY Person_T AS

MEMBER PROCEDURE insert_person(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2) IS

campus_temp REF Campus_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

INSERT INTO Person
VALUES (new_pers_id, new_pers_surname,

 new_pers_fname, new_pers_title,
 new_pers_address, new_pers_phone,
 new_pers_postcode, campus_temp);

END insert_person;

MEMBER PROCEDURE delete_person IS

BEGIN
DELETE FROM Person
WHERE pers_id = self.pers_id;

END delete_person;

END;
/

CREATE OR REPLACE TYPE BODY Student_T AS

MEMBER PROCEDURE insert_student(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,

University Case Study 233

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_campus_location IN VARCHAR2,
new_year IN NUMBER) IS

campus_temp REF Campus_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

INSERT INTO Student
VALUES (new_pers_id, new_pers_surname,

 new_pers_fname, new_pers_title,
 new_pers_address, new_pers_phone,
 new_pers_postcode, campus_temp, new_year);

END insert_student;

MEMBER PROCEDURE delete_student IS

BEGIN
DELETE FROM Student
WHERE pers_id = self.pers_id;

END delete_student;

END;
/

CREATE OR REPLACE TYPE BODY Admin_T AS

MEMBER PROCEDURE insert_admin(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_admin_title IN VARCHAR2,
new_comp_skills IN VARCHAR2,
new_office_skills IN VARCHAR2) IS

campus_temp REF Campus_T;
office_temp REF Office_T;

234 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO office_temp
FROM Office b
WHERE b.bld_id = new_bld_id
AND b.off_no = new_off_no;

INSERT INTO Staff
VALUES (Admin_T(new_pers_id, new_pers_surname,

 new_pers_fname, new_pers_title,
 new_pers_address, new_pers_phone,
 new_pers_postcode, campus_temp,
office_temp, ‘Admin’,
new_admin_title, new_comp_skills,
new_office_skills));

END insert_admin;

MEMBER PROCEDURE delete_admin IS

BEGIN
DELETE FROM Staff
WHERE pers_id = self.pers_id;

END delete_admin;

END;
/

CREATE OR REPLACE TYPE BODY Technician_T AS

MEMBER PROCEDURE insert_technician(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_tech_title IN VARCHAR2,
new_tech_skills IN VARCHAR2) IS

University Case Study 235

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

campus_temp REF Campus_T;
office_temp REF Office_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO office_temp
FROM Office b
WHERE b.bld_id = new_bld_id
AND b.off_no = new_off_no;

INSERT INTO Staff
VALUES (Technician_T(new_pers_id,

 new_pers_surname,
 new_pers_fname, new_pers_title,
 new_pers_address, new_pers_phone,
 new_pers_postcode, campus_temp,
office_temp, ‘Technician’,
 new_tech_title, new_tech_skills));

END insert_technician;

MEMBER PROCEDURE delete_technician IS

BEGIN
DELETE FROM Staff
WHERE pers_id = self.pers_id;

END delete_technician;

END;
/

CREATE OR REPLACE TYPE BODY Lecturer_T AS

MEMBER PROCEDURE show_lecturer IS

BEGIN
DBMS_OUTPUT.PUT_LINE
(self.pers_surname||’ ‘||self.pers_fname||’
‘||
 self.pers_address||’ ‘||self.lect_type||’ ‘||
 self.area||’ ‘||self.lect_type);

END show_lecturer;

END;

236 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

/

CREATE OR REPLACE TYPE BODY Senior_Lecturer_T AS

MEMBER PROCEDURE insert_senior_lecturer(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_phd IN NUMBER,
new_no_master IN NUMBER,
new_no_honours IN NUMBER) IS

campus_temp REF Campus_T;
office_temp REF Office_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO office_temp
FROM Office b
WHERE b.bld_id = new_bld_id
AND b.off_no = new_off_no;

INSERT INTO Staff
VALUES (Senior_Lecturer_T(new_pers_id,
new_pers_surname,

 new_pers_fname, new_pers_title,
new_pers_address,
 new_pers_phone, new_pers_postcode,
campus_temp,
 office_temp, ‘Lecturer’, new_area, ‘Senior
Lecturer’,
 new_no_phd, new_no_master,
new_no_honours);

END insert_senior_lecturer;

University Case Study 237

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MEMBER PROCEDURE delete_senior_lecturer IS

BEGIN
DELETE FROM Staff
WHERE pers_id = self.pers_id;

END delete_senior_lecturer;

END;
/

CREATE OR REPLACE TYPE BODY Associate_lecturer_T AS

MEMBER PROCEDURE insert_associate_lecturer(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_area IN VARCHAR2,
new_no_honours IN NUMBER,
new_year_join IN NUMBER) IS

campus_temp REF Campus_T;
office_temp REF Office_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO office_temp
FROM Office b
WHERE b.bld_id = new_bld_id
AND b.off_no = new_off_no;

INSERT INTO Staff
VALUES (Associate_Lecturer_T(new_pers_id,
new_pers_surname,

new_pers_fname, new_pers_title,
new_pers_address,

238 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_pers_phone, new_pers_postcode,
campus_temp,

office_temp, ‘Lecturer’, new_area,
‘Associate Lecturer’

 new_no_honours, new_year_join));
END insert_associate_lecturer;

MEMBER PROCEDURE delete_associate_lecturer IS

BEGIN
DELETE FROM Staff
WHERE pers_id = self.pers_id;

END delete_associate_lecturer;

END;
/

CREATE OR REPLACE TYPE BODY Tutor_T AS

MEMBER PROCEDURE insert_tutor(
new_pers_id IN VARCHAR2,
new_pers_surname IN VARCHAR2,
new_pers_fname IN VARCHAR2,
new_pers_title IN VARCHAR2,
new_pers_address IN VARCHAR2,
new_pers_phone IN VARCHAR2,
new_pers_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_bld_id IN VARCHAR2,
new_off_no IN VARCHAR2,
new_year IN NUMBER,
new_no_hours IN NUMBER,
new_rate IN NUMBER) IS

campus_temp REF Campus_T;
office_temp REF Office_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO office_temp
FROM Office b
WHERE b.bld_id = new_bld_id
AND b.off_no = new_off_no;

University Case Study 239

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

INSERT INTO Staff
VALUES (Tutor_T(new_pers_id, new_pers_surname,

 new_pers_fname, new_pers_title,
 new_pers_address, new_pers_phone,
 new_pers_postcode, campus_temp,
office_temp, ‘Tutor’,
 new_no_hours, new_rate));

END insert_tutor;

MEMBER PROCEDURE delete_tutor IS

BEGIN
DELETE FROM Staff
WHERE pers_id = self.pers_id;

END delete_tutor;

END;
/

— Beside member methods, we also need to provide the
— stored procedures for the Enrolls_In table.

CREATE OR REPLACE PROCEDURE Insert_Enrolls_In(
new_pers_id IN Person.pers_id%TYPE,
new_deg_id IN Degree.deg_id%TYPE) AS

student_temp REF Student_T;
degree_temp REF Degree_T;

BEGIN
SELECT REF(a) INTO student_temp
FROM Student a
WHERE a.pers_id = new_pers_id;

SELECT REF(b) INTO degree_temp
FROM Degree b
WHERE b.deg_id = new_deg_id;

INSERT INTO Enrolls_In
VALUES (student_temp, degree_temp);

END Insert_Enrolls_In;
/

CREATE OR REPLACE PROCEDURE Delete_Enrolls_In(
deleted_pers_id IN Person.pers_id%TYPE,
deleted_deg_id IN Degree.deg_id%TYPE) AS

240 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
DELETE FROM Enrolls_In
WHERE Enrolls_In.student IN

(SELECT REF(a)
 FROM Student a
 WHERE a.pers_id = deleted_pers_id)

AND Enrolls_In.degree IN
(SELECT REF(b)
 FROM Degree b
 WHERE b.deg_id = deleted_deg_id);

END Delete_Enrolls_In;
/

Subject_T Class and Takes Table

The next class to be implemented is Subject_T, which has an association
relationship with Student_T. However, as both are of equal importance, we
cannot use a foreign key or object reference in either of them. Thus, another
table Takes needs to be created that includes the object references to previous
classes and an additional attribute, in this case, Marks.

Relational Schemas
— The relationship between Subject_T and
Lecturer_T is made using the object
— reference Teach. The attributes inside the Takes
table are also
— implemented using object references Subject and
Lecturer.

Subject (subj_ID, subj_name, subj_credit,
subj_prereq, teach)
Takes (subject, lecturer, marks)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Subject_T AS OBJECT

(subj_id VARCHAR2(10),
 subj_name VARCHAR2(30),
 subj_credit VARCHAR2(10),
 subj_prereq VARCHAR2(50),
 teach REF Lecturer_T,

 MEMBER PROCEDURE insert_subject(
new_subj_id IN VARCHAR2,
new_subj_name IN VARCHAR2,

University Case Study 241

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_subj_credit IN VARCHAR2,
new_subj_prereq IN VARCHAR2,
new_pers_id IN VARCHAR2),

 MEMBER PROCEDURE delete_subject)
/

CREATE TABLE Subject OF Subject_T
(subj_id NOT NULL,
 PRIMARY KEY (subj_id));

CREATE TABLE Takes
(student REF Student_T,
 subject REF Subject_T,
 marks NUMBER);

Methods Implementation
CREATE OR REPLACE TYPE BODY Subject_T AS

MEMBER PROCEDURE insert_subject(
new_subj_id IN VARCHAR2,
new_subj_name IN VARCHAR2,
new_subj_credit IN VARCHAR2,
new_subj_prereq IN VARCHAR2,
new_pers_id IN VARCHAR2) IS

lecturer_temp REF Lecturer_T;

BEGIN
SELECT REF(a) INTO lecturer_temp
FROM Lecturer a
WHERE a.pers_id = new_pers_id;

INSERT INTO Subject
VALUES (new_subj_id, new_subj_name,
new_subj_credit,

 new_subj_prereq, lecturer_temp);
END insert_subject;

MEMBER PROCEDURE delete_subject IS

BEGIN
DELETE FROM Subject
WHERE subj_id = self.subj_id;

END delete_subject;

242 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

END;
/

CREATE OR REPLACE PROCEDURE Insert_Takes(
new_pers_id IN Person.pers_id%TYPE,
new_subj_id IN Subject.subj_id%TYPE,
new_marks IN NUMBER) AS

student_temp REF Student_T;
subject_temp REF Subject_T;

BEGIN
SELECT REF(a) INTO student_temp
FROM Student a
WHERE a.pers_id = new_pers_id;

SELECT REF(b) INTO subject_temp
FROM Subject b
WHERE b.subj_id = new_subj_id;

INSERT INTO Takes
VALUES (student_temp, subject_temp, new_marks);

END Insert_Takes;
/

CREATE OR REPLACE PROCEDURE Delete_Takes(
deleted_pers_id IN Person.pers_id%TYPE,
deleted_subj_id IN Subject.subj_id%TYPE) AS

BEGIN
DELETE FROM Takes
WHERE Takes.student IN

(SELECT REF(a)
 FROM Student a
 WHERE a.pers_id = deleted_pers_id)

AND Takes.subject IN
(SELECT REF(b)
 FROM Subject b
 WHERE b.subj_id = deleted_subj_id);

END Delete_Takes;
/

University Case Study 243

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sample Database Execution

In this section, we will demonstrate the execution of the created database.
There will be a simple example on how to use the generic and the user-defined
methods for some classes. We will also try to display the results of some of the
retrieval methods. Unlike the section of Problem Solutions, we will not divide
this section based on the classes but rather on the type of member methods, that
is, generic methods and user-defined methods.

Generic Methods Sample

Most classes in this case study have generic member methods attached to them.
The methods are used for insertion into, and deletion from, the object tables.
Besides the generic member methods, there are also generic methods that are
implemented as stored procedures. The two tables with these stored proce-
dures are Enrolls_In and Takes.
Notice that the order of action will be very important because a record in a table
might refer to another record in another table or object. The wrong order of
deletion, for example, might result in having dangling object references. It might
happen because the ORDB has not preserved a complete integrity constraint
checking.
The first class where data needs to be inserted is Campus_T. As there are
neither generic member methods nor generic stored procedures implemented,
we have to use an ad hoc query to insert data into the Campus table.

INSERT INTO Campus
VALUES (‘Albury/Wodonga’, ‘Parkers Road Wodonga VIC 3690’,
‘61260583700’, ‘620260583777’, ‘John Hill’);

INSERT INTO Campus
VALUES (‘City’, ‘215 Franklin St. Melb VIC 3000’,
‘61392855100’, ‘61392855111’, ‘Michael A. Leary’);

INSERT INTO Campus
VALUES (‘Mildura’, ‘Benetook Ave. Mildura VIC 3502’,
‘61350223757’, ‘61350223646’, ‘Ron Broadhead’);

INSERT INTO Campus

244 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VALUES (‘Bundoora’, ‘Kingsbury Dv Bundoora VIC 3083’,
‘61395485410’, ‘61398520148’, ‘Michael Osborne’);

We can check the records by retrieving the data. The retrieval query on table
Campus will display the result shown below.

SELECT campus_location, campus_address
FROM Campus;

CAMPUS_LOCATION CAMPUS_ADDRESS
—————————— ———————————————
Albury/Wodonga Parkers Road Wodonga VIC 3690
City 215 Franklin St. Melb VIC 3000
Mildura Benetook Ave. Mildura VIC 3502
Bundoora Kingsbury Dv Bundoora VIC 3083

The next class to be implemented is Faculty_T and its nested tables. These
classes also do not have generic member methods and thus, we need to use an
ad hoc query like that for the Campus table. We will show the sample to
demonstrate the application for nested tables.

INSERT INTO Faculty
VALUES (‘1’, ‘Health Sciences’, ‘S.Duckett’,

School_Table_T(School_T(NULL,NULL,NULL,NULL)),
Department_Table_T(Department_T(NULL,NULL,NULL,NULL)),
Research_Centre_Table_T(Research_Centre_T(NULL,NULL,NULL,NULL)));

INSERT INTO Faculty
VALUES (‘4’, ‘Science, Tech, Eng.’, ‘D.Finlay’,

School_Table_T(School_T(NULL,NULL,NULL,NULL)),
Department_Table_T(Department_T(NULL,NULL,NULL,NULL)),
Research_Centre_Table_T(Research_Centre_T(NULL,NULL,NULL,NULL)));

Note that we need a constructor for each nested table. It is a requirement
before we are able to insert the values in these nested tables. The insertion
example is shown below.

INSERT INTO THE
(SELECT a.school
 FROM Faculty a
 WHERE a.fac_id = ‘1’)

University Case Study 245

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VALUES (‘1-1’, ‘Human Biosciences’, ‘Chris Handley’,
Professors(Professor_T(‘110’, ‘Chris Handley’,
‘0394584521’, 1980)));

INSERT INTO THE
(SELECT a.school
 FROM Faculty a
 WHERE a.fac_id = ‘1’)

VALUES (‘1-2’, ‘Human Comm. Sci.’, ‘Elizabeth
Lavender’, Professors(Professor_T(‘120’, ‘Sheena
Reiley’, ‘0395420001’, 1991), Professor_T(‘130’,
‘Alison Perry’, ‘0398219234’, 1995),
Professor_T(‘140’, ‘Jan Branson’, ‘0387210023’,
2001)));

INSERT INTO THE
(SELECT a.department
 FROM Faculty a
 WHERE a.fac_id = ‘4’)

VALUES (‘4-1’, ‘Agricultural Sci.’, ‘Mark Sandeman’,
Professors(Professor_T(NULL,NULL,NULL,NULL)));

The deletion of a particular faculty from the Faculty table will delete all nested
tables inside it. On the other side, we can delete a nested table without deleting
the faculty. The disadvantage is that we have to delete the whole nested table
record and we are not allowed to choose a particular record in the nested table.
A simple SQL code below shows the deletion of a department record. The
deletion of a faculty record is pretty straightforward and thus is not shown here.

