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Preface

Object-oriented databases have been a subject of research for approximately 15
years and available for commercial use for about seven years. Typically, today’s
information technology disciplines focus on the paradigm of object orientation. The
introduction of object orientation in databases relieves users of many of the restric-
tions implied by existing technologies, particularly the relational technology, as may
be illustrated by the following two examples:

e Because data and its relationships no longer need to be represented in table
format, more appropriate modelling and processing techniques have emerged
for many applications.

o From the point of view of software engineering and application development
there is a discontinuity if development is based on object-oriented methods
but the underlying database system is relational. Using an object-oriented
database system would allow data management to be integrated smoothly
into the software engineering methodology.

Furthermore, in our age of global networks, distributed information processing
based on object orientation becomes more and more important, particularly aspects
such as interoperability, cooperation, collaboration and integration. It is generally
recognized that distributed object management is a promising approach and that the
organization of data management should therefore also be object-oriented.

In this book we adopt the view that the use of object-oriented databases is
principally justified by their adequacy in terms of modelling and processing. We
mainly deal with the aspects of models and programming languages for object-
oriented databases that are relevant to the user. Aspects concerning system imple-
mentation will be considered only if they are essential to the reader’s understanding
of the subject matter.

A prominent feature of this book is the emphasis on SQL and the current stan-
dardization endeavours in the field of object-oriented databases. For many years the
relational query language SQL has been the standard for databases and it is likely

\'
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that further developments will be also based on this language. This book emphasizes
SQL because it deals with object-oriented databases and not with persistent
programming languages. Moreover, the importance of standards is presently undis-
puted; however, in the database field in particular no definite direction for the future
has yet emerged for defining SQL3 or the outcome of ODMG (Object Database
Management Group). For this reason we discuss the subject of standards somewhat
more extensively and, in view of ODMG, we also deal with the more stable back-
ground of OMG (Object Management Group).

We also include a concise description of models and languages for object-
oriented databases. To do so we adopt a parallel structure: on the one hand we
discuss the core aspects from an informal point of view, examining concrete exam-
ples as well as possible applications; and on the other, from a formal point of view,
we precisely state and explain their purposes and interrelationships. In contrast
to other books we deliberately abstain from covering the whole field, but opt
instead for a selection — albeit subjective — of topics. We do believe, however, that
none of the essential aspects of models and programming langnages has been
neglected.

This book is divided into three parts. In Part I, Chapter 1 we provide an intro-
duction to databases, describing the evolution of data models and database systems,
and also the properties of object orientation in general and object-oriented databases
in particular. In Chapters 2 and 3 we define the framework of the subsequent
discussion in greater detail. Chapter 2 presents the principal features of object-
oriented database languages, but does not yet relate them to a specific language or
product; in Chapter 3 we examine more closely the model properties of object-
oriented databases and present a formal framework which accounts for problems
discussed in the previous sections.

In Part II, Chapter 4 various case studies are conducted in order to examine
possible ways of realizing object-oriented database systems. We do not claim com-
pleteness in our selection of systems, but, in our opinion, we cover representatives
of all current major developments: that is, object-oriented systems in the tradition
of databases, respectively programming languages, as well as object-relational
systems. Chapter 5 is concerned with current standardization projects; we are con-
vinced that SQL3 and also OMG and ODMG will be a basis for further standard-
ization in the field of object-oriented database languages.

For those readers who are interested in the more formal aspects of the
subject, we discuss some theoretical concepts in Part III. Algebraic approaches to
language design are discussed in Chapter 6 and contrasted with rule-based concepts
in Chapter 7.

The current book is an extended and corrected version of Objekt-orientierte
Datenbanken: Modelle und Sprachen, a book written in German and published by
Oldenbourg Verlag in 1996. This book in turn was based on a tutorial which we held
for the Deutsche Informatik-Akademie at various locations in 1993; in addition we
have incorporated material that we teach to our students at the university.
Accordingly, this book mainly targets readers who are familiar with the basic con-
cepts of databases and wish to specialize in object-oriented databases, in particular
third- or fourth-year undergraduates as well as first- or second-year graduate
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students of computer science, or programmers and information system designers
who are familiar with databases or object-oriented programming languages.
Thanks go to Monika Rengers for doing most of the figures, to Petra
Weiermann for helping with the editing of the manuscript and, last but not least, to
our families for their patience.
Georg Lausen, Gottfried Vossen
Freiburg and Miinster, February 1997
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Object orientation
in databases

1.1 Introduction 1.4 An example application

1.2 Historical development 1.5 Object-oriented databases

1.3 Relational databases and 1.6 Bibliographical notes
SQL

This introductory chapter motivates object orientation in databases and
database systems to give a framework for the subsequent sections. First we
discuss databases and their typical application areas in order to understand
the requirements for database systems. The historical development of data
models and database systems shows to what extent the different system
generations fulfil these requirements. Today, relational databases are of
particular importance, but they have become a limiting factor, especially

in new database applications. This in turn motivates the use of object-
oriented concepts in databases, leading to so-called object-relational database
systems as well as the development of independent object-oriented database
systems. We offer a description of these attempts and discuss the problems
and objectives which must be solved in order to obtain an adequate
integration of object orientation and databases. We shall mostly concentrate
on object-oriented database systems because, as far as modelling and
language aspects are concerned, object-relational ones can be considered
as a restricted version. In the subsequent chapters we demonstrate the state
of the art of the technology and outline how it is likely to progress.




4 Object orientation in databases

1.1 Introduction

Database management takes a central role in applications where large persistent
collections of data are to be organized and maintained, and which are therefore sup-
ported by a computer-based information system. Databases have been researched,
developed and employed for about 30 years in applications of very different nature
and objectives.

Roughly speaking, a database system (DBS) is based on the idea that data and
associated programs are separated, and thus is very different from a typical file
system. However, seeming at first glance to be a contradiction, object-oriented data-
bases aim to achieve integration of data and programs, but this is now achieved in
an adequate methodical framework, which borrows much from abstract data types.

A database system consists of software, the database management system
(DBMS) and one or several databases. The DBMS is a program system which runs
in the main memory of a computer and is controlled by the respective operating
system. A database is a collection of data which represents information concerning
a certain real-world application; because of its size, it is usually held in secondary
storage. The DBMS functions as an interface between the users and the database; it
ensures that users have adequate and efficient access to the data, and that the data
itself is resistant to hardware and software failures and can be persistently stored
over long periods of time independent of the programs that access it.

Technically speaking, a DBMS is embedded in the software context of a gen-
eral computer system as shown in Figure 1.1. It is connected to the outside world by

Prog. 1 Prog. n

Database

Figure 1.1 Generic view of a DBMS.
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Abstraction levels Associated languages

External External
schema 1 schema n

Conceptual
schema

Internal schema

Figure 1.2 Three-level database architecture according to ANSI/SPARC.

the communication subsystem. The distinction between a database and the DBMS
by which it is managed admits at least two possible ways of viewing a DBS:

o from the user’s or

e from the developer’s point of view.

From a user’s point of view, a database is seen at different abstraction levels where
different kinds of data can be identified. The generally accepted ANSI/SPARC
model, for example, has the three abstraction levels shown in Figure 1.2, which are
designed to achieve logical and physical data independence. The (lowest) internal
level is concerned with the physical definition and organization of data (in the form
of adequate data structures with associated access paths). The conceptual level, the
next level up, describes the time-invariant general structure of a database in the con-
ceptual schema and in the language of a specific data model which abstracts from
the details of the physical level. The (highest) external level offers individual users
or user groups the possibility of defining parts of the conceptual schema for their
particular applications in the form of an external schema: a view.

In this architecture, the central aspect of a database is the conceptual level and
its data model. Usually, a data model has a specification component to define the
structural aspects of an application and its semantics, and an operational component
which allows the manipulation of these structures. As a consequence, the user is
provided with specific languages with which he or she can define, manipulate and
manage database structures. Figure 1.2 shows these languages or language parts and
the respective levels to which they belong.
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Interface level
Data model and query language
Host language interfaces
Other interfaces

Language processing level

View management Language compiler
Semantic integrity control Language interpreter
Authorization Query decomposition

Query optimization
Access plan generation

Transaction processing level

Access plan execution Transaction generation
Concurrency control
Buffer management Recovery

Secondary storage management level
Physical data structure management
Disk access

Figure 1.3 Functional DBMS levels.

From a system developer’s viewpoint, a DBMS has to cover many functional
aspects, which in part stem directly from the user’s view. In principle, the functional-
ity of a DBMS has to be regarded as a four-level structure (compare Figure 1.3). The
interface level makes interfaces available to the various classes of user, including the
database administrator, ad hoc user and application programmer. The language pro-
cessing level is responsible for dealing with the various kinds of task to be performed
by a database (such as queries and updates). A query, for example, is typically decom-
posed into a series of elementary database operations, which then undergo optimiza-
tion in order to avoid unacceptably long execution times. An executable query or
executable program is transferred to the transaction processing level, which controls
concurrent access to a database which may be shared by many users (concurrency
control) and simultaneously makes the system resistant to certain kinds of error
(recovery). Finally, the secondary storage management level is responsible for phys-
ical data structures (for example, files, pages and indices) and disk accesses.

Based on this general description of the two principal ways of viewing a data-
base, four major areas can be identified on which database research and development
have concentrated for the past 25 years.

® Data models: Data models provide appropriate concepts for the abstraction of
real-world applications and the modelling of data structures and semantics in
connection with them. Up to the present day, data models have undergone a
remarkable evolution,

® Database languages: The topic here is the provision of languages which
make it possible to access and operate on databases in a suitable manner.
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It is essential to understand that database languages, compared with general pro-
gramming languages, can have only a limited expressive power because, from a
practical viewpoint, efficiency is of major importance. Languages like the rela-
tional standard SQL (see Section 1.3), for example, have no loop construct. But,
if necessary, the query language of a DBS can be embedded in a general pro-
gramming language which is always equipped with control structures and thus
ensures full computational power. What then generally happens is that the so-
called impedance mismatch is encountered, since databases and programming
languages have different data types. The data type set, for example, is typically
not available in programming languageﬁ; at the programming language level, set
operations on a database must be decomposed into tuple operations on the ele-
ments of the set by using a cursor. The abstraction level of the database language
is lost at this point, and this loss is then quite often responsible for awkward and
difficult-to-maintain programs.

Transactions and concurrency control: Databases allow concurrent access to
shared data and therefore must offer appropriate synchronization and restart
strategies. For this purpose, the transaction concept has been developed,
which provides the basis for various implementation possibilities according
to the specific application demands.

Data structures: An integral component of the database system is a secondary
storage management facility. Here the development of appropriate data struc-
tures and access techniques is essential. Nowadays there exists a broad
knowledge of efficient techniques for data storage and retrieval.

The development and evaluation of these aspects has always been led or influenced
by the requirements of the various database system application areas. Commercial
applications, especially in business and administration, were of particular signifi-

cance.

We mention the following examples:

banks and insurance companies

e public administration

e libraries

¢ booking and reservation systems (START and AMADEUS)

materials management and control, stock control
personnel management

order entry and accounting

residents registration system and information services
production planning and management

These areas share numerous characteristics which make database technology an effi-
cient tool; for example:

simple data sets of fixed format, which can be adequately described at a lo-
gical level, particularly by employing record-oriented data models;
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e simple data types for the values of the fields or attributes describing a data set
(numerical as well as alphanumeric types are often sufficient);

e parametrizable, predefinable queries which describe highly repetitive tasks to
be executed by the database;

¢ in-place updates where old values are replaced by new ones without retain-
ing the corresponding old value;

o short transactions which represent tasks to be performed by the database
(queries or update operations) in executable form; these generally have to be
processed at a high rate (for example, 1000 transactions per second).

For the same reasons that motivated the transition from file systems to database
systems in the above-mentioned application areas over 20 years ago, for example,

e physical and logical data independence,
e redundancy-free storage,

e central integrity control,
.

languages at a high level of abstraction,

today new areas demand DBS support to an increasing degree. The following list
includes only a few examples:

the CAx fields, for example CAD, CAM, CAE, CASE;
office information systems;

geographical information systems;

experimental data recording and evaluation;

multimedia systems (for images, text, language, data and video).

These areas have their own typical characteristics which are either not supported or
only poorly supported by today’s DBS. We must distinguish application-specific
characteristics from application-independent ones; the latter include:

e the necessity to model highly structured information, which implies the abil-
ity to represent complex objects and data types;

e the desire to model behaviour: that is, object-specific or type-specific opera-
tions on the structures which can be described by the underlying data model.

Taking into account that the possibilities for defining structures which are provided
by a traditional data model are often severely limited compared with those available
to a programming language, it is not surprising that more recent research on data
models attempts to incorporate paradigms known from programming languages. In
this context, object orientation, which is the subject of this book, is of particular
interest.
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1.2 Historical development

The historical development of database systems can be divided into three genera-
tions. The first generation (late 1960s and 1970s) was characterized by the separa-
tion of logical and physical information. For the first time, data models were used to
describe physical structures from a logical viewpoint. In particular, the hierarchical
model and the network model were developed on the basis of graph concepts. We
shall not discuss these models in detail, since they are of little interest today.

The second generation is characterized by relational systems, which became
commercially available in the early 1980s. These systems are based on a new and
simpler approach to data organization, the relation or table, which allows a consid-
erably clearer distinction between a logical and a physical data model. Relational
systems offer a high degree of physical data independence and include powerful
languages, even though they have limited expressive power. Physical data independ-
ence means that the physical storage of data is transparent (in the sense of invisible)
to the user and may in principle be changed without also changing the logical view
of the data. Relational languages are set-oriented (as opposed to record-
oriented) and can thus be non-procedural or declarative. In a relational database the
user sees the data as tables. The example in Figure 1.4 shows a small database for a
library application. The Book relation describes the books available in a library, the
Reader relation describes the readers known to the library, and the Lending relation
relates books to readers. Set-oriented processing means that the tables of a relational
database can be manipulated in their entirety by special operators; there is no need
to iterate tuple by tuple through the relation. Since relations are an important and
well-known mathematical concept and may also, for example, be understood as
predicates of mathematical logics, this generation of database systems was a topic of

Book  InvNr  FirstAuthor  FurtherAuthors Title

123 Date n Intro DBS
234 Jones y Algorithms
345 King n Operating Syst.
Reader Reader no. Name
224 Peter
347 Laura
Lending Inv. no. Reader no. Expiry date
123 225 07-22-94
234 347 08-02-94

Figure 1.4 Example of a relational database.
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File systems

Bachman diagrams

\
/

Hierarchical model Network model

/
N\

Flat relational model

\
/

Nested relational model Entity—relationship model

Complex object models Semantic data models

/
\

Object-oriented models

Figure 1.5 Evolution of data models.

thorough research from a theoretical viewpoint, starting in the early 1970s shortly
after Codd had proposed the model.

While database systems were mainly used in business and management appli-
cations initially, it was recognized in the early 1980s that advantages could be gained
from databases in scientific, technical, office and other fields as well. However, rela-
tional systems reach their limitations in applications like CAD, CASE or CIM; this
is due to several reasons — discussed in more detail later — which triggered the devel-
opment of new technology. Today, this development is in full swing; object-oriented,
object-relational and extended-relational database systems can be considered as a
third generation, which is now starting to become commercially available. This gen-
eration far exceeds the possibilities of purely relational systems and, among other
things, aims at an appropriate integration of programming languages and databases.