DELETE FROM THE
(SELECT a.department
 FROM Faculty a
 WHERE a.fac_id = ‘4’);

The next class is Building_T and its subclasses. They will be implemented also
using an ad hoc query. Although this is an aggregation using the clustering
technique, the implementation of insertion and deletion will be very similar to
that of the previous classes. Now we will show the example of generic member
method usage in the Degree_T class.

246 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DECLARE
— Construct objects and initialise them to null.
a_degree Degree_T := Degree_T
(NULL,NULL,NULL,NULL,NULL);

BEGIN
a_degree.insert_degree(‘D100’, ‘Bachelor of Comp.
Sci’, ‘3’, ‘Year 12 or Equivalent’, ‘4’);
a_degree.insert_degree(‘D101’, ‘Master of Comp.
Sci’, ‘2’, ‘Bachelor of Comp. Sci’, ‘4’);

END;
/

SELECT deg_id, deg_name, deg_length
FROM Degree;

DEG_ID DEG_NAME DEG_LENGTH
——
D100 Bachelor of Comp. Sci 3
D101 Master of Comp. Sci 2

Deletion from this table is very simple and basically very similar to the
implementation of insertion. The code below shows the implementation of the
deletion member method. On completion of this method, the degree with a
particular ID will be deleted.

BEGIN
a_degree.delete_degree;

END;
/

We will not provide the examples of generic method implementation for the
Person_T class and its subclasses because it is very similar to the implementa-
tion in the Degree_T class. However, there are a few things to remember. First,
the insertion in a superclass might be done (and has to be done for partition
inheritance) from the subclasses. Second, a deletion from the superclass will
delete the data for the particular record in the subclasses as the consequence
of the referential integrity constraint.
The implementation for the Subject_T class is very similar to the implementation
in Degree_T. However, this is not the case for table Takes that is derived from
the relationship between Subject_T and Student_T. The insertion has to be

University Case Study 247

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

done using a stored procedure as is shown below. Note that in order to insert
it, we have to make sure that the object references in the other classes have
already been inserted.

EXECUTE Insert_Takes(‘01234234’, ‘CSE42ADB’, 70);
EXECUTE Insert_Takes(‘10012568’, ‘CSE42ADB’, 80);

We can check the records by retrieving the data. The code below shows the
result of the query on table Takes. Note that the first two attributes show the
address of the object it is referred to.

SELECT *
FROM Takes;

STUDENT SUBJECT MARKS
———
0000220208A1… 0000220208D7… 70
00002202084E… 000022020873… 80

Another piece of code below shows the implementation of deletion using the
stored procedure Delete_Takes. On completion of this method, the student
with a particular ID who takes a particular subject will be deleted.

EXECUTE Delete_Takes(‘01234234’, ‘CSE42ADB’);
EXECUTE Delete_Takes(‘10012568’’, ‘CSE42ADB’);

User-Defined Methods Sample

In this section, we give an example of a user-defined implementation. As in
generic methods, we can also make an ad hoc user-defined query and user-
defined stored procedure or function. However, we will only provide an
example for the user-defined methods that have been created previously.
The first sample implementation is for Faculty_T. The method show_parts will
display the names and the heads of the schools, departments, and research
centres given the faculty ID as the parameter.

248 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
— Assume the parameter is the faculty with ID 1;
thus, the result
— shown is the school, department, and research
centre under faculty ID 1.

a_faculty.show_parts;
END;
/

Part Name Head Name
——
Human Biosciences Chris Handley
Human Comm. Sci. Elizabeth Lavender
Sex, Health, and Soc. Marian Pitts
Inst. of Primary Care Hal Swerissen

PL/SQL procedure successfully completed.

The piece of code below shows the record inside the Building_Details table
before the method is executed. The next code shows the data that has been
inserted into the table after we execute the method.

SELECT *
FROM Building_Details;

no rows selected

SELECT *
FROM Building_Details;

BUILDING_NAME BUILDING_L
————————————————————————————————————
Beth Gleeson D5
Martin Building F3
Thomas Cherry D4
Physical Science 1 D5

Another sample implementation is for Office_T to display the details of the
office and the occupant given the building ID.

University Case Study 249

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
— Assume that the parameter is building BB1; thus,
the result
— shown below is all offices in building BB1.

an_office.show_office(‘BB1’);
END;
/

Surname Office No Office Phone
———
Jones BG210 94792001
Zulu BG325 94791251
Stojnovski BG310 94791212
Langley BG311 94791213
Ling BG200 94792350
Husein BG215 94792341
Xin BG212 94792002
Kilby BG220 94792450

PL/SQL procedure successfully completed.

There are a few other methods that have been created in this case study.
However, we will not show all of them as the previous examples have clearly
shown how to execute the user-defined methods.

Building Case Application

In Section 7.2 we provided a problem solution that is constructed of several
small types, tables, and procedures. Despite their ability to address the
problem, they are not really simple to use. Users will easily forget the names of
the tables and procedures, the number and the order of the parameters, and so
forth. Therefore, we need to put them together into one container that can help
users to choose the object that they want to use.
Oracle™ implements a PL/SQL container named Package that can group
procedures and functions together. Unfortunately, Package in Oracle™ does
not recognize object types. Thus, to access member methods, we have to apply
helper stored procedures as an additional layer.

250 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For some operations, there will be redundancy because users need to repeat
the methods. On the other side, keeping them together makes the application
more user friendly. In addition, we can also make the application more
interactive by providing a menu to the users.
Like object type, in a package, the user divides the process into two parts: the
declaration and the implementation or the header and the body. The code
below shows the whole implementation of this case study inside an application
name University.

General Syntax:

CREATE [OR REPLACE] PACKAGE <package schema>
— public
TYPE <type name> IS RECORD [(record attribute)];
PROCEDURE <procedure name> [(procedure
parameters)];
 ...

END <package name>;

CREATE [OR REPLACE] PACKAGE BODY <package schema>
— private
TYPE <type name> IS RECORD [(record attribute)];
PROCEDURE <procedure name> [(procedure parameters)]
IS
BEGIN

<procedure body>
END <procedure name>;
 ...

END <package name>;

CREATE OR REPLACE PACKAGE University AS
PROCEDURE Start_Program;
PROCEDURE Table_Details;
PROCEDURE Method_Details;
PROCEDURE Insertion(options IN NUMBER);
PROCEDURE Insert_Campus(new_campus_location IN

VARCHAR2, new_campus_address IN VARCHAR2,
new_campus_phone IN VARCHAR2, new_campus_fax IN
VARCHAR2,
new_campus_head IN VARCHAR2);

PROCEDURE Insert_Faculty(new_fac_id IN VARCHAR2,
new_fac_name IN VARCHAR2,

new_fac_dean IN VARCHAR2);

University Case Study 251

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PROCEDURE Insert_School(new_fac_id IN VARCHAR2,
new_school_id IN VARCHAR2,

new_school_name IN VARCHAR2, new_school_head IN
VARCHAR2, new_prof_id IN VARCHAR2, new_prof_name IN
VARCHAR2, new_prof_contact IN VARCHAR2,
new_prof_year IN NUMBER);

PROCEDURE Insert_Department(new_fac_id IN VARCHAR2,
new_dept_id IN VARCHAR2,

new_dept_name IN VARCHAR2, new_dept_head IN
VARCHAR2, new_prof_id IN VARCHAR2, new_prof_name IN
VARCHAR2, new_prof_contact IN VARCHAR2,
new_prof_year IN NUMBER);

PROCEDURE Insert_Research_Centre(new_fac_id IN
VARCHAR2, new_rc_id IN VARCHAR2, new_rc_name IN
VARCHAR2, new_rc_head IN VARCHAR2, new_unit1 IN
VARCHAR2, new_unit2 IN VARCHAR2, new_unit3 IN
VARCHAR2, new_unit4 IN VARCHAR2, new_unit5 IN
VARCHAR2);

PROCEDURE Insert_Building(new_building_id IN VARCHAR2,
new_building_name IN VARCHAR2, new_building_location
IN VARCHAR2, new_building_level IN NUMBER,
new_campus_location IN VARCHAR2, new_faculty_id IN
VARCHAR2);

PROCEDURE Insert_Office(new_building_id IN VARCHAR2,
new_office_no IN VARCHAR2, new_office_phone IN
VARCHAR2);

PROCEDURE Insert_Classroom(new_building_id IN VARCHAR2,
new_class_no IN VARCHAR2, new_class_capacity IN
NUMBER);

PROCEDURE Insert_Lab(new_building_id IN VARCHAR2,
new_lab_no IN VARCHAR2, new_lab_capacity IN NUMBER,
new_lab_equipment_1 IN VARCHAR2, new_lab_equipment_2
IN VARCHAR2, new_lab_equipment_3 IN VARCHAR2,
new_lab_equipment_4 IN VARCHAR2, new_lab_equipment_5
IN VARCHAR2);

PROCEDURE Insert_Degree(new_degree_id IN VARCHAR2,
new_degree_name IN VARCHAR2, new_degree_length IN
VARCHAR2, new_degree_prerequisite IN VARCHAR2,
new_faculty_id IN VARCHAR2);

PROCEDURE Insert_Person(new_person_id IN VARCHAR2,
new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2);

252 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PROCEDURE Insert_Student(new_person_id IN VARCHAR2,
new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER);

PROCEDURE Insert_Admin(new_person_id IN VARCHAR2,
new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2,
new_admin_title IN VARCHAR2, new_comp_skills IN
VARCHAR2, new_office_skills IN VARCHAR2);

PROCEDURE Insert_Technician(new_person_id IN VARCHAR2,
new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2, new_tech_title
IN VARCHAR2, new_tech_skills IN VARCHAR2);

PROCEDURE Insert_Senior_Lecturer(new_person_id IN
VARCHAR2, new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2,
new_building_id IN VARCHAR2, new_office_no IN
VARCHAR2, new_area IN VARCHAR2, new_no_phd IN
NUMBER, new_no_master IN NUMBER, new_no_honours IN
NUMBER);

PROCEDURE Insert_Associate_Lecturer(new_person_id IN
VARCHAR2, new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2,
new_building_id IN VARCHAR2, new_office_no IN
VARCHAR2, new_area IN VARCHAR2, new_no_honours IN
NUMBER, new_year_join IN NUMBER);

PROCEDURE Insert_Tutor(new_person_id IN VARCHAR2,
new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,

University Case Study 253

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2, new_year IN
NUMBER, new_no_hours IN NUMBER, new_rate IN
NUMBER);

PROCEDURE Insert_Enrolls_In(new_pers_id IN VARCHAR2,
new_deg_id IN VARCHAR2);

PROCEDURE Insert_Subject(new_subject_id IN VARCHAR2,
new_subject_name IN VARCHAR2, new_subject_credit IN
VARCHAR2, new_subject_prereq IN VARCHAR2,
new_person_id IN VARCHAR2);

PROCEDURE Insert_Takes(new_pers_id IN VARCHAR2, new_subj_id
IN VARCHAR2, new_marks IN NUMBER);

PROCEDURE Deletion(options IN NUMBER);
PROCEDURE Delete_Campus(deleted_campus_location IN

VARCHAR2);
PROCEDURE Delete_Faculty(deleted_fac_id IN VARCHAR2);
PROCEDURE Delete_School(deleted_fac_id IN VARCHAR2);
PROCEDURE Delete_Department(deleted_fac_id IN
VARCHAR2);
PROCEDURE Delete_Research_centre(deleted_fac_id IN
VARCHAR2);
PROCEDURE Delete_Building(deleted_building_id IN
VARCHAR2);
PROCEDURE Delete_Office(deleted_building_id IN

VARCHAR2, deleted_office_no IN VARCHAR2);
PROCEDURE Delete_Classroom(deleted_building_id IN

VARCHAR2, deleted_class_no IN VARCHAR2);
PROCEDURE Delete_Lab(deleted_building_id IN VARCHAR2,

deleted_lab_no IN VARCHAR2);
PROCEDURE Delete_Degree(deleted_degree_id IN VARCHAR2);
PROCEDURE Delete_Person(deleted_person_id IN VARCHAR2);
PROCEDURE Delete_Student(deleted_person_id IN
VARCHAR2);
PROCEDURE Delete_Admin(deleted_person_id IN VARCHAR2);
PROCEDURE Delete_Technician(deleted_person_id IN
VARCHAR2);
PROCEDURE Delete_Senior_Lecturer(deleted_person_id IN
VARCHAR2);
PROCEDURE Delete_Associate_Lecturer(deleted_person_id
IN VARCHAR2);
PROCEDURE Delete_Tutor(deleted_person_id IN VARCHAR2);
PROCEDURE Delete_Enrolls_In(deleted_pers_id IN VARCHAR2,

deleted_deg_id IN VARCHAR2);

254 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PROCEDURE Delete_Subject(deleted_subject_id IN
VARCHAR2);
PROCEDURE Delete_Takes(deleted_pers_id IN VARCHAR2,

deleted_subj_id IN VARCHAR2);

END University;
/

CREATE OR REPLACE PACKAGE BODY University AS

PROCEDURE Start_Program AS

BEGIN
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
DBMS_OUTPUT.PUT_LINE(‘For insertion, type “EXECUTE
University.Insertion(“table_no”);”’);
DBMS_OUTPUT.PUT_LINE(‘For deletion, type “EXECUTE
University.Deletion (“table_no”);”’);
DBMS_OUTPUT.PUT_LINE(‘For retrieval, type “EXECUTE
University.Retrieval (“procedure no”);”’);
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
DBMS_OUTPUT.PUT_LINE(‘To check the table no, type
“EXECUTE University.Table_Details;”’);
DBMS_OUTPUT.PUT_LINE(‘To check the procedure no,
type “EXECUTE University.Procedure_Details;”’);

END Start_Program;

PROCEDURE Table_Details AS

BEGIN
DBMS_OUTPUT.PUT_LINE(‘———————————————’);
DBMS_OUTPUT.PUT_LINE(‘—————Table Name—————’);
DBMS_OUTPUT.PUT_LINE(‘———————————————’);
DBMS_OUTPUT.PUT_LINE(‘(1) Campus’);
DBMS_OUTPUT.PUT_LINE(‘(2) Faculty’);
DBMS_OUTPUT.PUT_LINE(‘(3) School (Nested Table)’);
DBMS_OUTPUT.PUT_LINE(‘(4) Department (Nested
Table)’);
DBMS_OUTPUT.PUT_LINE(‘(5) Research Centre (Nested
Table)’);
DBMS_OUTPUT.PUT_LINE(‘(6) Building’);
DBMS_OUTPUT.PUT_LINE(‘(7) Office’);
DBMS_OUTPUT.PUT_LINE(‘(8) Classroom’);
DBMS_OUTPUT.PUT_LINE(‘(9) Lab’);