Apart from the evolution of systems, a second closely related line of
evolution can be observed which concentrates on data models (Figure 1.5). The
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motivation for the development of entity-relationship (ER) models, semantic mod-
els or complex object models was as follows: the desire to have graphic design sup-
port; decreasing interest in the record-oriented approach; establishment of a clearer
distinction between logical and physical concepts; reduced semantic overloading of
types of relationships by explicit introduction of specific constructs (for example,
IsA type relationships, that is, specializations, in contrast to component relation-
ships, or aggregations); and a sometimes only indirect availability of abstraction
mechanisms in record-oriented models.

Whereas the nested relational model is a direct generalization of the flat rela-
tional model, the ER model and the subsequently developed semantic models use a
different technique to describe given applications. The principal objective initially
was to establish ways of describing objects with complex structures more adequately
and of recording semantic information. This is precisely what so-called complex
object models achieve; these models differ from semantic models most in the avail-
ability of type constructors. Object-oriented models which allow structure modelling
as well as the modelling of object behaviour are the most recent development in the
evolution of data models.

1.3 Relational databases and SQL

The systematic study of database principles began with the introduction of the rela-
tional model. Like all other data models, the relational model has a structural part
(schemata with dependencies) and an operational part (relational algebra). In the rela-
tional model the logical and physical levels (according to the ANSI/SPARC model)
are independent of each other. The only basic construct on the logical level is the rela-
tion; relations can be illustrated for the user in the form of tables (see Figure 1.4). In
this section, we should like to introduce some common concepts of the relational
model and the language SQL. This is to justify the study of object-oriented databases
and also to take into account the likelihood that, in all probability, SQL — appropri-
ately extended — will play an important role in object-oriented databases.

1.3.1 Structural aspects

A relational database is described at the conceptual level by a schema in which the
structural aspects of the database are defined. A relational database schema consists
of a set of relational schemata which are related to each other by interrelational
constraints. A relational schema itself consists of a name, a set of attributes and their
domains, and a set of intrarelational constraints; the relations corresponding to the
schemata consist of tuples which contain the data values and fulfil the inter- and
intrarelational constraints. A relation is usually represented in the form of a table.
The terms used in SQL for relation, tuple and attribute are table, row and column.
The SQL command for the definition of data is CREATE TABLE, whereby
new relational schemata (in the context of a previously declared database schema)
can be defined. For each such schema, at least key definitions and entity and refer-
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ential integrity can be distinguished as integrity constraints. The syntax of this
command is as follows:

CREATE TABLE table-name
( column-name-1 type [ NOT NULL | UNIQUE ]
[, column-name-2 ... ]

[, UNIQUE ( list-of-column-names ) [, UNIQUE ... 1 ]
[, PRIMARY KEY ( list-of-column-names ) ]
[, FOREIGN KEY ( list-of-column-names )

REFERENCES table-name-2 [( list-of-column-names ) ]
[, FOREIGN KEY ... ] 1
[, CHECK ( condition ) [, CHECK ...] 1)

Several other options, which are not of interest here, are omitted. First, the attribute
names and their type are defined; furthermore, each attribute can optionally be
declared free of null values or unique (that is, all its values in a relation have to be
different). The following data types are available: CHAR, VARCHAR, INT, SMALLINT,
DEC, FLOAT, BIT, DATE, TIME, TIMESTAMP.

According to the above syntax, an integrity constraint in the definition of a
table can be a primary key definition, a foreign key definition or a check clause; SQL
also has domain and attribute conditions and so-called assertions. In this section we
restrict ourselves to the description of keys and foreign keys.

Generally, key (PRIMARY KEY) means an attribute or attribute combination
whose values uniquely identify the tuples of any relation of the respective schema.
A foreign key (FOREIGN KEY) defined for a schema R, however, describes an
attribute or attribute combination which is a key in another schema S (REFER-
ENCES); the meaning of a foreign key relationship between R and § via attributes X
is that the X part of R is a subset of the X part of S. A foreign key definition defines
in particular an inclusion dependency between two tables. It is possible to define in
SQL what is to be done if the subset condition between the respective tables is
violated by a delete or update operation.

1.3.2 Updates and queries in SQL

After tables have been defined, (new) tuples may be entered using the INSERT com-
mand, which in its simplest form looks as follows:

INSERT INTO table-name
[ ( list-of-column-names ) ]
VALUES ( data~items )

The values of the respective tuple are the data items separated by commas. If new
values are to be entered for certain attributes but not for all, the respective columns
must be indicated explicitly; the remaining columns are filled with null values.
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The following commands for deleting or updating all tuples that satisfy a
certain condition are more or less self-explanatory:

DELETE FROM table-name
[ WHERE condition ]

UPDATE table-name

SET column-name-1 = expression-1
[, column-name-2 = expression-2 ]
[ WHERE condition ]

In SQL only one type of command can be used to query a database: the SELECT
command. This command has many options to define simple or complex queries,
but we discuss only a few basic ones here. The SELECT command has the following
simple basic structure:

SELECT attribute list (* output *)
FROM relations list (* input *)
WHERE condition

The SELECT clause indicates the attributes onto which the projection should be
made: that is, which column names the result should have. The FrRoOM clause indi-
cates from which relations these attributes and their values should be taken: that
is, which operands should be addressed in order to answer the query. The
(optional) WHERE clause indicates selection conditions with which the result should
comply, or conditions that specify which tuples from different relations are to be
assembled.

Executing a SELECT command is basically done in the following three steps:

(1)  Derive a Cartesian product of the operand tables indicated in the FROM
clause.

(2)  Based on this intermediate result, evaluate the conditions stated in the WHERE
clause.

(3)  Project the result from step (2) onto the attributes indicated in the SELECT
clause; DISTINCT may be added to avoid duplicate tuples in the final result.

We shall illustrate the effect of the SELECT command by looking at some operations
of the relational algebra:

)] Let R be a relational schema with a set of attributes X, where {A1, ..., A:} C
X. The projection of R onto {Aj, ..., A} is expressed by
SELECT DISTINCT Al, ... , Ak FROM R

(2) LetRbeasin(l), where A, B € X. The selection of R with respect to condi-
tion A = g is expressed by

SELECT DISTINCT * FROM R WHERE A = a
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Analogously, the selection with respect to condition A = B is expressed by
SELECT DISTINCT * FROM R WHERE A = B

3) Let R and S be relational schemata with equal sets of attributes. The union of
R and S is expressed by

SELECT DISTINCT * FROM R
UNION SELECT DISTINCT * FROM S

Analogously, the difference between R and S is expressed by

SELECT DISTINCT * FROM R
EXCEPT SELECT DISTINCT * FROM S

(4)  LetR be arelational schema with attributes Ay, ..., Ax, B1, ... , Bn and S a rela-

tional schema with attributes By, ..., B, C1, ... , Ci. Then the ratural join of R
and S, which joins those tuples from R and S which have equal B-values, is
expressed by

SELECT DISTINCT Al, ... , Am, R.Bl, ... , R.Bm, C1, . cl
FROM R, S

WHERE R.B1 = S.Bl1 AND ... AND R.Bm = S.Bm

Since attributes from different relational schemata may have identical names,
the dot-notation R.B is used to specify which occurrence of the respective
attribute is meant. With respect to the natural join, of course, we could have
used S.B as well. The WHERE clause then explicitly states that tuples from the
different relations must have identical values with respect to the shared attrib-
utes. A simpler formulation of the natural join, which is possible in SQL2, is:

SELECT * FROM R NATURAL JOIN S

1.4. An example application

This section describes an example application to which we shall frequently refer in
the following sections and chapters. It will help us to identify a series of shortcom-
ings of the relational model; moreover, it will motivate the new modelling capabili-
ties in database systems as they are in fact provided by object-oriented technology.

In our example application we want to establish a database for vehicle man-
ufacturers which should contain information on companies which manufacture
vehicles, vehicles and especially automobiles currently manufactured, persons
owning vehicles and employees who have a position in a company.

First of all, we are going to make this general description precise by listing
the attributes that characterize these entities:

® companies have a name, head office, several subsidiaries and a president;
® subsidiaries have a name, office, manager and employees;
e vehicles have a model name, colour and manufacturer;
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® automobiles are composed of a drive and car body, with the drive consisting
of an engine and gearing, and the engine being characterized by its horse-
power and cubic capacity;

® persons have a name, age and domicile and possess a private fleet;

® employees are persons with specific qualifications, salary and family mem-
bers.

1.41 Representation in the relational model

Based on the description given above, we want to represent this application at an
abstract level; we realize that the relational data model offers only insufficient
support, because

® compound attributes (for example, a person’s or company’s address) can-
not be represented directly; the components have to be declared individually
as attributes;

® set-valued attributes (for example, subsidiaries of a company) must be dif-
ferentiated from single-valued ones and represented in a different relational
schema;

e aggregations (like the drive of an automobile) and specializations (employ-
ees in comparison to persons) require individual relation schemata equipped
with special integrity constraints;

e the introduction of artificial keys will be necessary if the attributes are not
sufficient to obtain a unique identification (for example, the company name
cannot serve as a key, because companies may carry the same company name
in different countries).

Let us have a closer look at companies. The attribute name is unproblematic in the
relational representation if, for example, the data type VARCHAR is sufficient. The
attribute head office is to be understood as an address, consisting of street and loca-
tion. Since such a structure cannot be represented in the relational model, the
attribute head office must be eliminated and replaced by street and location. Since a
company can have several subsidiaries, the attribute subsidiaries is set-valued. In
order to avoid redundancies at the tuple level (repetition of all company details for
every subsidiary), it is necessary to use a second relation in which only the sub-
sidiaries of every company are listed. But in order to establish a relationship between
the company’s subsidiaries and its other details, this decomposition requires the
introduction of a (in this case artificial) key; for this purpose we choose the new
attribute companylD. Subsidiaries are themselves structured as described above; we
can proceed in the same way as with the company attributes, but the set-valued
attribute employees requires a third relational schema. The president of a company
is an employee of that company and employees are special types of persons. This is
represented in the relational manner by defining president as a foreign key with
respect to employee and introducing a new relation for the specialization relationship
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between employee and person. Note that relation SubsEmpl can be regarded as an
example of a relational representation of an aggregation relationship. The special
semantics of an aggregation forces us to state attributes explicitly as foreign keys.

Based on these considerations, we arrive at the following representation of
company information in the relational model:

CREATE TABLE Company
(CompanyID INT NOT NULL,
Name VARCHAR NOT NULL,
Street VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
President INT NOT NULL,
PRIMARY KEY (CompanyID),
FOREIGN KEY (President) REFERENCES Employee (EmplNo)
Y

CREATE TABLE Subsidiary
(CompanyID INT NOT NULL,
NameSubs VARCHAR NOT NULL,
Street VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
Manager INT NOT NULL,
PRIMARY KEY (CompanyID, NameSubs),
FOREIGN KEY (CompanyID) REFERENCES Company,
FOREIGN KEY (Manager) REFERENCES Employee (EmplNo)
) ;

CREATE TABLE SubsEmpl
(CompanyID INT NOT NULL,
NameSubs VARCHAR NOT NULL,
Empl INT NOT NULL,
PRIMARY KEY (CompanyID, NameSubs, Empl),
FOREIGN KEY (CompanyID) REFERENCES Company,
FOREIGN KEY {(NameSubs) REFERENCES Subsidiary,
FOREIGN KEY (Empl) REFERENCES Employee (EmplNo)
)i

CREATE TABLE Person
(PersNo INT NOT NULL,
Name VARCHAR NOT NULL,

2)a

CREATE TABLE Employee
(EmplNo INT NOT NULL,

FOREIGN KEY (EmplNo) REFERENCES Person (PersNo));
It should be noted that these relations are not the only possible relational representa-

tion. But a representation in this form is essential if certain quality requirements (as
given by the normal forms, for example) are to be taken into account.
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As one consequence of such a schema, defining queries may become com-
plicated. If you want to know, for example, whether an employee named Lacroix is
employed in the Ghent subsidiary of the Ford company this will be represented in

SQL as follows:

SELECT EmplNo

FROM Company, Subsidiary,
'Ford'
AND Company.CompanyID
AND Subsidiary.Location =
AND Subsidiary.CompanyID
AND Subsidiary.NameSubs

WHERE Company .Name

AND SubsEmpl.Empl

AND Employee.Name =

SubsEmpl, Employee

Subsidiary.CompanyID

'Ghent'

= SubsEmpl.CompanyID
= SubsEmpl. NameSubs

Employee.EmplNo
'Lacroix’';

The evaluation of this query could be done as follows: first, the Ford subsidiary in Ghent
is determined; the set of this subsidiary’s employees is then compared with the set of all
employees in order to find out whether a person named Lacroix is in the first set.

1.4.2 Non-relational representation

We shall now leave the relational world and outline how a more adequate represen-
tation of our example can be achieved if at least the following are supported by a

data model:

(1)  Type declarations are as flexible as in programming languages.

(2)  Objects can be uniquely identified independently of their attribute values. To
this end so-called object identifiers are provided, which allow referencing

between objects.

(3)  Reuse of information is possible by

e referencing objects from different locations so that new information can
be assembled from existing information, or in other terms, new objects
are built out of already existing ones, which become their components,
and can be considered as their subobjects. This technique is called aggre-
gation, or sometimes association.

e defining specializations between certain information units, which then
allow inheritance of structure and behaviour.

To sketch a representation which makes use of these additional features, we now switch
to a notation which is quite common for type declaration in programming languages:

Notation

Meaning

tuple type

set type
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We assume the availability of the base types String (for strings) and Integer (for
integer numbers). We describe companies as follows:

Company: [
Name: String,
Headoffice: Address,
Subsidiaries: { Subsidiary },
President: Employee |

Subsidiary: [
Name: String,
Office: Address,
Manager: Employee,
Employees: { Employee } 1]

Address: [
Street: String,
Location: String ]

First let us look how aggregation is applied. A Company is built out of a string
(Name), an object of type Address (Headoffice), a set object with element type
Subsidiary (Subsidiaries) and an object of type Employee (President). Note that we
refer directly to the name of the type. This has the effect that for a concrete company
the value of attribute Headoffice is a reference to the concrete object of type Address,
the value of attribute Subsidiaries is a set of references to objects of type Subsidiary,
and the value of attribute President is a reference to an object of type Employee. The
object identifiers needed for such a referencing scheme may be implemented by
unique names at a logical level or by (virtual) addresses at a storage level. Note that
because we associate attributes with named types there is no longer a need for a
FOREIGN KEY clause.

With regard to persons, we would like to distinguish those that are also
employees; for employees, in addition to all the properties of persons, more proper-
ties are of interest. Each employee thus specializes a person, or in other terms, is also
a person. We express this kind of relationship as follows:

Person: [
Name: String
Age: Integer,
Domicile: Address,
Fleet: { Vehicle } 1

Employee is-a Person: [
Qualifications: { String 1},
Salary: Integer,
Familymembers: { Person } ]

Here, by means of inheritance, the structure of persons is reused for employees. Thus,
all the attributes defined for persons — Name, Age, Domicile and Fleet — are also
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defined for employees in addition to their specific attributes Qualifications, Salary
and Familymembers. Finally, we describe vehicle information in an analogous way:

Vehicle: [
Model: String,
Manufacturer: Company,
Colour: String ]

Automobile is-a Vehicle: [
Drive: VehicleDrive,
Carbody: String ]

VehicleDrive: [
Engine: OttoEngine,
Gearing: String |

OttoEngine: [
HP: Integer,
cc: Integer ]

To give an impression of how querying becomes more elegant and concise once rep-
resentation has become more adequate, we show next how the relational query from
the preceding section could be stated in an object-oriented adaptation of SQL.:

select e

from e in Employee, ¢ in Company, s in Subsidiary
where c.Name = 'Ford' and

s in c.Subsidiaries and

s.0ffice.Location = 'Ghent' and

e in s.Employees and

e.Name = 'Lacroix'

In this query we follow references by so-called path expressions. Note how the
richer structuring possibilities in the object-oriented setting achieve conciseness
(cf. also Sections 2.2 and 2.3 for more details).