University Case Study 255

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS_OUTPUT.PUT_LINE(‘(10) Degree’);
DBMS_OUTPUT.PUT_LINE(‘(11) Person’);
DBMS_OUTPUT.PUT_LINE(‘(12) Staff’);
DBMS_OUTPUT.PUT_LINE(‘(13) Student’);
DBMS_OUTPUT.PUT_LINE(‘(14) Admin’);
DBMS_OUTPUT.PUT_LINE(‘(15) Technician’);
DBMS_OUTPUT.PUT_LINE(‘(16) Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘(17) Senior_Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘(18) Associate_Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘(19) Tutor’);
DBMS_OUTPUT.PUT_LINE(‘(20) Enrolls_In’);
DBMS_OUTPUT.PUT_LINE(‘(21) Subject’);
DBMS_OUTPUT.PUT_LINE(‘(22) Takes’);

END Table_Details;

PROCEDURE Procedure_Details AS

BEGIN
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
DBMS_OUTPUT.PUT_LINE(‘—Frequent Retrieval Procedure
Name—’);
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
DBMS_OUTPUT.PUT_LINE(‘(1) Show Professor’);
DBMS_OUTPUT.PUT_LINE(‘(2) Show Building Details’);
DBMS_OUTPUT.PUT_LINE(‘(3) Show Office’);
DBMS_OUTPUT.PUT_LINE(‘(4) Show Degree Record’);
DBMS_OUTPUT.PUT_LINE(‘(5) Show Lecturer’);

END Procedure_Details;

PROCEDURE Insertion(options IN NUMBER) AS

BEGIN
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
IF options = 1 THEN

DBMS_OUTPUT.PUT_LINE(‘Insert into Campus’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Campus(new_campus_location,
new_campus_address, new_campus_phone,
new_campus_fax, new_campus_head);”’);

ELSIF options = 2 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Faculty’);

256 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Faculty (new_fac_id,
new_fac_name, new_fac_dean);”’);

ELSIF options = 3 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into School Nested
Table’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_School(new_fac_id,
new_school_id, new_school_name, new_school_head,
new_prof_id, new_prof_name, new_prof_contact,
new_prof_year);”’);

ELSIF options = 4 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Department
Nested Table’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Department(new_fac_id,
new_dept_id, new_dept_name, new_dept_head,
new_prof_id, new_prof_name, new_prof_contact,
new_prof_year);”’);

ELSIF options = 5 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Research Centre

Nested Table’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Research_Centre(new_fac_id,
new_rc_id, new_rc_name, new_rc_head, new_unit1,
new_unit2, new_unit3, new_unit4, new_unit5);”’);

ELSIF options = 6 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Building’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Building(new_building_id,
new_building_name, new_building_location,
new_building_level, new_campus_location,
new_faculty_id);”’);

ELSIF options = 7 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Office’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Office(new_building_id,
new_office_no, new_office_phone);”’);

ELSIF options = 8 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Classroom’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Classroom(new_building_id,
new_class_no, new_class_capacity);”’);

ELSIF options = 9 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Lab’);

University Case Study 257

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Lab(new_building_id, new_lab_no,
new_lab_capacity, new_lab_equipment_1,
new_lab_equipment_2, new_lab_equipment_3,
new_lab_equipment_4, new_lab_equipment_5);”’);

ELSIF options = 10 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Degree’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Degree(new_degree_id,
new_degree_name, new_degree_length,
new_degree_prerequisite, new_faculty_id);”’);

ELSIF options = 11 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Person’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Degree(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location);”’);

ELSIF options = 12 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Staff’);
DBMS_OUTPUT.PUT_LINE(‘You have to insert from
the child class’);

ELSIF options = 13 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Student’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Student(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_year);”’);

ELSIF options = 14 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Admin’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Admin(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_admin_title, new_comp_skills,
new_office_skills);”’);

ELSIF options = 15 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Technician’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Technician(new_person_id,
new_person_surname, new_person_fname,

258 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_tech_title,
new_tech_skills);”’);

ELSIF options = 16 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘You have to insert from

the child class’);
ELSIF options = 17 THEN

DBMS_OUTPUT.PUT_LINE(‘Insert into Senior
Lecturer’);

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Senior_Lecturer(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_area, new_no_phd,
new_no_master, new_no_honours);”’);

ELSIF options = 18 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Associate

Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Associate_Lecturer(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_area, new_no_honours,
new_year_join);”’);

ELSIF options = 19 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Tutor’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Tutor(new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_year, new_no_hours,
new_rate);”’);

ELSIF options = 20 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Enrolls_In’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Enrolls_In(new_pers_id,
new_deg_id);”’);

University Case Study 259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ELSIF options = 21 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Subject’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Subject(new_subject_id,
new_subject_name, new_subject_credit,
new_subject_prereq, new_person_id);”’);

ELSIF options = 22 THEN
DBMS_OUTPUT.PUT_LINE(‘Insert into Takes’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Insert_Takes(new_pers_id, new_subj_id,
new_marks);”’);

ELSE
DBMS_OUTPUT.PUT_LINE(‘Wrong Option’);

END IF;
END Insertion;

— #1
PROCEDURE Insert_Campus(new_campus_location IN

VARCHAR2, new_campus_address IN VARCHAR2,
new_campus_phone IN VARCHAR2, new_campus_fax IN
VARCHAR2,
new_campus_head IN VARCHAR2) IS

BEGIN
INSERT INTO Campus
VALUES(new_campus_location, new_campus_address,

new_campus_phone, new_campus_fax,
new_campus_head);

END Insert_Campus;

— #2
PROCEDURE Insert_Faculty(new_fac_id IN VARCHAR2,
new_fac_name IN VARCHAR2,

new_fac_dean IN VARCHAR2) IS

BEGIN
INSERT INTO Faculty
VALUES (new_fac_id, new_fac_name, new_fac_dean,

School_Table_T(School_T(NULL,NULL,NULL,NULL)),
Department_Table_T(Department_T(NULL,NULL,NULL,NULL)),
Research_Centre_Table_T(Research_Centre_T(NULL,NULL,NULL,NULL)));

END Insert_Faculty;

— #3
PROCEDURE Insert_School(new_fac_id IN VARCHAR2,
new_school_id IN VARCHAR2,

260 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_school_name IN VARCHAR2, new_school_head IN
VARCHAR2, new_prof_id IN VARCHAR2, new_prof_name IN
VARCHAR2, new_prof_contact IN VARCHAR2,
new_prof_year IN NUMBER) IS

BEGIN
INSERT INTO THE

(SELECT a. school
 FROM Faculty a
 WHERE a.fac_id = new_fac_id)

VALUES (new_school_id, new_school_name,
new_school_head,
Professors(Professor_T(new_prof_id, new_prof_name,
new_prof_contact, new_prof_year)));

END Insert_School;

— #4
PROCEDURE Insert_Department(new_fac_id IN VARCHAR2,
new_dept_id IN VARCHAR2,

new_dept_name IN VARCHAR2, new_dept_head IN
VARCHAR2, new_prof_id IN VARCHAR2, new_prof_name IN
VARCHAR2, new_prof_contact IN VARCHAR2,
new_prof_year IN NUMBER) IS

BEGIN
INSERT INTO THE

(SELECT a.department
 FROM Faculty a
 WHERE a.fac_id = new_fac_id)

VALUES (new_dept_id, new_dept_name, new_dept_head,
Professors(Professor_T(new_prof_id, new_prof_name,
new_prof_contact, new_prof_year)));

END Insert_Department;

— #5
PROCEDURE Insert_Research_Centre(new_fac_id IN

VARCHAR2, new_rc_id IN VARCHAR2, new_rc_name IN
VARCHAR2, new_rc_head IN VARCHAR2, new_unit1 IN
VARCHAR2, new_unit2 IN VARCHAR2, new_unit3 IN
VARCHAR2, new_unit4 IN VARCHAR2, new_unit5 IN
VARCHAR2) IS

BEGIN
INSERT INTO THE

(SELECT a.research_centre
 FROM Faculty a
 WHERE a.fac_id = new_fac_id)

University Case Study 261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

VALUES (new_rc_id, new_rc_name, new_rc_head,
Units(new_unit1, new_unit2, new_unit3, new_unit4,
new_unit5));

END Insert_Research_Centre;

— #6
PROCEDURE Insert_Building(new_building_id IN VARCHAR2,

new_building_name IN VARCHAR2, new_building_location
IN VARCHAR2, new_building_level IN NUMBER,
new_campus_location IN VARCHAR2, new_faculty_id IN
VARCHAR2) IS

campus_temp REF Campus_T;
faculty_temp REF Faculty_T;

BEGIN
SELECT REF(a) INTO campus_temp
FROM Campus a
WHERE a.campus_location = new_campus_location;

SELECT REF(b) INTO faculty_temp
FROM Faculty b
WHERE b.fac_id = new_faculty_id;

INSERT INTO Building
VALUES(new_building_id, new_building_name,

new_building_location, new_building_level,
campus_temp, faculty_temp);

END Insert_Building;

— #7
PROCEDURE Insert_Office(new_building_id IN VARCHAR2,

new_office_no IN VARCHAR2, new_office_phone IN
VARCHAR2) IS

BEGIN
INSERT INTO Office
VALUES(new_building_id, new_office_no,
new_office_phone);

END Insert_Office;

— #8
PROCEDURE Insert_Classroom(new_building_id IN VARCHAR2,

new_class_no IN VARCHAR2, new_class_capacity IN
NUMBER) IS

262 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
INSERT INTO Classroom
VALUES(new_building_id, new_class_no,
new_class_capacity);

END Insert_Classroom;

— #9
PROCEDURE Insert_Lab(new_building_id IN VARCHAR2,

new_lab_no IN VARCHAR2, new_lab_capacity IN NUMBER,
new_lab_equipment_1 IN VARCHAR2, new_lab_equipment_2
IN VARCHAR2, new_lab_equipment_3 IN VARCHAR2,
new_lab_equipment_4 IN VARCHAR2, new_lab_equipment_5
IN VARCHAR2) IS

BEGIN
INSERT INTO Lab
VALUES(new_building_id, new_lab_no,

new_lab_capacity, Equipments(new_lab_equipment_1,
new_lab_equipment_2, new_lab_equipment_3,
new_lab_equipment_4, new_lab_equipment_5));

END Insert_Lab;

— #10
PROCEDURE Insert_Degree(new_degree_id IN VARCHAR2,

new_degree_name IN VARCHAR2, new_degree_length IN
VARCHAR2, new_degree_prerequisite IN VARCHAR2,
new_faculty_id IN VARCHAR2) IS

a_degree Degree_T :=
Degree_T(NULL,NULL,NULL,NULL,NULL);

BEGIN
a_degree.insert_degree (new_degree_id,

new_degree_name, new_degree_length,
new_degree_prerequisite, new_faculty_id);

END Insert_Degree;

— #11
PROCEDURE Insert_Person(new_person_id IN VARCHAR2,

new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2) IS

University Case Study 263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a_person Person_T :=
Person_T(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);

BEGIN
a_person.insert_person (new_person_id,

new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location);

END Insert_Person;

— #13 (no procedure for Option 12)
PROCEDURE Insert_Student(new_person_id IN VARCHAR2,

new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2,
new_year IN NUMBER) IS

a_student Student_T := Student_T(NULL,NULL);

BEGIN
a_student.insert_student (new_person_id,

new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_year);

END Insert_Student;

— #14
PROCEDURE Insert_Admin(new_person_id IN VARCHAR2,

new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2,
new_admin_title IN VARCHAR2, new_comp_skills IN
VARCHAR2, new_office_skills IN VARCHAR2) IS

an_admin Admin_T := Admin_T(NULL,NULL,NULL,NULL);

BEGIN
an_admin.insert_admin (new_person_id,

new_person_surname, new_person_fname,

264 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_admin_title, new_comp_skills,
new_office_skills);

END Insert_Admin;

— #15
PROCEDURE Insert_Technician(new_person_id IN VARCHAR2,

new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2, new_tech_title
IN VARCHAR2, new_tech_skills IN VARCHAR2) IS

a_technician Technician_T :=
Technician_T(NULL,NULL,NULL);

BEGIN
a_technician.insert_technician (new_person_id,

new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_tech_title, new_tech_skills);

END Insert_Technician;

— #17 (no procedure for Option 16)
PROCEDURE Insert_Senior_Lecturer(new_person_id IN

VARCHAR2, new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2,
new_building_id IN VARCHAR2, new_office_no IN
VARCHAR2, new_area IN VARCHAR2, new_no_phd IN
NUMBER, new_no_master IN NUMBER, new_no_honours IN
NUMBER) IS

a_senior_lect Senior_Lecturer_T :=
Senior_Lecturer_T(NULL,NULL,NULL,NULL);

BEGIN

University Case Study 265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a_senior_lect.insert_senior_lecturer (new_person_id,
new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_area, new_no_phd,
new_no_master, new_no_honours);

END Insert_Senior_Lecturer;

— #18
PROCEDURE Insert_Associate_Lecturer(new_person_id IN

VARCHAR2, new_person_surname IN VARCHAR2,
new_person_fname IN VARCHAR2, new_person_title IN
VARCHAR2, new_person_address IN VARCHAR2,
new_person_phone IN VARCHAR2, new_person_postcode
IN NUMBER, new_campus_location IN VARCHAR2,
new_building_id IN VARCHAR2, new_office_no IN
VARCHAR2, new_area IN VARCHAR2, new_no_honours IN
NUMBER, new_year_join IN NUMBER) IS

a_associate_lect Associate_Lecturer_T :=
Associate_Lecturer_T(NULL,NULL,NULL);

BEGIN
a_associate_lect.insert_associate_lecturer

(new_person_id, new_person_surname,
new_person_fname, new_person_title,
new_person_address, new_person_phone,
new_person_postcode, new_campus_location,
new_building_id, new_office_no, new_area,
new_no_honours, new_year_join);

END Insert_Associate_Lecturer;

— #19
PROCEDURE Insert_Tutor(new_person_id IN VARCHAR2,

new_person_surname IN VARCHAR2, new_person_fname IN
VARCHAR2, new_person_title IN VARCHAR2,
new_person_address IN VARCHAR2, new_person_phone IN
VARCHAR2, new_person_postcode IN NUMBER,
new_campus_location IN VARCHAR2, new_building_id IN
VARCHAR2, new_office_no IN VARCHAR2, new_year IN
NUMBER, new_no_hours IN NUMBER, new_rate IN
NUMBER) IS

a_tutor Tutor_T := Tutor_T(NULL,NULL,NULL);

266 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
a_tutor.insert_tutor (new_person_id,

new_person_surname, new_person_fname,
new_person_title, new_person_address,
new_person_phone, new_person_postcode,
new_campus_location, new_building_id,
new_office_no, new_year, new_no_hours, new_rate);

END Insert_Tutor;

— #20
PROCEDURE Insert_Enrolls_In(new_pers_id IN VARCHAR2,

new_deg_id IN VARCHAR2) IS

student_temp REF Student_T;
degree_temp REF Degree_T;

BEGIN
SELECT REF(a) INTO student_temp
FROM Student a
WHERE a.pers_id = new_pers_id;

SELECT REF(b) INTO degree_temp
FROM Degree b
WHERE b.deg_id = new_deg_id;

INSERT INTO Enrolls_In
VALUES (student_temp, degree_temp);