1.4.3 Findings

Our example has shown the limitations of the relational model, even for data
modelling in traditional applications, especially when adequate modelling is to be
achieved. The fact that in the relational model only the two constructors tuple and
set are available to structure information, where the set constructor can be used
only once to define a relation as a set of tuples, is particularly problematic. We real-
ized that referencing, aggregation and specialization help to represent information
more adequately, but are not provided in the relational model. The result is unnec-
essarily complicated structured schemata and, as a further consequence, awkward
queries.
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The use of artificial keys, which are needed solely for identification purposes,
implies the problem that their values have to be assigned and managed by the user;
therefore there is no independence of key values and attribute values which is
guaranteed by the system.

As a further aspect, conventional databases allow access to stored informa-
tion only via the operators of the respective user language. It is not possible to bind
special operators or even procedures to certain entities or information units, with
which access and processing are performed. Referring to the above example: using
the relational model we can operate only with the representation of relations in
tables; only via an application program is it possible, for example, to show the user
a map with the head office of the company marked on it. Certainly, it would be nicer
to bind such a program directly to the representation of the company.

Such considerations lead from structural aspects to behavioural ones.
Abstract data types give us the necessary paradigm to encapsulate structure and
behaviour. It is obvious that databases should benefit from such a technique.

1.5 Object-oriented databases

The discussion in the previous section revealed problems when traditional database
systems are used. We now argue that object-oriented database systems are better
suited because they have mechanisms to avoid these problems. First, we state the
requirements which must be fulfilled. As a (possible) answer we then describe the
paradigm of object orientation as well as the principal properties of an object-
oriented database system.

1.5.1 Requirements

Against the background of the example application described in the previous
section, a suitable database system is expected to have at least the following func-
tionality:

e The structure of objects to be modelled can be nested as required; different
structures of that kind can reference each other or be introduced as special-
izations of others.

e Object identity is supported to allow objects to be distinguished independ-
ently of their attribute values.

® Objects can be equipped with behaviour which links specific operations
exclusively to these entities.

e The structure and behaviour of objects can be inherited hierarchically.

Moreover, as an additional functionality, it is desirable that both the structure and the
behaviour definitions be extensible in a logical sense, which means that even after
completion of the database design new attributes and new operations can be defined
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and added to the existing set. Such a feature supports the evolution of a database
over time.

1.5.2 The paradigm of object orientation

In general, object orientation in databases combines concepts from various areas,
including at least the following:

e From programming languages: abstract data types and the encapsulation
principle, also the computational completeness of a programming language.

e From software technology: code extensibility and code reusability, and the
principle of modularization.

e From artificial intelligence: ideas and approaches to knowledge representa-
tion, techniques and methods of classification.

e From databases, or rather data modelling: nested relations or generalizations
of the relational model as proposed, for example, in connection with semantic
data models.

With regard to the first point it should be noted that database languages are in gen-
eral not complete, because they do not allow computable queries to a database to be
expressed. Extensions of traditional database languages may be inefficient, and
when they are embedded in programming languages they suffer from a loss of
abstraction. Object orientation in databases tries to overcome these problems. In par-
ticular the aim is to reduce or even eliminate the impedance mismatch between data-
base languages and programming languages already mentioned in Section 1.1.

In brief, object orientation as a paradigm is based on the following five prin-
ciples:

(1)  Each entity of a given application is modelled as an object with its own iden-
tity, which is distinguished from the value of the object. As a consequence,
objects may be composed of other objects and objects may be referenced
from several other objects; the latter case is known as object sharing.

To illustrate this aspect, Figure 1.6 shows two classes, Company and
Employee (the rows are to be filled with objects). One employee of the com-
pany is its President; if the company is a joint-stock company, there has to be
a principal shareholder. The important thing is that these two persons can be
identical (although the principal shareholder of a company is not necessarily
its employee).

(2)  Each object encapsulates structure and behaviour. The structure of an object
is given by so-called instance variables (attributes) whose values may
be scalar, sets, compound or references to other objects. An object’s set of
values constitutes the (usually time-dependent) state of the object. The
behaviour of an object results from the methods which can be executed on the
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Figure 1.6 Principle of object sharing.

object. It should be noted that frequently a distinction between attributes and
methods is made only at the model level, not at the language level.

The state of an object can be accessed by passing messages; access to the
state in this form may be exclusive or optional. If an object receives a mes-
sage that it understands, the execution of an associated method is initiated.
Basically, objects communicate by exchanging messages; this is also known
as message passing.

Objects with a common structure and common behaviour are grouped into
classes; in general, each object is an instance of one class. Message passing
between objects is usually realized based on information defined in the class.
When message passing takes place, we call the class that provides the imple-
mentation of the method that responds to the message the receiver class.

A typical sequence during message passing is illustrated in Figure 1.7,
in which an object from Class 2 sends message Mess 2 to an object from Class
1. The receiver consults its class on how to react to this message; because
Class 1 knows an implementation for Mess 2, namely method Meth 2, it
replies to the object with this method which is then executed by the object.

Classes are arranged in a hierarchy which is implied by defining a class as a
specialization of one or several other classes. The subordinate classes are
called subclasses and the superordinate classes are referred to as super-
classes. Subclasses inherit the structure and behaviour of their superclasses.
If a subclass provides a specific structure and behaviour, this will override
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Figure 1.7 Principle of message passing.

inheritance. It should be noted that there are exceptions to the inheritance rule
mentioned so far. Sometimes certain values, so-called default values, or sim-
ply defaults, may also be inherited. On the other hand, class artributes, that
is, attributes which are not applicable to individual objects but to the set of all
objects, and class methods might not be inherited. Inheritance conflicts may
arise if multiple inheritance takes place: for example, if a class inherits attrib-
utes with the same name but different types from two superclasses, a conflict
occurs which must be solved by the programmer or the system. Analogously,
there may be conflicts between methods with the same names and different
implementations.

These principles characterize the paradigm of object orientation as it is applied in
different contexts, for example in programming languages, operating systems or
databases. For databases especially, it is important to combine adequately the para-
digm itself with the typical properties of databases. We now discuss the principal
properties of object-oriented databases in more detail; these properties can be
classified into object-oriented properties (OO properties), which cover data model
and language features, and database system properties (DB properties), which
ensure that an object-oriented database system is above all a database system. We
shall discuss these properties in turn.
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1.5.3 OO properties: modelling features
The following features of object-oriented data modelling are important:
ability to model complex objects,

support of object identity,
distinguishing of types and classes,

definition of class hierarchies with inheritance.

Complex objects

Objects which are structured in a complex way (in brief, complex objects) originate
from atomic or already constructed objects by applying certain constructors. The
simplest objects are of predefined base types, for example of type integer, character,
string, boolean or real. As constructors to build complex objects, we can usually
distinguish the tuple, set, bag (multiset, that is, a set with elements possibly occur-
ring several times), /ist and array. The example application described earlier shows
that at least tuple and set constructors are important; sets are used as a natural form
of representation for (unordered) collections of real-world entities, respectively
properties, and tuples are used as an obvious representation of the properties of
entities.

Constructors should be applicable to objects in any kind of way orthogonally
to each other (but not as, for example, in the relational model, where the set con-
structor is applicable only to tuples and the tuple constructor only to atomic values).
Finally, support of complex objects must also offer appropriate operators to work
with these objects; in particular, it must be possible to operate on whole objects or
parts of objects.

Complex objects possess an internal structure: that is, they are composed of
simpler components (possibly recursively via several steps). The values of compon-
ents can be either part of the object’s value (complex value) or linked to the object
by references (aggregation). The advantage of the latter procedure is the possibility
of reusing information by object sharing.

Complex objects occur in a natural way in most of the new application areas
considered for database systems. Think, for example, of the structure of a VLSI
circuit, a car body or an aeroplane wing. Such structures have to be flattened in rela-
tional systems, so that they can be mapped onto collections of flat tuples. Thus, refer-
ring to objects as a whole is unnecessarily difficult, because the relevant information
is likely to be composed of several relations. The need to model complex objects,
however, is by no means restricted to new database applications; in conventional
applications also (as portrayed in our running example), complex objects arise out
of the desire to map the given reality onto database structures that are as detailed and
adequate as possible.

It should be noted at this point that currently available object-oriented data-
base systems widely support complex objects in their definition languages, and in
particular allow constructors to be applied in an orthogonal way. If there are system-
specific limitations, these seem to be tolerable.
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Object identity

Each object in the real world has an existence or identity which is independent of its
actual values. To capture this aspect for each object a system-supported identity is
maintained by assigning a so-called object identifier to each object. The identity
assigned to an object remains unchanged throughout the object’s entire lifetime; as
a consequence, the identity of an object is different from its value, which may be
changed.

In programming languages, pointers (memory addresses) fuifil a function
similar to object identity; a database system supporting identity, however, goes one
step further, ideally by not binding identity to a storage address.

With object identity it becomes possible to distinguish whether two objects
are equal or identical: in the first case the objects have the same values; in the sec-
ond it is one and the same object. We shall illustrate this aspect by looking at the
following relational table:

Employee Name Salary
Peter 50K
Susan 60K

Assume this table is updated to become

Employee Name Salary

Peter 60K

There are various possible reasons for this update, which are difficult to comprehend
solely by looking at the result; for example:

e Peter’s salary changed and Susan was dismissed.

e Peter and Susan were dismissed, and a new employee with the name Peter
and a new salary was employed.

If, on the other hand, the employees are considered as objects which have a unique
identity (in addition to their values), the update would be easy to understand. The
next example shows that unique identity allows the existence of several objects with
equal values. If, for example, you want to add to the following table

Parent  Child

Peter Laura
Susan Laura

the fact that another mother named Susan has a child called Laura, it becomes nec-
essary to introduce an artificial key attribute if that object identity is not provided by
the system.
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In addition to the above discussion, the support of object identity has (at least)
one further useful implication: it supports object sharing (aggregation). Two differ-
ent objects can have shared (identical) subobjects as components; graphically,
a complex object can be represented as a graph whose nodes represent object
identities and whose edges represent references to other objects. Updates to shared
subobjects then need to be made only once with respect to each corresponding com-
pound object.

All these implications could also be achieved by means of artificial keys in
relational systems; the fundamental difference is that object identity is maintained by
the system and thus relieves the programmer of that responsibility.

Types and classes

In object-oriented databases the concepts of type and class are borrowed from the
area of programming languages and reflect the differentiation between a value and
an object at an abstract level.

A type is a time-invariant description of a set of possibly complex values. A
type can thus be a base type (for example, integer, real or boolean) or structured; no
specific operations are bound to a type apart from generic ones (for example, ‘+’ for
the type integer). In relational database terminology a type represents a relational
schema which defines the admissible relations.

Following this tradition, a type in an object-oriented database system only
describes the structural part of a class. A class then encapsulates structure and spe-
cific behaviour; in particular, operations for the creation and deletion of objects are
provided. Moreover, class is a run-time concept such that the set of objects in exist-
ence at a given point in time, the so-called instances, can be allocated to it as its
extension.

To give examples, most of the structures in our running example will directly
correspond to classes (Section 1.4.2). This means that we can associate objects with
each of the resulting class names (for example, person or company). This is arbitrary
in so far as we do not make a further distinction between classes and named types in
this case; for example, you will not necessarily want to consider each individual
address (of a company or person) as an object and thus you may prefer to use address
as a named type rather than as a class, so that concrete addresses will appear as val-
ues and not as objects.

Inheritance

The schema of a database describes at an abstract level a given real-world applica-
tion area, which is composed of objects which in general are related to one another.
We have already come across two ways of expressing relationships, namely aggre-
gation and specialization. A specialization defines classes that are subordinate to
others (IsA relationship), whereas an aggregation expresses component relationships
between classes. We now concentrate on specialization.

If one object is more specific than another, it normally has properties that
do not apply to the more general object. One example is employees, who differ from
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persons by having a salary. In other words, each employee is (also) a person, but
with additional, more specific properties. Object-oriented databases have the
concept of inheritance based on a class hierarchy for adequate modelling of such
relationships: if the objects of class K are more special than those of class K, K|
will be defined as a subclass of K, with the effect that K inherits the structure (and
the behaviour and, if applicable, the default values) of K3; thus, each object of the
class K1 possesses all properties which have been defined for class K> and possibly
additional, more specific properties which have been defined for class Ki. We have
already discussed inheritance as one of the five principles of object orientation and
will come back to it in Section 2.4, where we look at some interesting aspects
in more detail. Here we are going to demonstrate by means of an example how inher-
itance affects reusability of behaviour.

We suppose that the administration of a university keeps data on employees
and students, with each of these objects being characterized by certain attributes and
certain operations applicable to them. In a system without inheritance (for example,
in a relational system) you would arrive at roughly the following representation:

Employee Student

Name dies Name dies

Age marries Age marries
Salary is_paid {Marks } is_marked

This means that six programs must be written.

In an object-oriented system, by using inheritance you would arrive at the
following representation, which accounts for the common characteristics of persons,
employees and students:

Person
Name dies
Age marries
Employee Student
Salary is_paid {Marks} is_marked

Now, only four programs must be written.

Remarks

According to our discussion, an object-oriented database system must provide,
in particular, a data model which covers the already mentioned modelling prop-
erties. We would like to study the significance of these properties to our running
example.
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First of all, we notice that the previously given description of our application can
be represented unchanged in an object-oriented data model; the only requirement is that
class names can also be used as fype names, which is generally possible with current
systems. Once again we shall study the previousty given description of companies:

Company: |
Name: String,
Headoffice: Address,
Subsidiaries: { Subsidiary },
President: Employee ]

We can regard this as a definition of a class with the name Company, whose objects
should have the four specified attributes, here arranged as a tuple type. The type of
the attribute Name is atomic, but all other attribute types represent references to
objects of other classes; this is only expressed by stating the name of the respective
class as the type of the relevant attribute. Company objects, that is, instances of the
class Company, are characterized by an identity and by a value for each of the above
attributes, where each value of the attribute Subsidiaries is a set of references to
objects of class Subsidiary.

By and large, we can illustrate the schema of our example application, auto-
mobile sales, with the graph shown in Figure 1.8. A single arrow shows an aggrega-
tion, a double arrow a specialization, and a * signifies a set-valued attribute. For
subclasses only the specific attributes are represented, not the inherited ones. Figure
1.9 shows possible extensions to the classes of this schema; object identities are
written in the form ## with »n being a natural number.

So far we have assumed that class definitions remain unchanged over time. In
fact, schema evolution in databases is traditionally considered to be an exceptional
case. Because data is persistent, changing the structure of a relation, for example by
adding a new attribute, may raise severe problems since a large amount of data has
to be reorganized. Object-oriented design is inherently evolutionary, so that modify-
ing the schema is no longer an exception. As a consequence, object-oriented data-
bases have to provide mechanisms that enable changes in class definitions to be
accommodated more smoothly. To some extent, schema evolution is supported by
inheritance. To give an example, adding a new structure and behaviour can be
achieved by assigning it to a new class, which is then linked to the old class as a sub-
class in order to reuse already existing structure and behaviour by means of inherit-
ance. In general, however, restructuring a class hierarchy or class definitions may be
inevitable, which may then be responsible for complex and time-consuming adapta-
tions of previous definitions.