END Insert_Enrolls_In;

— #21
PROCEDURE Insert_Subject(new_subject_id IN VARCHAR2,

new_subject_name IN VARCHAR2, new_subject_credit IN
VARCHAR2, new_subject_prereq IN VARCHAR2,
new_person_id IN VARCHAR2) IS

a_subject Subject_T :=
Subject_T(NULL,NULL,NULL,NULL,NULL);

BEGIN
a_subject.insert_subject (new_subject_id,

new_subject_name, new_subject_credit,
new_subject_prereq, new_person_id);

END Insert_Subject;

— #22

University Case Study 267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PROCEDURE Insert_Takes(new_pers_id IN VARCHAR2, new_subj_id
IN VARCHAR2, new_marks IN NUMBER) IS

student_temp REF Student_T;
subject_temp REF Subject_T;

BEGIN
SELECT REF(a) INTO student_temp
FROM Student a
WHERE a.pers_id = new_pers_id;

SELECT REF(b) INTO subject_temp
FROM Subject b
WHERE b.subj_id = new_subj_id;

INSERT INTO Takes
VALUES (student_temp, subject_temp, new_marks);

END Insert_Takes;

PROCEDURE Deletion(options IN NUMBER) AS

BEGIN
DBMS_OUTPUT.PUT_LINE(‘———————————————————————————————
—————————’);
IF options = 1 THEN

DBMS_OUTPUT.PUT_LINE(‘Delete from Campus’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Campus(deleted campus
location);”’);

ELSIF options = 2 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Faculty’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Faculty(deleted fac id);”’);

ELSIF options = 3 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From School’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_School(deleted fac id);”’);

ELSIF options = 4 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Department’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Department(deleted fac id);”’);

ELSIF options = 5 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Research

Centre’);

268 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Reseach_Centre(deleted fac
id);”’);

ELSIF options = 6 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Building’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Building(deleted building
id);”’);

ELSIF options = 7 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Office’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Office(deleted building id,
deleted office no);”’);

ELSIF options = 8 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Classroom’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Classroom(deleted building id,
deleted class no);”’);

ELSIF options = 9 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Lab’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Lab(deleted building id,
deleted lab no);”’);

ELSIF options = 10 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Degree’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Degree(deleted degree id);”’);

ELSIF options = 11 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Person’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Person(deleted person id);”’);

ELSIF options = 12 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Staff’);
DBMS_OUTPUT.PUT_LINE(‘You have to delete from

the child classes’);
ELSIF options = 13 THEN

DBMS_OUTPUT.PUT_LINE(‘Delete From Student’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Student(deleted person id);”’);

ELSIF options = 14 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Admin’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Admin(deleted person id);”’);

ELSIF options = 15 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Technician’);

University Case Study 269

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Technician(deleted person
id);”’);

ELSIF options = 16 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘You have to delete from

the child classes’);
ELSIF options = 17 THEN

DBMS_OUTPUT.PUT_LINE(‘Delete From Senior
Lecturer’);

DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE University.
Delete_Senior_Lecturer(deleted person id);”’);

ELSIF options = 18 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Associate

Lecturer’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Associate_Lecturer(deleted
person id);”’);

ELSIF options = 19 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Tutor’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Tutor(deleted person id);”’);

ELSIF options = 20 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Enrolls_In’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Enrolls_In(deleted person id,
deleted degree id);”’);

ELSIF options = 21 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Subject’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Subject(deleted subject
id);”’);

ELSIF options = 22 THEN
DBMS_OUTPUT.PUT_LINE(‘Delete From Takes’);
DBMS_OUTPUT.PUT_LINE(‘Type “EXECUTE
University.Delete_Enrolls_In(deleted person id,
deleted subject id);”’);

ELSE
DBMS_OUTPUT.PUT_LINE(‘Wrong Option’);

END IF;
END Deletion;

— #1
PROCEDURE Delete_Campus(deleted_campus_location IN

VARCHAR2) IS

270 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
DELETE FROM Campus
WHERE campus_location = deleted_campus_location;

END Delete_Campus;

— #2
PROCEDURE Delete_Faculty(deleted_fac_id IN VARCHAR2)
IS

BEGIN
DELETE FROM Faculty
WHERE fac_id = deleted_fac_id;

END Delete_Faculty;

— #3
PROCEDURE Delete_School(deleted_fac_id IN VARCHAR2) IS

BEGIN
DELETE FROM THE

(SELECT a.school
 FROM Faculty a
 WHERE a.fac_id = deleted_fac_id);

END Delete_School;

— #4
PROCEDURE Delete_Department(deleted_fac_id IN VARCHAR2)
IS

BEGIN
DELETE FROM THE

(SELECT a.department
 FROM Faculty a
 WHERE a.fac_id = deleted_fac_id);

END Delete_Department;

— #5
PROCEDURE Delete_Research_centre(deleted_fac_id IN
VARCHAR2) IS

BEGIN
DELETE FROM THE

(SELECT a.research_centre
 FROM Faculty a
 WHERE a.fac_id = deleted_fac_id);

END Delete_Research_centre;

University Case Study 271

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

— #6
PROCEDURE Delete_Building(deleted_building_id IN
VARCHAR2) IS

BEGIN
DELETE FROM Building
WHERE bld_id = deleted_building_id;

END Delete_Building;

— #7
PROCEDURE Delete_Office(deleted_building_id IN

VARCHAR2, deleted_office_no IN VARCHAR2) IS

BEGIN
DELETE FROM Office
WHERE bld_id = deleted_building_id
AND off_no = deleted_office_no;

END Delete_Office;

— #8
PROCEDURE Delete_Classroom(deleted_building_id IN

VARCHAR2, deleted_class_no IN VARCHAR2) IS

BEGIN
DELETE FROM Classroom
WHERE bld_id = deleted_building_id
AND class_no = deleted_class_no;

END Delete_Classroom;

— #9
PROCEDURE Delete_Lab(deleted_building_id IN VARCHAR2,

deleted_lab_no IN VARCHAR2) IS

BEGIN
DELETE FROM Lab
WHERE bld_id = deleted_building_id
AND lab_no = deleted_lab_no;

END Delete_Lab;

— #10
PROCEDURE Delete_Degree(deleted_degree_id IN VARCHAR2)
IS

a_degree Degree_T :=
Degree_T(NULL,NULL,NULL,NULL,NULL);

272 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
a_degree.delete_degree(deleted_degree_id);

END Delete_Degree;

— #11
PROCEDURE Delete_Person(deleted_person_id IN VARCHAR2)
IS

a_person Person_T :=
Person_T(NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);

BEGIN
a_person.delete_person(deleted_person_id);

END Delete_Person;

— #13 (no procedure #12)
PROCEDURE Delete_Student(deleted_person_id IN VARCHAR2)
IS

a_student Student_T := Student_T(NULL,NULL);

BEGIN
a_student.delete_student(deleted_person_id);

END Delete_Student;

— #14
PROCEDURE Delete_Admin(deleted_person_id IN VARCHAR2)
IS

an_admin Admin_T := admin_T(NULL,NULL,NULL,NULL);

BEGIN
an_admin.delete_admin(deleted_person_id);

END Delete_Admin;

— #15
PROCEDURE Delete_Technician(deleted_person_id IN
VARCHAR2) IS

a_technician Technician_T :=
technician_T(NULL,NULL,NULL);

BEGIN
a_technician.delete_technician(deleted_person_id);

END Delete_Technician;

University Case Study 273

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

— #17 (no procedure #16)
PROCEDURE Delete_Senior_Lecturer(deleted_person_id IN
VARCHAR2) IS

a_senior_lecturer Senior_lecturer_T :=
senior_lecturer_T(NULL,NULL,NULL,NULL);

BEGIN
a_senior_lecturer.delete_senior_lecturer(deleted_person_id);

END Delete_Senior_Lecturer;

— #18
PROCEDURE Delete_Associate_Lecturer(deleted_person_id
IN VARCHAR2) IS

a_associate_lecturer Associate_lecturer_T :=
associate_lecturer_T(NULL,NULL,NULL);

BEGIN
a_associate_lecturer.delete_associate_lecturer(deleted_person_id);

END Delete_Associate_Lecturer;

— #19
PROCEDURE Delete_Tutor(deleted_person_id IN VARCHAR2)
AS

a_tutor Tutor_T := tutor_T(NULL,NULL,NULL);

BEGIN
a_tutor.delete_tutor(deleted_person_id);

END Delete_Tutor;

— #20
PROCEDURE Delete_Enrolls_In(deleted_pers_id IN VARCHAR2,

deleted_deg_id IN VARCHAR2) IS

BEGIN
DELETE FROM Enrolls_In
WHERE Enrolls_In.student IN

(SELECT REF(a)
 FROM Student a
 WHERE a.pers_id = deleted_pers_id)

AND Enrolls_In.degree IN
(SELECT REF(b)
 FROM Degree b
 WHERE b.deg_id = deleted_deg_id);

274 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

END Delete_Enrolls_In;

— #21
PROCEDURE Delete_Subject(deleted_subject_id IN
VARCHAR2) IS

a_subject Subject_T :=
subject_T(NULL,NULL,NULL,NULL,NULL);

BEGIN
a_subject.delete_subject(deleted_subject_id);

END Delete_Subject;

— #22
PROCEDURE Delete_Takes(deleted_pers_id IN VARCHAR2,

deleted_subj_id IN VARCHAR2) IS

BEGIN
DELETE FROM Takes
WHERE Takes.student IN

(SELECT REF(a)
 FROM Student a
 WHERE a.pers_id = deleted_pers_id)

AND Takes.subject IN
(SELECT REF(b)
 FROM Subject b
 WHERE b.subj_id = deleted_subj_id);

END Delete_Takes;

END University;
/

Running a package is very similar to running a stored procedure or function. We
show an example of an execution and the results of the execution of this retailer
application below. Notice that by using a package, we can add some lines to
help users in using the application. The interaction is not as straightforward as
in a programming language because the package and the procedure in SQL do
not allow user input during their executions. Nevertheless, the line provided
inside the procedures gives guidance to users on what procedures to use.

University Case Study 275

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

General Syntax:

EXECUTE <package name>.<object name>;
— The object is the stored procedures inside the
package.

EXECUTE University.Start_Program;
——————————————————————————————————
For insertion, type “EXECUTE
University.Insertion(“table_no”);”
For deletion, type “EXECUTE University.Deletion
(“table_no”);
For retrieval, type EXECUTE University.Retrieval
(“procedure no”);
——————————————————————————————————
To check the table no, type “EXECUTE
University.Table_Details;”
To check the procedure no, type “EXECUTE
University.Procedure_Details;”

PL/SQL procedure successfully completed.

Summary

In this chapter we have demonstrated a complete walk-through of a university
case study. We have shown how we build each object type, table, and generic
and user-defined member method. We then created the links between those
types and tables, and instantiated the tables with some data. We have also
shown how we can run user-defined queries to those created tables.

276 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Retailer Case Study

In this chapter we will demonstrate the usage of development tools provided
by Oracle™ Developer. The tools help users create forms, queries, projects,
and other applications needed for practical purposes. Notice that we use
Oracle™ Developer 6.0 for this chapter. Newer versions will have more
features. Before demonstrating the usage of Oracle™ Developer, we will
present another case study whose database has to be developed first.

Problem Description

National Ltd. is a major retail-chain company. Being the market leader in the
retail industry, National has been urged to give extra attention to its database
system. The excellence of the database system helps National in controlling its
inventory better, in providing better service to the customer before and after
transactions, and in maintaining its huge collection of internal organizational
data.
Currently, National has six major retail companies under it. Three of them
concentrate on food and daily goods, which are called Company Type 1, and
the other three focus their business on clothing, housing furniture, and appli-
ances, which are called Company Type 2. Figure 8.1 shows the details for each
company.

Retailer Case Study 277

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

While the first three are Type 1 companies that are segmented based on the
operational state, the last three are Type 2 companies that are segmented based
on the income of the market. Among Company Type 1, OZ Buyer operates in
NSW and ACT, Goodies covers VIC, SA, and TAS, while Super Mart has a
very wide operation area from QLD, NT, and WA. Among the other three
companies, Housemate is in the lower market, Piglet is in the middle market,
and Liz and Neil is in the upper market. The data stored in this database is
shown in Figure 8.2.
As the size of each company has expanded tremendously in the last 5 years,
National has decided to have different shares listed for each company. The
information about the shareholders is kept in the database system, which

Figure 8.1. Company table

Company
Comp_ID Comp_Name Comp_Address Comp_Phone Comp_Fax Comp_Type

1 OZ Buyer 20 Russel St.
Sydney 2000

0298394000
0298394005
1800489000

0298398371 1

2 Goodies 50 Collins St.
Melbourne 3000

0394255000
0394255005
1800900000

0394250005 1

3 Super Mart 6/1 George St.
Brisbane 4000

0782349000
0782349005
1800521325

0782340005 1

4 Housemate 17/2 Vince St.
Sydney 2000

0292000001
0292000002
1800023001

0292000000 2

5 Piglet 10 Bourke St
Melbourne 3000

0398300000
0398300001
1800876001

0398300005 2

6 Liz and Neil 5 Lonsdale St
Melbourne 3000

0398301000
0398301001
1800876005

0398601005 2

Company_Type_1 Company_Type_2
Comp_ID Type_Desc Area Comp_ID Type_Desc Market

1 Food and Daily
Goods

NSW
ACT

 4 Clothing, Furniture,
and Appliances

Lower

2 Food and Daily
Goods

VIC
SA
TAS

 5 Clothing, Furniture,
and Appliances

Middle

3 Food and Daily
Goods

QLD
NT
WA

 6 Clothing, Furniture,
and Appliances

Upper

Figure 8.2. Company_Type tables

278 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

includes each shareholder’s ID, name, address, and telephone number. As
each company has been listed separately, a shareholder can have shares in
more than one company. Therefore, the database also keeps the record of the
share amount that each shareholder has in each company. Examples of the data
relating to shareholders are shown in Figure 8.3.
Each company has also stored information about its management personnel.
This includes the management employee’s ID, name, address, telephone
number, and management type (whether he or she is a director or a manager).
For each director, there is information about bonuses, while for each manager,
there is information on the managerial type and yearly salary. A person can be
a member of management for one, and only one, company. A person can be a
director and a manager at the same time.
Each company has a large number of stores nationwide. Some of the basic data
regarding the stores are shown in Figure 8.5.
Each store is divided into several departments. For example, in all OZ Buyer
stores, there are delis, bakeries, drink sections, and so forth. For Housemate

Figure 8.4. Management, Director, and Manager tables

Figure 8.3. Shareholders and Own_Shares tables

Management
Manag_ID Manag_Name Manag_Address Manag_Phone Comp_ID
1001 Kunio Takahashi 20 Avondale Cr.