1.5.4 OO properties: language features

Apart from modelling features (complex objects, object identity, types and classes,
class hierarchy with inheritance), an object-oriented database system must have
certain language features:
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Vehicle Automobile
Model  Manufacturer Colour Drive Carbody
#10  Golf #41 red #10 #20 Sedan
#11 323 #42 blue #11 #21 Hatchback
#12 R4 #43 green #12 #22 Sedan
#13  Coach  #44 black
VehicleDrive OttoEngine
Engine Gearing HP cc
#20 #30 Shifting #30 80 1600
#21 #31 Automatic #31 70 1800
#22 #32 Automatic
Company
Name HeadOffice Subsidiaries President
#41 \A #80 { #50,#51 } #60
#42 Mazda #81 { #52 ) #61
#43 Renault #82 { #53 } #62
#44 Wunder #82 {} #62
Subsidiary Address
Name Office Manager Employee Street Location
#50 main #80  #60 {#68,...} #30 Fabrik 1 Berlin
#51 south #83 #65 { #65,...} #81 Adzam 5 Tokyo
#52 D #84  #66 { #66,...} #82 1’rue Oui Paris
#53 RFA #84  #67 { #67,...} #83 Solarweg 1 Kehl
#84 Asiaweg 7 Miinster
Person
Name Age Domicile Fleet
#60 Slim 40 #30 { #10, #11 }
#61 Chubby 50 #81 {}
#68 Thin 35 482 {#12)
Employee
Qualifications Salary FamilyMembers
#65 { Alevels } 8000 { #61 }
#66 { Apprenticeship } 9000 { #63, #64, #68 }
#67 { Diploma, Doctorate } 8500 {1}
#68 { CourseA } 7000 {}

Figure 1.9 Possible extensions to the classes shown in Figure 1.8.
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Encapsulation

In higher programming languages encapsulation generally serves two purposes:
differentiation between the specification and implementation of an operation, proce-
dure or module; and the desire to achieve modularity. The principal idea is to form
abstractions which hide certain details from the outside world, in particular details
of the implementation.

A descriptive example of the encapsulation principle taken from everyday life
is the radio: certain knobs are mounted on its housing, for switching it on or off, for
station selection and for volume control. The radio operator only needs to know
which knob is provided for which function; but he or she does not need to know how
this function is realized within the radio.

With programming languages the encapsulation concept has been developed
and examined particularly in connection with abstract data types (ADTs); in an ADT
this concept is especially useful for differentiating between the interface visible to
the outside world and the internal implementation of a special data structure (for
example, a pushdown store). In the context of databases, at the schema level this
concept means that a class contains structural information (in the form of its
assigned type) as well as behaviour. In concrete terms, the latter means that methods
which are understood by the objects of a class can be allocated to that class. This
behaviour is visible to the outside world in the form of a set of so-called signatures,
which indicate the message names that can be sent to the class, possibly along with
some argument types and a result type. If a class receives such a message, it executes
the method allocated to the message.

Note that logical data independence can be achieved in this way, because a
method implementation can be changed without changing the interface.

Overloading, overwriting and late binding

Since the same method, but with a different implementation, may be defined several
times in a class hierarchy, method names can be overloaded. If a message is sent to
an object, the most specific implementation of the method should be executed; this
implementation overwrites all the other possible implementations. To implement
such overwriting, a late binding of implementations to method calls is required,
which defers the decision about what is to be executed to run time.

In particular, due to the encapsulation principle, the use of the same message
names in different contexts is quite familiar. Think, for example, of a message with
the name display, which

e should be understood by person objects to mean that the attribute values of
the person receiving the message should be displayed in the form of a table;

e and by automobile objects to mean that a three-dimensional picture should be
displayed.

Figure 1.10 summarizes what we have learned so far about classes: a class encapsu-
lates structure (type) and behaviour (messages with allocated methods) and is
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from the
| outside world
describes instantiated implemented by
by
Values Methods

Behaviour

Figure 1.10 Classes and their objects.

instantiated by objects, which have an identity, a state and a behaviour. Note that
modelling and language features are closely connected.

Ad hoc queries

One of the most distinctive features of database systems is set-oriented descriptive
languages which enable the user to make so-called ad hoc or dialogue queries.
Compared with programming languages, such a language generally has only limited
computational power but a high level of abstraction, such that even inexperienced
users can, in most cases, work satisfactorily with a database. SQL is the standard
today for relational database systems.

Ad hoc access to objects is also desirable for object-oriented databases,
because the user would not want to write a program for every individual query.
However, such a language will at least be expected to meet the requirements used in
relational systems, for example universality, descriptivity and optimizability, we
discuss these concepts in Chapter 2. In Chapter 4 we discuss examples of object-
oriented languages with these properties. It will also become evident that so far no
agreement has been reached on how these properties can be achieved. We should like
to point out that for object-oriented databases — like relational databases — a distinc-
tion can be made between algebraic, rule-based and calculus-based languages (see
Chapters 6 and 7).
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Computational completeness

The demand for computational completeness (Turing computability) of an object-
oriented language originates in the desire to overcome the impedance mismatch.
Viewed from a programming language perspective this is trivial, because in a pro-
gramming language every computable function can be expressed on the given input
data. Conventional databases, particularly for reasons of efficiency, are generally
very limited in their computability. Object-oriented systems offer a good chance to
overcome these limitations, because by binding methods to classes a link to a pro-
gramming language can be established. This is especially the case when a language
like Smalltalk or C++ is provided for method implementation.

Version management

The system functionality of an object-oriented database system has to cover a series
of wider-ranging demands than those required of conventional systems. This is
mainly due to the new application fields in which this new database type can pri-
marily be found. In new applications like CAD or CASE, for example, you find ver-
sions of individual design objects which are created and possibly discarded during
the design process. In the course of development, versions of objects are combined
to form configurations, which eventually result in products to be manufactured. If a
database system is to support such an application environment adequately, it has to
offer version management.

Extensibility

An object-oriented database system provides the user with a set of predefined types
and constructors which can be used for data or object modelling and also for writing
applications. Although numerous applications can thus be covered, there will often
be demands for further types, and possibly also constructors, which are specific to a
particular application. In this case, extensibility allows the user to define new types
and constructors and thereby to adapt the system to the user’s application domain.
It is important that such extensibility is supported by the system, so that there is no
difference in the use of predefined constructors and new types of constructors.

The extensibility aspect just described refers only to the conceptual level of
an object-oriented database system. Ideally, such a system would also support extens-
ibility at the internal level. This means that you can, for example, introduce new
storage structures to the system if the given application requires it or if it seems
appropriate. Think, for instance, of data structures for storing pictures or multimedia
data, which are generally not available a priori.

1.5.5 Object-oriented database system properties

Finally, we examine the system properties of object-oriented database systems; we
discuss the concepts common to database systems and explain these briefly.
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Persistence

In a database system data is always stored in a persistent manner: that is, the data or
objects on which the user or programmer works survive the execution of a process and
can then be used again in other processes. The persistence of data and objects is guaran-
teed automatically by a database system; unlike, for example, the execution of non-
database programs, the user does not need to worry about whether persistence is present.

In an object-oriented database system, persistence should be orthogonal in
the sense that each object, independent of its type, can become persistent.
Furthermore, it might be desirable for the user to be able to distinguish between
persistent and transient objects, or for objects to become persistent only for the dura-
tion of a predetermined time interval.

Multi-user control

In order to realize multi-user access and ensure a certain degree of fault tolerance, data-
base systems implement a transaction concept. With this concept several users can
have simultaneous access to shared data, with each user believing that he or she has
exclusive access to it. The transaction processing component of a database system
ensures that transactions are processed according to the so-called ACID principle:

A: they are executed atomically (according to the all-or-nothing principle);
C: they preserve the consistency of the stored data,
I. they are isolated from other, simultaneously executed transactions and do not

see inconsistent or uncommitted data;

D: transaction effects are durable (persistent), which means they survive any
kind of damage to the data that may occur after the transaction has been suc-
cessfully completed (committed).

The transaction concept has proved itself in database systems as the paradigm for the
synchronization of concurrent access; moreover, techniques for transaction process-
ing, which can be efficiently implemented, are available.