Darlinghurst 2010
0296101024

1

1002 Lucia Zanetti 5 Noel St
Double Bay 2028

0290125846 1

1003 Stanley Mann 2/2 Ross St Mascot 2020 0295211110 1

Director Manager
Manag_ID Bonus Manag_ID Manag_Type Yearly_Salary

1001 5% 1001 Information System 100,000
1002 10% 1003 Operational 85,000

Shareholders
Sholders_ID Sholders_Name Sholders_Address Sholders_Phone

100 Judith Maxwell 40 Pinnacles Rd Melbourne 3000 0393450293
200 Ian Hobbes 2 Red Oak Ave Hobart 7000 0362231658

Own_Shares
Sholders_ID Comp_ID Share_Amount

100 1 1000
100 2 250
200 1 2500

Retailer Case Study 279

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

stores, there are departments of clothing, furniture, electrical appliances, and
so forth. In general, department information consists of the department ID,
name, and head (see Figure 8.6).
Considering the number of people who work in this retail company, the
database for each employee is kept and linked to each store instead of each
company. The Employee database includes the information about the employ-
ees’ IDs, names, addresses, telephone numbers, the stores and departments
they are working in, their account numbers, tax file numbers, and their types of
employment.
There are three types of employment at National Ltd.: full time, part time, and
casual. For full-time employees, the data about annual salaries and bonuses
have to be recorded. For part-time employees, the data about weekly wages
have to be recorded. Finally, for casual employees, the additional information
is their hourly wages. Figure 8.7 shows the table sample.
For inventory control, the database system covers the items database and
includes the information of the item ID, name, description, cost, selling price,
stock amount, and finally the information about the item distributor. According
to the policy of the company, a specific item can be bought only from one

Store
Store_ID Store_Location Store_Address Store_Phone Store_Manage Is_In

OB1 Paramatta 4 Victoria Rd
Paramatta 2797

02 9854 5876 Alice Green 1

OB2 Newcastle 15 University Dv
Callaghan 2308

02 4589 5444 Rob Hayes 1

H1 Wollongong 5 Princess Hwy
Woll. 2500

02 4256 8751 Elda Stiebel 4

P1 Crawley 110 Gordon St.
Crawley 6009

08 9368 5123 Beth Jackson 5

P2 Melbourne 12 Bourke St
Melbourne 3000

09 9458 5482 Yusuf Kamal 5

Figure 8.5. Store tables

Figure 8.6. Department table

Department
Store_ID Dept_ID Dept_Name Dept_Head

OB1 1 Deli Jared Dench
OB1 2 Bakery Charlie Williams
OB1 3 Drinks Ameer Singh
H1 1 Clothing Lola Bing
H1 2 Furniture Victor Mathewson
H1 3 Electrical Raymond Chua

280 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maker, but one maker can sell many items to National. Figure 8.8 shows the
Maker and Item tables.
As one item can be sold in many stores and one store can sell many items, we
need another table to store the relationship called the Available_In table (see
Figure 8.9). In this table we also store the information on the stock available at
any given time.
For better service to the customer, National keeps information about the main
customers who are registered and have membership cards. By using the card

Employee
Emp_ID Emp_Name Emp_Address Emp_Phone Emp_Type
OB1-01 Glenda Row 10/1 Harold St.

Thornbury 3125
0395854523 Full Time

OB1-02 Ruben Boestch 5 Greenwood Dv
Bundoora 3083

0402251657 Full Time

OB1-03 Lily Hui 6 Mornane St
Preston 3203

0411528876 Part Time

OB1-04 David Tran 12 Gillies St
Fairfield 3175

0398575854 Part Time

OB1-05 Debbie Bradsord 740 High St
Northcote 3185

0399587410 Casual

OB1-06 Turi Riswanant 3/2 George St
Reservoir 3158

0403528587 Null

Employee

Emp_Account_No Emp_TFN Work_In Dept_ID
2568-548-586 081253654 OB1 1
2568-587-875 084568789 OB1 1
1525-288-888 084565896 OB1 1
1259-986-458 089658754 OB1 2
3366-000-120 098658423 OB1 3
3366-895-452 098547785 OB1 3

Full_Time Part_Time Casual

Emp_ID Annual_Wage Emp_Bonus Emp_ID Weekly_Wage Emp_ID Hourly_Wage
OB1-01 30,000 2,000 OB1-03 400 OB1-05 13
OB1-02 28,000 1,750 OB1-04 500

Figure 8.7. Employee tables

Maker
Maker_ID Maker_Name Maker_Address Maker_Phone

M1 Smiths 15 Princess Hwy Sydney 2000 1800157856
M2 Homemade 450 Light Ave Albury 2780 0245245263

Item

Item_ID Item_Name Item_Desc Item_Cost Item_Price Made_By
I-1001 Crisp Original Potato Chips 250 gr 2.00 3.10 M1
I-1002 Crisp Cheese Potato Chips 250 gr 2.00 3.10 M1
I-1051 Cheese Bun Homemade 500 gr 3.00 3.25 M2

Figure 8.8. Maker and Item tables

Retailer Case Study 281

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

while shopping, the customers will amass points that can be redeemed for an
annual prize. Figure 8.10 shows the example of the Customer table.
These Customer and Item tables are linked to another table named Transaction.
We need this table to analyze the items that a particular customer always buys.
It can be very useful for marketing strategy. Note that the transaction is
differentiated based on the date, customer, and item.
The information-system department uses an ORDB for its database system and
stores the data in classes. Some methods, mainly generic methods, are
implemented as member procedures. They are usually methods for insertion
and deletion. Not every class needs member procedures. Only those classes
that frequently undergo insertion and deletion will need these generic member
procedures.
Classes that need generic member methods are Store_T and its part class,
Department_T. The Employee_T class and all its children also need these
methods because in this business, there are frequent ups and downs that urge
the company to have a flexible number of employees, therefore insertion and

Figure 8.9. Available_In table

Available_In
Item_ID Store_ID Item_Stock
I-1001 OB1 5,000
I-1002 OB1 5,000
I-1051 OB1 200

Figure 8.10. Customer table
Customer

Cust_ID Cust_Name Cust_Address Cust_Phone Cust_
Gender

Cust_DOB Bonus
_Point

C1001 Sally Lange 14 Milky Way St
Melbourne 3000

0395486542 F 01-Mar-
1970

100

C1002 Raylene
Roberts

1/1 Howard St
Box Hill 3128

0398306360 F 23-Feb-
1950

125

Figure 8.11. Transaction table
Transaction

Trans_ID Trans_Date Cust_ID Item_ID Quantity
1602027891 16-Feb-2002 C1002 I-1001 5
1802021009 18-Feb-2002 C1001 I-1002 4
1802021010 18-Feb-2002 C1002 I-1001 5
1802021049 18-Feb-2002 C1002 I-1003 10

282 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

deletion will be frequent. The next class that needs member methods is
Shareholders_T. Notice that the relation between the shareholders and the
companies they have invested in is equally important. For this purpose, we
might need a regular stored procedure. We also need member procedures for
the Item_T and Customer_T classes as they are the two most frequently
accessed databases in the retail industry. Finally, regular stored procedures will
be needed for accessing the tables that emerge from the relationship between
Item_T and Store_T.
Besides generic methods, there are some user-defined queries that are fre-
quently made for this database. These queries can also be implemented as
member methods. The list of these methods is shown below.

• Method to show the details of an certain store, which will be implemented
as a member procedure of the Store_T class

• Method to show the details of shareholders if they have more than 1,000
shares in a given company type. This procedure will be implemented in the
Shareholders_T class.

• Method to show the names of management employees and details
including the companies they are in, ordered by the name of the company.
This member procedure will be implemented in the Management_T class.

• Method to show the details of an employee, which will be implemented in
Employee_T class

Finally, we will require a stored procedure to show the item details and the sum
of each item that is bought by a specific customer gender in a residential suburb.
It will also need to determine the maximum age of the customers that buy those
items.

Problem Solution

The solution to the problem described in the previous section will be provided
in this section. The first thing to be done in solving this problem is to design the
database. We provide the design in an object-oriented diagram (see Figure
8.12). Note that the diagram does not indicate the number of tables we will need

Retailer Case Study 283

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1

1
1

1

1…
1…

1…

pa
rti

tio
n

1…

1… 1…

1

1…

11

1…

m
ut

ua
l e

xc
lu

sio
n

un
io

n

1…
1

av
ai

la
bl

e_
in

1…

ow
n_

sh
ar

es

Em
pl

oy
ee

_T
em

p_
ID

em
p_

na
m

e
em

p_
ad

dr
es

s
em

p_
ph

on
e

em
p_

ty
pe

em
p_

ac
co

un
t_

no
em

p_
TF

N
de

pt
_I

D
in

se
rt_

em
pl

oy
ee

de
le

te
_e

m
pl

oy
ee

sh
ow

_e
m

pl
oy

ee

Fu
ll_

Ti
m

e_
T

an
nu

al
_w

ag
e

em
p_

bo
nu

s
in

se
rt_

fu
llt

im
e

de
le

te
_f

ul
lti

m
e

Pa
rt_

Ti
m

e_
T

w
ee

kl
y_

w
ag

e
in

se
rt_

pa
rtt

im
e

de
le

te
_p

ar
tti

m
e

C
as

ua
l_

T

ho
ur

ly
_w

ag
e

in
se

rt_
ca

su
al

de
le

te
_c

as
ua

l

Ite
m

_T
ite

m
_I

D
ite

m
_n

am
e

ite
m

_d
es

c
ite

m
_c

os
t

ite
m

_p
ric

e
in

se
rt_

ite
m

de
le

te
_i

te
m

sh
ow

_s
to

re
_d

ep
t

C
us

to
m

er
_T

cu
st_

ID
cu

st
_n

am
e

cu
st

_a
dd

re
ss

cu
st_

ph
on

e
cu

st_
ge

nd
er

cu
st_

D
O

B
in

se
rt_

cu
st

om
er

de
le

te
_c

us
to

m
er

Tr
an

sa
ct

io
n_

T
tra

ns
_I

D
tra

ns
_d

at
e

qu
an

tit
y

in
se

rt_
tra

ns
ac

tio
n

de
le

te
_t

ra
ns

ac
tio

n
St

or
e_

T
st

or
e_

ID
st

or
e_

lo
ca

tio
n

st
or

e_
ad

dr
es

s
st

or
e_

ph
on

e
st

or
e_

m
an

ag
er

in
se

rt_
st

or
e

de
le

te
_s

to
re

sh
ow

_s
to

re
D

ep
ar

tm
en

t_
T

st
or

e_
ID

de
pt

_I
D

de
pt

_n
am

e
de

pt
_h

ea
d

in
se

rt_
de

pt
de

le
te

_d
ep

t

C
om

pa
ny

_T
yp

e_
1

ty
pe

_d
es

c
ar

ea

C
om

pa
ny

_T
yp

e_
2

ty
pe

_d
es

c
m

ar
ke

t

Sh
ar

eh
ol

de
rs

_T
sh

ol
de

rs
_I

D
sh

ol
de

rs
_n

am
e

sh
ol

de
rs

_a
dd

re
ss

sh
ol

de
rs

_p
ho

ne
in

se
rt_

sh
ol

de
rs

de
le

te
_s

ho
ld

er
s

sh
ow

_b
ig

_s
ho

ld
er

s
C

om
pa

ny
_T

co
m

p_
ID

co
m

p_
na

m
e

co
m

p_
ad

dr
es

s
co

m
p_

ph
on

e
co

m
p_

fa
x

co
m

p_
ty

pe

M
an

ag
em

en
t_

T
m

an
ag

_I
D

m
an

ag
_n

am
e

m
an

ag
_a

dd
re

ss
m

an
ag

_p
ho

ne

sh
ow

_m
an

ag
em

en
t

D
ire

ct
or

bo
nu

s

M
an

ag
er

s

m
an

ag
_t

yp
e

ye
ar

ly
_s

al
ar

y

M
ak

er
_T

m
ak

er
_I

D
m

ak
er

_n
am

e
m

ak
er

_a
dd

re
ss

m
ak

er
_p

ho
ne

Figure 8.12. Object-oriented diagram of National Ltd.

284 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to create. We also have to consider the cardinality of the relationships before
determining the number of tables needed.
To illustrate a clearer step-by-step development, the solution will be imple-
mented for one class at a time. It starts with the object creation, then moves to
table creation, and then, where applicable, to method creation. Note that the
table that results from the many-to-many relationship will be implemented along
with implementation of the second class.

Company_T Class and the Subclasses

Below we show the implementation of the Company_T class and the table
derived from the class, along with its subclasses. There is no member method
needed in this class, therefore, the data will be inserted using the regular insert
statement.

Relational Schemas

Company (comp_ID, comp_name, comp_address,
comp_phone,

comp_fax, comp_type)

Class and Table Declaration

CREATE OR REPLACE TYPE Contacts AS VARRAY(3) OF
VARCHAR2(12)
/

CREATE OR REPLACE TYPE Company_T AS OBJECT
(comp_id VARCHAR2(10),
 comp_name VARCHAR2(20),
 comp_address VARCHAR2(50),
 comp_phone Contacts,
 comp_fax VARCHAR2(10),
 comp_type NUMBER) NOT FINAL

/

CREATE TABLE Company OF Company_T
(comp_id NOT NULL,
 comp_type CHECK (comp_type IN (1, 2)),
 PRIMARY KEY (comp_id));

Retailer Case Study 285

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE OR REPLACE TYPE Company_Type_1_T UNDER
Company_T

(type_desc VARCHAR2(40),
 area VARCHAR2(20))

/

CREATE OR REPLACE TYPE Company_Type_2_T UNDER
Company_T
(type_desc VARCHAR2(40),
 market VARCHAR2(20))

/

Shareholders_T Class and Own_Shares Table

This section shows the implementation of Shareholders_T, the Shareholders
table, and the Own_Shares table, which is derived from the many-to-many
relationship between the tables Company and Shareholders. As it is a regular
table, we cannot have a member method for the Own_Shares table. Instead,
we need regular stored procedures for insertion and deletion.
Besides generic methods, there is also a user-defined method in the
Shareholders_T class to show the details of the shareholders who have more
than 1,000 shares, including the name of the company they have invested in
given the type of the company as an input parameter.

Relational Schemas
— We do not use the primary-key and foreign-key
concept in
— the Own_Shares table. Instead, we are using ref as
object references.

Shareholders (sholders_ID, sholders_name,
 sholders_address, sholders_phone)

Own_Shares (shareholders, company, share_amount)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Shareholders_T AS OBJECT
(sholders_id VARCHAR2(10),
 sholders_name VARCHAR2(20),
 sholders_address VARCHAR2(50),
 sholders_phone VARCHAR2(10),

286 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE insert_sholders(
new_sholders_id IN VARCHAR2,
new_sholders_name IN VARCHAR2,
new_sholders_address IN VARCHAR2,
new_sholders_phone IN VARCHAR2),

 MEMBER PROCEDURE delete_sholders,

 MEMBER PROCEDURE show_big_sholders(
new_comp_type IN NUMBER))

/

CREATE TABLE Shareholders OF Shareholders_T
(sholders_id NOT NULL,
 PRIMARY KEY (sholders_id));

CREATE TABLE Own_Shares
(shareholders REF Shareholders_T,
 company REF Company_T,
 share_amount NUMBER);

Method Implementation

CREATE OR REPLACE TYPE BODY Shareholders_T AS

MEMBER PROCEDURE insert_sholders(
new_sholders_id IN VARCHAR2,
new_sholders_name IN VARCHAR2,
new_sholders_address IN VARCHAR2,
new_sholders_phone IN VARCHAR2) IS

BEGIN
INSERT INTO Shareholders
VALUES (new_sholders_id, new_sholders_name,

 new_sholders_address, new_sholders_phone);
END insert_sholders;

MEMBER PROCEDURE delete_sholders IS

BEGIN
DELETE FROM Own_Shares
WHERE Own_Shares.shareholders IN

(SELECT REF(a)
 FROM Shareholders a
 WHERE a.sholders_id = self.sholders_id);

DELETE FROM Shareholders

Retailer Case Study 287

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

WHERE sholders_id = self.sholders_id;
END delete_sholders;

MEMBER PROCEDURE show_big_sholders(
new_comp_type IN NUMBER) IS

v_sholders_name
Shareholders.sholders_name%TYPE;
v_sholders_address
Shareholders.sholders_address%TYPE;
v_sholders_phone
Shareholders.sholders_phone%TYPE;

BEGIN

SELECT a.sholders_name, a.sholders_address,
a.sholders_phone
INTO v_sholders_name, v_sholders_address,
v_sholders_phone
FROM Shareholders a, Company b, Own_Shares c
WHERE c.shareholders = REF(a)
AND c.company = REF(b)
AND b.comp_type = new_comp_type
AND c.share_amount > 1000
AND a.sholders_id = self.sholders_id;

DBMS_OUTPUT.PUT_LINE
(‘Name’||’ ‘||’Address’||’ ‘||’Phone’);
DBMS_OUTPUT.PUT_LINE
(‘—————————————————‘);
DBMS_OUTPUT.PUT_LINE
(v_ sholders_name||‘ ‘|| v_
sholders_address|| ‘ ‘||

 v_ sholders_phone);
END show_big_sholders;

END;
/

— The following are stored procedures for the Own_Shares
table
— for insertion and deletion.

CREATE OR REPLACE PROCEDURE Insert_Own_Shares(
new_sholders_id IN VARCHAR2,
new_comp_id IN VARCHAR2,
new_share_amount IN NUMBER) AS

288 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sholders_temp REF Shareholders_T;
comp_temp REF Company_T;

BEGIN
SELECT REF(a) INTO sholders_temp
FROM Shareholders a
WHERE a.sholders_id = new_sholders_id;

SELECT REF(b) INTO comp_temp
FROM Company b
WHERE b.comp_id = new_comp_id;

INSERT INTO Own_Shares
VALUES (sholders_temp, comp_temp,

 new_share_amount);
END Insert_Own_Shares;

/

CREATE OR REPLACE PROCEDURE Delete_Own_Shares(
deleted_sholders_id IN VARCHAR2,
deleted_comp_id IN VARCHAR2) AS

BEGIN
DELETE FROM Own_Shares
WHERE Own_Shares.shareholders IN

(SELECT REF(a)
 FROM Shareholders a
 WHERE a.sholders_id = deleted_sholders_id)

AND Own_Shares.company IN
(SELECT REF(b)
 FROM Company b
 WHERE b.comp_id = deleted_comp_id);

END Delete_Own_Shares;
/

Management_T Class and the Subclasses

Next, we show the implementation of the Management_T class and the table
derived from the class, along with its subclasses. As the frequency of insertion
and deletion transactions for this class is considerably low, we do not need to
implement the generic methods inside the class. However, we still need to
implement a user-defined method show_management to display the manage-
ment staff who has two roles: both as director and as manager.

Retailer Case Study 289

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Relational Schemas
— Note that manag_id in the subclasses is both a
primary key and
— foreign key at the same time. To implement the
relationship of
— Management with Company, we will use the object
reference of work_in.

Management (manag_ID, manag_name, manag_address,
manag_phone, work_in)
Directors (manag_ID, bonus)
Managers (manag_ID, manag_type, yearly_salary)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Management_T AS OBJECT
(manag_id VARCHAR2(10),
 manag_name VARCHAR2(20),
 manag_address VARCHAR2(50),
 manag_phone VARCHAR2(10),
 work_in REF Company_T,

 MEMBER PROCEDURE show_management) NOT FINAL
/

CREATE TABLE Management OF Management_T
(manag_id NOT NULL,
 PRIMARY KEY (manag_id));

CREATE OR REPLACE TYPE Directors_T UNDER Management_T
(bonus NUMBER)

/

CREATE TABLE Directors OF Directors_T
(manag_id NOT NULL,
 PRIMARY KEY (manag_id));

CREATE OR REPLACE TYPE Managers_T UNDER Management_T
(manag_type VARCHAR2(20),
 yearly_salary NUMBER)

/

CREATE TABLE Managers OF Managers_T
(manag_id NOT NULL,
 PRIMARY KEY (manag_id));

290 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Method Implementation

CREATE OR REPLACE TYPE BODY Management_T AS

MEMBER PROCEDURE show_management IS

CURSOR c_management IS
SELECT a.manag_name, b.comp_name
FROM Management a, Company b
WHERE a.work_in = REF(b)
AND a.manag_id = self.manag_id
AND a.manag_id IN

(SELECT manag_id FROM Directors)
AND a.manag_id IN

(SELECT manag_id FROM Managers)
ORDER BY b.comp_name;

BEGIN
DBMS_OUTPUT.PUT_LINE
(‘Company Name’||’ ‘||’Management Name’);
DBMS_OUTPUT.PUT_LINE
(‘——————————————————‘);
FOR v_management IN c_management LOOP

DBMS_OUTPUT.PUT_LINE
(v_management.comp_name||‘ ‘||
 v_management.manag_name);

END LOOP;
END show_management;

END;
/

Store_T Class and the Department_T Part Class

To store the aggregation relationship between Store_T and Department_T, we
use the clustering technique. We need generic methods for both whole and part
classes. In addition, we will need a user-defined method, show_stores in the
Store_T class, to display the store details of a particular company in a particular
location.

Relational Schemas
— Note that there are two primary keys in the
part class Department_T,

Retailer Case Study 291

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

— and one of them (store_ID) is also a foreign
key to the whole class
— Store_T. The relationship between Stores and
Company is made using
— the object reference is_in.

Stores (store_ID, store_location, store_address,
 store_phone, store_manager, is_in)

Department (store_ID, dept_ID, dept_name,
dept_head)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Store_T AS OBJECT
(store_id VARCHAR2(10),
 store_location VARCHAR2(20),
 store_address VARCHAR2(50),
 store_phone VARCHAR2(10),
 store_manager VARCHAR2(20),
 is_in REF Company_T,

 MEMBER PROCEDURE insert_store(
new_store_id IN VARCHAR2,
new_store_location IN VARCHAR2,
new_store_address IN VARCHAR2,
new_store_phone IN VARCHAR2,
new_store_manager IN VARCHAR2,
new_comp_id IN VARCHAR2),

 MEMBER PROCEDURE delete_store,
 MEMBER PROCEDURE show_store)

/

CREATE CLUSTER Store_Cluster
(store_id VARCHAR2(10));

CREATE TABLE Store OF Store_T
(store_id NOT NULL,
 PRIMARY KEY (store_id))
CLUSTER Store_Cluster(store_id);

CREATE OR REPLACE TYPE Department_T AS OBJECT
(store_id VARCHAR2(10),
 dept_id VARCHAR2(10),
 dept_name VARCHAR2(20),
 dept_head VARCHAR2(20),

292 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE insert_dept(
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_dept_name IN VARCHAR2,
new_dept_head IN VARCHAR2),

 MEMBER PROCEDURE delete_dept)
/

CREATE TABLE Department OF Department_T
(store_id NOT NULL,
 dept_id NOT NULL,
 PRIMARY KEY (store_id, dept_id),
 FOREIGN KEY (store_id)

REFERENCES Store(store_id))
CLUSTER Store_Cluster(store_id);

CREATE INDEX Store_Cluster_Index
ON CLUSTER Store_Cluster;

Method Implementation

CREATE OR REPLACE TYPE BODY Store_T AS

MEMBER PROCEDURE insert_store(
new_store_id IN VARCHAR2,
new_store_location IN VARCHAR2,
new_store_address IN VARCHAR2,
new_store_phone IN VARCHAR2,
new_store_manager IN VARCHAR2,
new_comp_id IN VARCHAR2) IS

comp_temp REF Company_T;

BEGIN
SELECT REF(a) INTO comp_temp
FROM Company a
WHERE a.comp_id = new_comp_id;

INSERT INTO Store
VALUES (new_store_id, new_store_location,

 new_store_address, new_store_phone,
 new_store_manager, comp_temp);

END insert_store;

MEMBER PROCEDURE delete_store IS

Retailer Case Study 293

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
— If a store is deleted, the data from table
Available_In
— regarding that particular store has to be
removed as well.
— Also note the table Available_In has to exist
first.

DELETE FROM Available_In
WHERE Available_In.store IN

(SELECT REF(a) FROM Store a
 WHERE a.store_id = self.store_id);

DELETE FROM Employee
WHERE store_id = self.store_id;

DELETE FROM Store
WHERE store_id = self.store_id;

END delete_store;

MEMBER PROCEDURE show_store IS

BEGIN
DBMS_OUTPUT.PUT_LINE
(‘Store Address’||’ ‘||’Store Phone’||’
‘||’Store Manager’);
DBMS_OUTPUT.PUT_LINE
(‘———————————————————————————‘);
DBMS_OUTPUT.PUT_LINE
(self.store_address||‘ ‘||self.store_phone|| ‘
‘|| self.store_manager);

END show_store;

END;
/

CREATE OR REPLACE TYPE BODY Department_T AS

MEMBER PROCEDURE insert_dept(
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_dept_name IN VARCHAR2,
new_dept_head IN VARCHAR2) IS

294 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BEGIN
INSERT INTO Department
VALUES (new_store_id, new_dept_id, new_dept_name,
new_dept_head);

END insert_dept;

MEMBER PROCEDURE delete_dept IS

BEGIN
DELETE FROM Department
WHERE store_id = self.store_id
AND dept_id = self.dept_id;

END delete_dept;

END;
/

Employee_T Class and the Subclasses

Next, we show the implementation of the Employee_T class and its table, along
with the subclasses. As the type of inheritance is not mentioned, we will assume
that the type is a mutual-exclusion inheritance. In other words, an employee has
to be a member of only one subclass or none.
We need generic methods for the superclass and the subclasses. For insertion
to subclasses, we will need to insert to the superclass first. The same applies
for deletion. The data in the subclasses will be deleted automatically due to the
referential integrity constraint. In addition, there is a user-defined method
show_employee to display the details of a particular employee type that works
in a particular store.

Relational Schemas
— Note there is a reference work_in to the Store
table.

Employee (emp_ID, emp_name, emp_address, emp_phone,
 emp_type, emp_account_no, emp_TFN,

work_in, dept_ID)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Employee_T AS OBJECT
(emp_id VARCHAR2(10),

Retailer Case Study 295

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 emp_name VARCHAR2(20),
 emp_address VARCHAR2(50),
 emp_phone VARCHAR2(10),
 emp_type VARCHAR2(20),
 emp_account_no VARCHAR2(15),
 emp_tfn VARCHAR2(15),
 work_in REF Store_T,
 dept_id VARCHAR2(10),

 MEMBER PROCEDURE insert_employee(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2),

 MEMBER PROCEDURE delete_employee,
 MEMBER PROCEDURE show_employee) NOT FINAL

/

CREATE TABLE Employee OF Employee_T
(emp_id NOT NULL,
 emp_type CHECK (emp_type IN

(‘Full Time’, ‘Part Time’, ‘Casual’, NULL)),
 PRIMARY KEY (emp_id));

CREATE OR REPLACE TYPE Full_Time_T UNDER
Employee_T

(annual_wage NUMBER,
 emp_bonus NUMBER,

 MEMBER PROCEDURE insert_fulltime(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_annual_wage IN NUMBER,
new_emp_bonus IN NUMBER),

296 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 MEMBER PROCEDURE delete_fulltime)
/

CREATE OR REPLACE TYPE Part_Time_T UNDER
Employee_T

(weekly_wage NUMBER,

 MEMBER PROCEDURE insert_parttime(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_weekly_wage IN NUMBER),

 MEMBER PROCEDURE delete_parttime)
/

CREATE OR REPLACE TYPE Casual_T UNDER Employee_T
(hourly_wage NUMBER,

 MEMBER PROCEDURE insert_casual(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_hourly_wage IN NUMBER),

 MEMBER PROCEDURE delete_casual)
/

Method Implementation

CREATE OR REPLACE TYPE BODY Employee_T AS

MEMBER PROCEDURE insert_employee(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,

Retailer Case Study 297

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2) IS

store_temp REF Store_T;

BEGIN
SELECT REF(a) INTO store_temp
FROM Store a
WHERE a.store_id = new_store_id;

INSERT INTO Employee
VALUES (new_emp_id, new_emp_name, new_emp_address,

 new_emp_phone, NULL, new_emp_account_no,
 new_emp_tfn, store_temp, new_dept_id);

END insert_employee;

MEMBER PROCEDURE delete_employee IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END delete_employee;

MEMBER PROCEDURE show_employee IS

BEGIN
DBMS_OUTPUT.PUT_LINE
(‘Name’||’ ‘||’Address’||’ ‘||’Phone’||’
‘||’Emp Type’||’ ‘||’Account No’||’
‘||’TFN’||’ ‘|| ’Department’);
DBMS_OUTPUT.PUT_LINE
(‘———
——————————‘);
DBMS_OUTPUT.PUT_LINE
(self.emp_name ||‘ ‘||self. emp_address||‘
‘||self.emp_phone|| ‘ ‘||self.emp_type|| ‘
‘||self.emp_account_no|| ‘ ‘||self.emp_tfn|| ‘
‘||self.dept_id);
END LOOP;

END show_employee;

END;
/

CREATE OR REPLACE TYPE BODY Full_Time_T AS

298 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MEMBER PROCEDURE insert_fulltime(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_annual_wage IN NUMBER,
new_emp_bonus IN NUMBER) IS

store_temp REF Store_T;

BEGIN
SELECT REF(a) INTO store_temp
FROM Store a
WHERE a.store_id = new_store_id;

INSERT INTO Employee
VALUES (Full_Time_T(new_emp_id, new_emp_name,
new_emp_address,

 new_emp_phone, ‘Full Time’,
new_emp_account_no,
 new_emp_tfn, store_temp, new_dept_id,
new_annual_wage,
 new_emp_bonus);

END insert_fulltime;

MEMBER PROCEDURE delete_fulltime IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END delete_fulltime;

END;
/

CREATE OR REPLACE TYPE BODY Part_Time_T AS

MEMBER PROCEDURE insert_parttime(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,

Retailer Case Study 299

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_weekly_wage IN NUMBER) IS

store_temp REF Store_T;

BEGIN
SELECT REF(a) INTO store_temp
FROM Store a
WHERE a.store_id = new_store_id;

INSERT INTO Employee
VALUES (Part_Time_T(new_emp_id, new_emp_name,
new_emp_address,

 new_emp_phone, ‘Part Time’,
new_emp_account_no,
 new_emp_tfn, store_temp, new_dept_id,
new_weekly_wage));

END insert_parttime;

MEMBER PROCEDURE delete_parttime IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END delete_parttime;
END;
/

CREATE OR REPLACE TYPE BODY Casual_T AS

MEMBER PROCEDURE insert_casual(
new_emp_id IN VARCHAR2,
new_emp_name IN VARCHAR2,
new_emp_address IN VARCHAR2,
new_emp_phone IN VARCHAR2,
new_emp_account_no IN VARCHAR2,
new_emp_tfn IN VARCHAR2,
new_store_id IN VARCHAR2,
new_dept_id IN VARCHAR2,
new_hourly_wage IN NUMBER) IS

store_temp REF Store_T;

BEGIN

300 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SELECT REF(a) INTO store_temp
FROM Store a
WHERE a.store_id = new_store_id;

INSERT INTO Employee
VALUES (Casual_T(new_emp_id, new_emp_name,
new_emp_address,

 new_emp_phone, ‘Casual’,
new_emp_account_no, new_emp_tfn,
 store_temp, new_dept_id, new_hourly_wage);

END insert_Casual;

MEMBER PROCEDURE delete_casual IS

BEGIN
DELETE FROM Employee
WHERE Employee.emp_id = self.emp_id;

END delete_casual;

END;
/

Maker_T Class

The Maker_T class and its table have to be created first before the Item table
because the Item_T class will have an object reference to Maker_T. We also
need a user-defined method show_maker to display the maker details given an
item ID.

Relational Schemas
Maker (maker_ID, maker_name, maker_address,
maker_phone)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Maker_T AS OBJECT
(maker_id VARCHAR2(10),
 maker_name VARCHAR2(20),
 maker_address VARCHAR2(50),
 maker_phone VARCHAR2(10))

/

Retailer Case Study 301

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CREATE TABLE Maker OF Maker_T
(maker_id NOT NULL,
 PRIMARY KEY (maker_id));

Item_T Class and Available_In Table

Now we can implement Item_T, its table, and the Available_In table, which is
derived from the many-to-many relationship between tables Store and Item.
The Item_T class needs an object reference to the Maker_T class on the
attribute made_by. As Available_In is a regular table, we cannot have member
methods. Instead, we use regular stored procedures for insertion and deletion.
Apart from generic methods, there is also a user-defined method in the Item_T
class to show the store address, phone number, and the store’s stock available
for a given item name.

Relational Schemas
— Note that the Item and Store attributes in the
Available_In
— table are implemented using object references
Item
— for the Item_T class and Store for the Store_T
class.

Item (item_ID, item_name, item_desc, item_cost,
item_price, made_by)
Available_In (item, store, item_stock)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Item_T AS OBJECT

(item_id VARCHAR2(10),
 item_name VARCHAR2(20),
 item_desc VARCHAR2(50),
 item_cost NUMBER,
 item_price NUMBER,
 made_by REF Maker_T,

 MEMBER PROCEDURE insert_item(
new_item_id IN VARCHAR2,
new_item_name IN VARCHAR2,
new_item_desc IN VARCHAR2,
new_item_cost IN NUMBER,
new_item_price IN NUMBER,

302 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_maker_id IN VARCHAR2),

 MEMBER PROCEDURE delete_item)
/

CREATE TABLE Item OF Item_T
(item_id NOT NULL,
 PRIMARY KEY (item_id));

CREATE TABLE Available_In
(item REF Item_T,
 store REF Store_T,
 item_stock NUMBER);

Method Implementation

CREATE OR REPLACE TYPE BODY Item_T AS

MEMBER PROCEDURE insert_item(
new_item_id IN VARCHAR2,
new_item_name IN VARCHAR2,
new_item_desc IN VARCHAR2,
new_item_cost IN NUMBER,
new_item_price IN NUMBER,
new_maker_id IN VARCHAR2) IS

maker_temp REF Maker_T;

BEGIN
SELECT REF(a) INTO maker_temp
FROM Maker a
WHERE a.maker_id = new_maker_id;

INSERT INTO Item
VALUES (new_item_id, new_item_name, new_item_desc,

 new_item_cost, new_item_price,
maker_temp);

END insert_item;

MEMBER PROCEDURE delete_item IS

BEGIN
DELETE FROM Available_In
WHERE Available_In.item IN

(SELECT REF(a) FROM Item a
 WHERE a.item_id = self.item_id);

Retailer Case Study 303

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DELETE FROM Item
WHERE item_id = self.item_id;

END delete_item;

CREATE OR REPLACE PROCEDURE Insert_Available_In(
new_item_id IN VARCHAR2,
new_store_id IN VARCHAR2,
new_item_stock IN NUMBER) AS

item_temp REF Item_T;
store_temp REF Store_T;

BEGIN
SELECT REF(a) INTO item_temp
FROM Item a
WHERE a.item_id = new_item_id;

SELECT REF(b) INTO store_temp
FROM Store b
WHERE b.store_id = new_store_id;

INSERT INTO Available_In
VALUES (item_temp, store_temp, new_item_stock);

END Insert_Available_In;
/

CREATE OR REPLACE PROCEDURE Delete_Available_In(
deleted_item_id IN VARCHAR2,
deleted_store_id IN VARCHAR2) AS

BEGIN
DELETE FROM Available_In
WHERE Available_In.item IN

(SELECT REF(a) FROM Item a
 WHERE a.item_id = deleted_item_id)

AND Available_In.store IN
(SELECT REF(b) FROM Store b
 WHERE b.store_id = deleted_store_id);

END Delete_Available_In;
/

Customer_T Class

Next is the implementation of the Customer_T class and its table. It has generic
methods for insertion and deletion, and a user-defined method to show the item

304 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

name and total given a particular customer’s gender and age in a given store
location.

Relational Schemas
Customer (cust_ID, cust_name, cust_address,
cust_phone,

cust_gender, cust_DOB, bonus_point)

Class, Table, and Method Declaration

CREATE OR REPLACE TYPE Customer_T AS OBJECT
(cust_id VARCHAR2(10),
 cust_name VARCHAR2(20),
 cust_address VARCHAR2(50),
 cust_phone VARCHAR2(10),
 cust_gender VARCHAR2(3),
 cust_dob DATE,
 bonus_point NUMBER,

 MEMBER PROCEDURE insert_customer(
new_cust_id IN VARCHAR2,
new_cust_name IN VARCHAR2,
new_cust_address IN VARCHAR2,
new_cust_phone IN VARCHAR2,
new_cust_gender IN VARCHAR2,
new_cust_dob IN DATE),

 MEMBER PROCEDURE delete_customer)
/

CREATE TABLE Customer OF Customer_T
(cust_id NOT NULL,
 PRIMARY KEY (cust_id));

Method Implementation

— The implementation can only be done if the
table
— Transaction has been created beforehand.

CREATE OR REPLACE TYPE BODY Customer_T AS
— The number of bonus points inserted for a new
customer is 0.

MEMBER PROCEDURE insert_customer(
new_cust_id IN VARCHAR2,

Retailer Case Study 305

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

new_cust_name IN VARCHAR2,
new_cust_address IN VARCHAR2,
new_cust_phone IN VARCHAR2,
new_cust_gender IN VARCHAR2,
new_cust_dob IN DATE) IS

BEGIN
INSERT INTO Customer
VALUES (new_cust_id, new_cust_name,
new_cust_address,

 new_cust_phone, new_cust_gender,
new_cust_dob, 0);

END insert_customer;

MEMBER PROCEDURE delete_customer IS

BEGIN
DELETE FROM Customer
WHERE Customer.cust_id = self.cust_id;

END delete_customer;

CREATE OR REPLACE PROCEDURE Show_Cust_Item(
new_cust_gender IN VARCHAR2,
new_cust_age IN NUMBER,
new_store_location IN VARCHAR2) AS

BEGIN
CURSOR c_show_cust_item IS

SELECT b.item_name, SUM (c.quantity) AS
Total_Item
FROM Customer a, Item b, Transaction c,

Available_In d, Store e
WHERE c.customer = REF(a) AND c.item =
REF(b)
AND a.cust_gender = new_cust_gender
AND (TO_NUMBER(SYSDATE,’YYYY’)–

 TO_NUMBER(a.cust_dob, ‘YYYY’)) <
new_cust_age

AND d.item = REF(b) AND d.store = REF(e)
AND e.store_location = new_store_location
GROUP BY b.item_name;

BEGIN
DBMS_OUTPUT.PUT_LINE
(‘Item Name’||’ ‘||’Total Item’);
DBMS_OUTPUT.PUT_LINE

306 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(‘——————————————‘);
FOR v_show_cust_item IN c_show_cust_item LOOP

DBMS_OUTPUT.PUT_LINE
(v_show_cust_item.item_name||‘ ‘||
 v_show_cust_item.total_item);

END LOOP;
END show_cust_item;

/

Transaction_T Class

Next we show the implementation of the Transaction_T class and its table, with
its generic member methods. Note that we have object references to the
Item_T and Customer_T classes on attribute Item because the participation in
this side is total.

Relational Schemas
— The Customer and Item attributes are implemented
using ref.

Transaction (trans_ID, trans_date, customer, item,
quantity)

Class, Table, and Method Declaration
CREATE OR REPLACE TYPE Transaction_T AS OBJECT

(trans_id VARCHAR2(10),
 trans_date DATE,
 customer REF Customer_T,
 item REF Item_T,
 quantity NUMBER,

 MEMBER PROCEDURE insert_transaction(
new_trans_id IN VARCHAR2,
new_trans_date IN DATE,
new_cust_id IN VARCHAR2,
new_item_id IN VARCHAR2,
new_quantity IN NUMBER),

 MEMBER PROCEDURE delete_transaction)
/

CREATE TABLE Transaction OF Transaction_T
(trans_id NOT NULL,
 PRIMARY KEY (trans_id));

Retailer Case Study 307

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Method Implementation

CREATE OR REPLACE TYPE BODY Transaction_T AS

MEMBER PROCEDURE insert_transaction(
new_trans_id IN VARCHAR2,
new_trans_date IN DATE,
new_cust_id IN VARCHAR2,
new_item_id IN VARCHAR2,
new_quantity IN NUMBER) IS

cust_temp REF Customer_T;
item_temp REF Item_T;

BEGIN
SELECT REF(a) INTO cust_temp
FROM Customer a
WHERE a.cust_id = new_cust_id;

SELECT REF(b) INTO item_temp
FROM Item b
WHERE b.item_id = new_item_id;

INSERT INTO Transaction
VALUES (new_trans_id, new_trans_date,

 cust_temp, item_temp, new_quantity);
END insert_transaction;

MEMBER PROCEDURE delete_transaction IS

BEGIN
DELETE FROM Transaction
WHERE Transaction.trans_id = self.trans_id;

END delete_transaction;

END;
/

Building Tools Using
Oracle™ Developer

In this section, we will demonstrate the usage of one of the Oracle™
development tools provided to develop a client-server application. Using

308 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Oracle™ forms, the users can control the layout of the screen, and these forms
allow users to control the program flow in detail.
There will be two types of forms shown. The first one is the form built using the
data-block form, and the second one is built using the custom form. In ORDBs,
we will mainly need the second approach because there are user-defined
methods to be shown. In addition, some built-in insertion and deletion methods
implemented by Oracle™ Developer might not meet the ORDB requirements.
Nevertheless, for demonstration purposes, we will provide both approaches in
the following sections.

Creating a Form Using the Data-Block Form

In this section, we will demonstrate how to create a form using the data-block
form in Form Builder. We choose the object Maker_T of the case study to be

Figure 8.13. Form Builder welcome screen

Figure 8.14. Data Block Wizard welcome screen

a. b.

Retailer Case Study 309

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

implemented using the data-block form. We notice that this object is trans-
formed into an object table with simple attributes and without generic and user-
defined methods embedded in it.
Once both sides, client and server, are ready to run the Oracle™ development
tool, this step-by-step action will be very simple to follow. By choosing Form
Builder from the program menu, the welcome screen should come up (see
Figure 8.13). Choose the design using Data Block Wizard and click the OK
button to go to the next step.
The next window shows another welcome screen, but this is the welcome
screen to the Data Block Wizard (See Figure 8.14a). Click the Next button to
go to the next process. In the next window (see Figure 8.14b) we have to select
the type of data block, and for this example, we select the Table or View radio
button and click the Next button.
In the next window, we need to choose the table for the form. By clicking the
Browse… button (see Figure 8.15a), users will be shown the list of tables and
views available. However, if the user has not connected yet to the database,
another window will come up to connect to the database. Once we connect to
the database, the connection will remain until we log off of Form Builder. Figure
8.15b shows the window where we can select the table or view; in this case,
we select table Maker.
After we select the table, the next page (see Figure 8.16a) displays the whole
attributes in that particular table on the Available Column box. To select an
individual attribute, we can use the single-arrow sign, but to select whole

Figure 8.15. Connecting to the database in Data Block Wizard

a. b.

310 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

attributes, we use the double arrow. Each attribute chosen will appear in the
Database Items box.
This is the last step of Data Block Wizard; the end screen (see Figure 8.16b)
should appear. We can keep the option of using the Layout Wizard to set the
layout of the form by clicking the Finish button.
At the end of Data Block Wizard, the Layout Wizard will be displayed. The first
window shown is the welcome screen (see Figure 8.17a). By clicking the Next
button, we can start to build the layout of the form. Figure 8.17b shows the next
window where the users can create a canvas on which the form will be
displayed. We can also select the type of the canvas by choosing from the pull-
down menu. For this example, we select the content type where the canvas can
fill the entire window.

Figure 8.17. Layout Wizard welcome screen and creating a canvas

a. b.

Figure 8.16. Selecting an attribute in Data Block Wizard and the end
screen

a. b.

Retailer Case Study 311

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The next window (see Figure 8.18a) enables the user to choose the columns
and attributes from the data block that will be displayed in the form. For this
example, we select all columns, and by using the double arrow, we transpose
them from the left box to the right one.
In the window after that (see Figure 8.18b), all of the columns created will be
displayed. In this window, the user can modify the display of the prompt, and
the width and the height of each item.
The next window (see Figure 8.19a) allows the users to select the layout style
of the page. We select the form style where only one record can be displayed
at a time. On the other side, if we select Tabular, the result will be displayed in
a table format. By clicking the Next button, the next window (see Figure 8.19b)
will appear where we can determine the title for the frame and the layout of the
record. In our example, the frame title is “Maker Details.”

a. b.

Figure 8.19. Selecting-style page and setting-row page in Layout Wizard

Figure 8.18. Select columns and modify items in Layout Wizard

a. b.

312 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.20. Layout Wizard end screen

Figure 8.21. Object Navigator and Layout Editor

This is the last step of Layout Wizard, and the end screen (see Figure 8.20)
should appear. We can keep the option of using Layout Wizard to set the layout
of the form by clicking the Finish button.
Being finished with the Layout Wizard, we will automatically go to Layout
Editor with the default Object Navigator (see Figure 8.21). This editor
provides a graphical display of the canvas that is used to draw and to position
form items.
In the Layout Editor, we can edit the layout of the items by using the Property
Palette (see Figure 8.22a). A simple, more appealing layout of the Maker
Details form is shown in Figure 8.22b.

Retailer Case Study 313

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a. b.

Figure 8.23. Form run time through client-server mode

a. b.

Figure 8.22. Property Palette and updated Layout Editor

Once we have modified the form layout, we can run the form using different
methods. One way is through the traditional client-server mode by clicking the
client/server button in the Layout Editor or by selecting Client/Server from the
menu Program under Run From. Figure 8.23a shows the form run-time window
in client-server mode. By clicking the Execute Query button, the form will
display records in the Maker table (see Figure 8.23b). We can navigate the
record by clicking the arrow buttons on the toolbar.
Oracle™ forms provide insertion and deletion capabilities. Therefore, although
there is no generic method embedded in an object, the form has provided its
own generic methods. However, extra care has to be taken to manage the
integrity constraint among objects, especially when using object references.

314 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.24 shows how to insert a new record using a form. By clicking the
Insert Record button, the record is automatically inserted into the table. By
clicking the delete button, we can delete a particular record from the database.
We have shown how to run a form using the traditional client-server mode. The
next method is running it through the applet viewer. By doing this, we can see
how the form works when it is deployed on the Web. We can do this by clicking
Run from the Web button in Layout Editor, or by selecting Web from the menu
Program under Run From. The window is shown in Figure 8.25.
Finally, the form can also run from a Web browser. By calling the server name
using a URL (uniform resource locator), users can access the form from the
server easily and it works similarly to the way it works in the traditional client-
server mode. Note that the URL will depend on the setup of the server.

Figure 8.25. Form run time through the Web

Figure 8.24. Inserting a record in a form

Retailer Case Study 315

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If we do not enter the user details in the URL, we will first have to make a
connection (see Figure 8.26a). On the completion of the connection, the form
will be displayed (see Figure 8.26b). This form works similarly to the previous
two run methods.

Creating a Form Using a Custom Form

In this section we will demonstrate how to create a form using a custom form.
A custom form is usually applicable for the forms that integrate several tables
together. It can also be used when the users want to have more freedom in the
form design. For example, we will use a custom form for the Management_T
object and its subclasses Directors_T and Managers_T.
As before, by choosing Form Builder from the Program menu, the welcome
screen (see Figure 8.13) should come up. Instead of choosing Data Block
Wizard, we select to build a form manually. The form window with the Object
Navigator should then appear, and we are ready to start building the form.
First, by changing the view from the ownership view (which is the default) to the
visual view, we will see a slightly different Object Navigator. With this visual
view, we can then change the name of the window created. In this case, we
choose the name Management_Window (see Figure 8.27a).
Under the window, we then create a canvas (see Figure 8.27b). As in the
previous section, this canvas will be used to display the records in the form. By
choosing the Property Palette of the window and the canvas, we can change the

Figure 8.26. Form run time through a Web browser

a. b.

316 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

details such as the title, the size, the scroll bar, and so forth. In our case, we
choose to use the title Management Details for the window we will work on.
Now we are ready to create a special data block that is not associated with a
specific database table, which is called the control block. It is recommended
to design the control block first before we start building the custom form. In our
case, the control block will contain records from the table Management and its
subclass tables.
To create the control block, we have to change the view from the visual view
to the ownership view under View menu. On the Object Navigator (see Figure
8.28a), we then highlight the item data block, and by clicking the Add button

a. b.

Figure 8.28. Creating a data block in Object Navigator

a. b.

Figure 8.27. Changing window name and creating a canvas in Object
Navigator

Retailer Case Study 317

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on the toolbar, we can start creating the new data block. A pop-up window will
appear; we select to build a new data block manually.
The block will appear under the data block item on the Object Navigator. We
can change the name of the data block to Management_Block (see Figure
8.28b). Note that under the new data block there is a menu named Items. Items
in this case are components inside the data blocks. We can create the items on
the canvas that we created earlier.
Now we can open the canvas by selecting Layout Editor under the Tools menu.
This canvas will be an empty canvas (see Figure 8.29). We are ready to put the
items on the canvas by utilizing the toolbar on the left side of the canvas.
First, select the text item button from the toolbar and put it on the canvas. Next,
do the same thing for a text button. For each item, we can change the details
through the Property Palette. Figure 8.30a shows the two items with their
details having been changed. The text item management_ID will show the
manag_ID of the Management table. Therefore, we have to make sure that the
data type and other properties match the data in the database tables.
We have to do this process for each item that we want to display on the form.
Figure 8.30b shows the canvas with all items added to it. The attributes from
tables Director and Manager are also included in this form. Note that we are
not allowed to do this using the data-block form.

Figure 8.29. Empty new canvas

318 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

At this stage, we can save the module with the name Management_Details and
start linking the items to the database tables. For this purpose, one way
provided by Oracle™ is by using the LOV (list of values) Wizard. The LOV
is a list of legal values that can be used in a form field. It is useful for making data
entry easier and avoiding errors. For the custom form, it is the way to link the
separate tables together.
In our Management form, we need four different tables. The first three tables
are obvious and are the Management table and its subclasses tables. The last
table needed is the Company table because the data in the Management table
might have references (through ref) to the data in the Company table.
To start creating a LOV, we select LOV Wizard from the Tools menu. A first
LOV Wizard window will appear (see Figure 8.31a). Keep the radio button on

a.

b.

Figure 8.30. Adding items to the canvas

 a. b.

Figure 8.31. Welcome screen and entering and SQL statement in LOV
Wizard

Retailer Case Study 319

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

creating a new record group. The next window (see Figure 8.31b) enables the
users to specify the query statement for grouping the data in the LOV. We can
also use Query Builder for this purpose by pressing the query-builder button.
In this case, we link the three tables together using the references or object
references.
The next window (see Figure 8.32a) shows the record group columns created.
We can choose to transform the record into LOV columns by using the arrow
as in the data-block form. For our example, we choose to transform all records.
In the next window (see Figure 8.32b), the properties for each column are
displayed. We can change them according to the needs. The important thing to
consider in this step is to choose the right look-up return item.

Figure 8.32. Selecting LOV columns in LOV Wizard

a. b.

a. b.

Figure 8.33. Return item in LOV and the complete return value

320 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

By putting the cursor on the column of a particular item, we can click the “Look
up return item” button to choose which value to return to the specified item.
Figure 8.33a shows the window to choose the return item.
By clicking the OK button, the particular item Manag_ID will return the value
of Management_ID in the record group. It will be done for each single item (that
needs return values) in the block as is shown in Figure 8.33b.
The next window (see Figure 8.34a) allows us to add the title of the LOV
window, and the window after that (see Figure 8.34b) allows us to determine
the number of data retrieved at a time on the advanced-options page.
In the next window, we can assign the return items from the LOV columns. Only
assigned items will be displayed on the form, and for this case, we select all of
the columns (see Figure 8.35a). This is the last step of LOV Wizard, and at the
end, the end screen should appear (see Figure 8.35b).

a. b.

Figure 8.34. Display page settings in LOV Wizard

a. b.

Figure 8.35. Assigned items in LOV and end screen

Retailer Case Study 321

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8.37. Adding a button to a custom form

Figure 8.36. Rename record group and LOV in Object Navigator

After creating the LOV, we can change the name of the record group and the
LOV. It is mainly optional and is done for the sake of convenience. In this case,
we rename them to Management_LOV (see Figure 8.36).
Next, we can add a button for the users to retrieve the record (see Figure 8.37).
Recall that in Management_T we need one user-defined method to show the
details of the management employees who have the roles of a director and a

322 Rahayu, Taniar and Pardede

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

manager at the same time. Actually, the method was implemented while we
were creating the record group because the SQL statement in Figure 8.31b
actually performs the same as the method. Therefore, using this button, we just
need to retrieve the records.
Now we can add a trigger to that particular button. In this case, we will add a
trigger every time the button is pressed. By choosing Smart Triggers under the
Program menu, while the cursor is pointing to the button, we can be directed
to the PL/SQL Editor window (see Figure 8.38).
Finally, before we run the application, we can design the look of the form. We
can do this by changing the color, font, and so forth using the Property Palette
or changing them directly through Layout Editor. Figure 8.39 shows the
example of the same form with a better appearance.

Figure 8.38. Trigger in PL/SQL Editor

Figure 8.39. Custom form after editing

Retailer Case Study 323

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Now we are ready to run the application. Like using Data Block Wizard, the
application can be run through different ways. For example, we can run it
through the traditional client-server application (see Figure 8.40). Note that
after we press the Show_Management button, windows will appear that list all
the data retrieved.

Summary

This chapter has demonstrated an implementation of a comprehensive case
study whereby object-oriented Oracle™ has been used to design and imple-
ment the tables and methods, and Oracle™ Developer was used to build the
user interface of the system.
The forms implementation in this chapter was done using a very simple form
application using Oracle™ Developer. With more PL/SQL applications, we
can design a more interactive and powerful development tool.

Figure 8.40. Custom form running from the client-server application

324 About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Johanna Wenny Rahayu is an associate professor in the Department of
Computer Science and Computer Engineering at La Trobe University, Austra-
lia. Her major research is in the area of object-relational databases, Web
databases, and the Semantic Web. She has published more than 70 papers that
have appeared in international journals and conference proceedings. She has
edited three books, which form a series in Web applications, covering Web
databases, Web information systems, and Web semantics. Currently, she is
involved in a number of large projects on software development in collabora-
tion with several industry partners in Australia.

David Taniar earned a PhD in databases from Victoria University, Australia
(1997). He is now a senior lecturer at Monash University, Australia. He has
published more than 100 research articles and edited a number of books in a
Web technology series. He is on the editorial board of a number of international
journals including Data Warehousing and Mining, Business Intelligence and
Data Mining, Mobile Information Systems, Mobile Multimedia, Web
Information Systems, and Web and Grid Services. He has been elected as
a fellow of the Institute for Management of Information Systems (UK).

About the Authors 325

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Eric Pardede earned his Master’s in Information Technology from La Trobe
University, Australia (2002). At the same university, he is currently a PhD
candidate under the supervision of Dr. Wenny Rahayu and Dr. David Taniar.
He has been working as a research and teaching assistant at Monash University
and La Trobe University. He has published several research articles that have
appeared in international journals and conference proceedings. His research
area is in data modeling and query optimization for object-relational databases
and XML (extensible markup language) databases.

326 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

aggregate table 73
aggregation 1, 7
aggregation hierarchies 7, 178
aggregation relationships 67
array type 35
association 1, 6
association relationships 6, 59, 65,

175
attribute 3
Australian Education Union (AEU)

21

B

Building_T 221

C

Campus_T 217
City University (CU) 210
class 2
clustering 39, 67
clustering technique 39

Company_T 284
complex objects 11
constraint 32
Customer_T 282

D

Degree_T 224
delete 13
Department_T 290
DEREF 187
dereferencing query 175, 177
dynamic 89

E

Employee_T 294
encapsulation 2, 41, 114
Enrolls_In 227
exclusive composition 8, 10
existence-dependent 8
existence-dependent aggregation 70
existence-dependent composition 9
existence-independent aggregation 73

Index 327

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

existence-independent composition 8,
9

extended relational systems 17

F

Faculty_T 218
foreign keys 65
foreign-key relationships 51, 60

G

generic methods 1, 13, 114,
115, 215

grant 97
grant mechanism 89, 90

H

heterogeneous composition 11
homogeneous composition 11

I

index-organization table 193
Information Technology Services

(ITS) 210
inheritance 1, 5
inheritance hierarchies 115, 170
inheritance join expression 171
inheritance relationships 4, 51
insert 13
IS DANGLING 187
Item_T 282

K

keyword 52
keyword under 40

M

Management_T 288
many-to-many association 7
member functions 43

member procedures 43, 98
methods, defined 1
methods, generic 1
methods declaration 117
methods implementation 117
multilevel composition hierarchy 12
multilevel composition objects 11
multiple inheritance 57
mutual-exclusion inheritance 54, 126

N

National Ltd. 276
nested tables 70
nested-table 186
nesting 70
nesting technique 70
nonexclusive composition 8, 10

O

object 2
object attribute 191, 192
object identity (OID) 4
object name 3
object references 62, 187
object table 191
object type 34
object wrapper 16
object-oriented conceptual model

(OOCM) 1, 51
object-oriented methods 89
object-oriented model 1, 51
object-oriented system 36
object-relational DBMS 1
one-to-many association 6
one-to-one association 6
Oracle™ 1, 8, 9, 31, 34, 35,

51, 89, 115, 123, 170, 171,
176, 210, 276

328 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

P

part queries 178
part query 179
partition inheritance 56, 132
Person_T 227
personal computer 8
primary-key relationships 51, 60

R

ref 38
referencing query 175
referential integrity 114
referential integrity constraint 32
relational databases 16
relational modeling 59
relational systems 16
relational-model 31
retrieval 13

S

set null: 32
shared ID 170
Shareholders_T 285
static 89
Store_T 282, 290
stored procedure 41, 90, 101
subclass 4, 117
subclass queries 170
Subject_T 240
superclass 4
superclass queries 170

T

tourist attraction 102

U

UML 10
Under 40

union inheritance 52, 116
update 13
user-defined methods 14
user-defined queries 170, 171

V

value 187, 188
varray 35, 184
Varray Collection 184
vertical division 116
Victoria 211
visibility scope 44

W

whole query 178, 181

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

Idea Group
R E F E R E N C E

Edited by: John Wang,
Montclair State University, USA

Two-Volume Set • April 2005 • 1700 pp
ISBN: 1-59140-557-2; US $495.00 h/c
Pre-Publication Price: US $425.00*
*Pre-pub price is good through one month
after the publication date

� Provides a comprehensive, critical and descriptive exami-
nation of concepts, issues, trends, and challenges in this
rapidly expanding field of data warehousing and mining

� A single source of knowledge and latest discoveries in the
field, consisting of more than 350 contributors from 32
countries

� Offers in-depth coverage of evolutions, theories, method-
ologies, functionalities, and applications of DWM in such
interdisciplinary industries as healthcare informatics, artifi-
cial intelligence, financial modeling, and applied statistics

� Supplies over 1,300 terms and definitions, and more than
3,200 references

New Releases from Idea Group Reference

Idea Group Reference is pleased to offer complimentary access to the electronic version
for the life of edition when your library purchases a print copy of an encyclopedia

For a complete catalog of our new & upcoming encyclopedias, please contact:
701 E. Chocolate Ave., Suite 200 • Hershey PA 17033, USA • 1-866-342-6657 (toll free) • cust@idea-group.com

ENCYCLOPEDIA OF

DISTANCE LEARNING

April 2005 • 650 pp
ISBN: 1-59140-560-2; US $275.00 h/c
Pre-Publication Price: US $235.00*

*Pre-publication price good through
one month after publication date

ENCYCLOPEDIA OF

MULTIMEDIA TECHNOLOGY
AND NETWORKING

April 2005 • 650 pp
ISBN: 1-59140-561-0; US $275.00 h/c
Pre-Publication Price: US $235.00*
*Pre-pub price is good through

one month after publication date

ENCYCLOPEDIA OF

INFORMATION SCIENCE
AND TECHNOLOGY

AVAILABLE NOW!

Five-Volume Set • January 2005 • 3807 pp
ISBN: 1-59140-553-X; US $1125.00 h/c

� More than 450 international contributors provide exten-
sive coverage of topics such as workforce training,
accessing education, digital divide, and the evolution of
distance and online education into a multibillion dollar
enterprise

� Offers over 3,000 terms and definitions and more than
6,000 references in the field of distance learning

� Excellent source of comprehensive knowledge and liter-
ature on the topic of distance learning programs

� Provides the most comprehensive coverage of the issues,
concepts, trends, and technologies of distance learning

ENCYCLOPEDIA OF

DATABASE TECHNOLOGIES
AND APPLICATIONS

Four-Volume Set • April 2005 • 2500+ pp
ISBN: 1-59140-555-6; US $995.00 h/c
Pre-Pub Price: US $850.00*
*Pre-pub price is good through one
month after the publication date

www.idea-group-ref.com

The Premier Reference Source for Information Science and Technology Research

ENCYCLOPEDIA OF

DATA WAREHOUSING
AND MINING