In principle, this situation does not change with object-oriented database sys-
tems, but there are some new problems which require special treatment. If an object-
oriented system is applied in a CAD application, long transactions may occur which
represent the work of individual designers. There are obvious reasons why the
demand for atomicity, for example, is tenable only to a limited extent for such trans-
actions. The fact that executions of transactions can no longer be regarded as
straightline programs has to be taken into account, because method calls within the
executions of transactions may cause complex nestings to occur.

Recovery

The transaction concept is also used to provide fault tolerance in a database system.
When an error occurs which, for example, corrupts the content of the database
buffer, the system must be able to restore a consistent state; this also applies to certain
other software errors and even to hardware errors. For this purpose, a database system
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normally has certain recovery protocols at its disposal. But it may also be necessary
to account adequately for the specific situations which may occur in object-oriented
database systems and which are dependent on the chosen architecture (see Section
4.1).

Secondary storage management

In database systems data is stored on secondary storage media, and sophisticated
functionality is provided to access data and transfer it between main and secondary
storage. These techniques deal with, for example, index management, the clustering
of data, buffer management, access path selection and even query optimization. All
these functions are transparent to the user, which means that physical data independ-
ence is achieved. However, the realization of these functions is closely linked to the
performance of the system.

1.5.6 Remark

A data model which is based on the object-orientation paradigm can be defined and
implemented in different ways; for example, many models are available commer-
cially. It therefore seems attractive to consider standardization in this field; this is
already being pursued by the Object Database Management Group (ODMG) in
particular. The convergence of rather different data and object models to a model
with common features can now be seen; the ODMG proposal’s main intention is to
lay down this trend (see Chapter 53).

1.6 Bibliographical notes

General introductions to the field of databases and database systems are, amongst
others, Date (1995), Elmasri and Navathe (1994), Silberschatz et al. (1997) and
Vossen (1994). Cattell (1994) describes the requirements that data models and data-
base systems need to fulfil in order to run new applications. The relational model is
based on Codd (1970). Introductions to SQL, especially the system-independent
standard, are given by, amongst others, Date and Darwen (1993) and Melton and
Simon (1993). The basic principles of transaction processing in database systems are
discussed by Bernstein et al. (1987) and Gray and Reuter (1993).

The use of the object-orientation paradigm in databases and the basics of
object-oriented data models and database systems are discussed by, amongst others,
Bertino and Martino (1991, 1993), Dittrich et al. (1991), Gupta and Horowitz
(1991), Kemper and Moerkotte (1994), Khoshafian (1993), Khoshafian and Abnous
(1990), Kim (1990), Kim and Lochovsky (1989), Loomis (1995), and Zdonik and
Maier (1990). An important contribution to the question of what an object-oriented
database is was made with the Manifesto by Atkinson et al. (1989). This paper
clarified for the first time which properties are necessary, optional or still open, and
gave a definition of object-oriented database systems which is still valid today.

The running example introduced in Section 1.4 of this book is based on Kifer
et al. (1992).
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expressions

In this chapter we elaborate on query languages for object-oriented
databases. First, we discuss certain language features which seem to be
important in the context of object orientation. As a framework we use an
SQL-like language. In particular, we examine in detail two characteristic
aspects of such languages: support for navigation in object-oriented data-
bases with so-called path expressions, and the inheritance of attributes and
methods and its impact on szatic rype-checking. We begin by stating some
general requirements.
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2.1 General requirements

Object-oriented database languages are expected to fulfil the same requirements as
languages based on other data models, particularly the following:

(1)  Universality: The language should not be designed with a view to being
applied for a specific purpose; instead it should be universally applicable.

(2)  Descriptivity: The language should be characterized by a high level of
abstraction independent of implementation details, and in particular it should
support set-oriented access.

(3)  Optimizability: For an underlying system it must be possible to optimize
expressions of the language prior to execution; therefore, appropriate opti-
mization rules and strategies must exist.

(4)  Closedness: It must be possible to describe every result of a language expres-
sion within the given data or object model; this ensures that the result of a
query can be used as input for a subsequent query.

(5)  Completeness: Every concept of the data model in question must have a pro-
cessing counterpart.

(6)  Genericity: The language should contain generic operators (for example,
selection, projection and set operations) which can be applied to values
depending only on the type structure.

(7)  Expressive power: In particular, the language should surmount the restrictions
imposed on relational languages; that is, recursive traversing of object sets
should be possible and Turing-completeness should also be guaranteed.

(8)  Extensibility: The language should support both user-defined and system-
defined types.

Two different approaches to language design can be observed, both of which try to
comply with these requirements.

Approaching the issue from the database perspective, attempts have been
made to extend SQL in order to overcome well-known restrictions and to accom-
modate the principle of object functionality. We shall adopt this point of view in this
chapter, indicating how such an SQL-type language can be expanded for use with
object-oriented databases; we shall come back to this approach later in our discus-
sion of Illustra, SQL3 and O..

On the other hand, from the programming language perspective, attempts
have been made to increase the functionality of object-oriented languages by incorp-
orating database functionality. One aspect of special importance here is persistence,
which in traditional programming languages is at best realized indirectly (for
instance, by manipulating external files). For databases, however, persistence is an
essential feature, because stored data survives the execution of a transaction. This
route leads to the development of so-called database programming languages, which
we shall exemplify using GemStone Smalltalk and the persistent C++ from
ObjectStore.
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2.2 Desirable properties

To make our discussion of object-oriented database languages more concrete, we
now carry out an exercise to extend SQL. In particular, we restrict ourselves to
select-from-where expressions; embedding such expressions into procedural lan-
guages will be considered in our discussion of concrete systems in Chapter 4. When
extending SQL the following aspects seem to be important:

e Values have to be distinguished from objects: that is, object identities.

e Objects may have a complex structure which demands special navigational
support.

e Some properties of objects may be defined by inheritance.

e Because of set-valued attributes and class extensions, sets play a more promi-
nent role.

o Creation of objects.

However, the reader should be warned: because we believe that it is still too early to
predict what kind of object-oriented SQL will finally be defined, in the remainder of
this chapter we do not make reference to a concrete system or standardization pro-
posal — this is the topic of Chapters 4 and 5. The following examples are based on
our running scenario (see Figure 1.8).

2.2.1 Elementary access to objects

Every object has an identity independent of its value. Consequently, a database may
contain different objects of equal value and equal behaviour. Access to objects can
be motivated by various reasons: for instance, access to the objects themselves or to
the values of their attributes. This distinction is explained in the following example.

Example 2.1

The following query asks for the identities of those vehicles whose attribute
Model has the value Tipo:

select £
from £ in Vehicle
where Model = 'Tipo’

The use of variable £, which is introduced in the from-clause and referred to
in the select-clause, signals that we are looking for object identities in the
answer. Because identities as such are not of interest in general (especially
when they are generated by the system rather than assigned as names by the
user), the content of variable £ may be used for further processing. Obviously,
there must be a linguistic distinction between access to objects and access to
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the attribute values of an object. The following query asks for the values of
all attributes of vehicles with the model value Tipo:

select *
from Vehicle
where Model = 'Tipo'

2.2.2 Access to complex objects

So far we have discussed query-types referring to objects of one class. In general,
objects may have a complex structure: for example, they may be defined by aggre-
gation. Thus referencing other objects becomes necessary when we want to decom-
pose an object into its subobjects or to access the properties of encapsulated objects.

Example 2.2

In this example we want to search for all biue vehicles manufactured by Ford:

select *

from Vehicle

where Colour = 'blue'

and Manufacturer.Name = 'Ford'

One should note that attribute Manufacturer of class Vehicle references
class Company. The value of Manufacturer is an object identity from class
Company. Access to the attributes of this referenced object is possible using
a so-called path expression (as shown in the above example). We look at path
expressions more closely in Section 2.3,

Queries of this kind principally reflect a situation which also occurs in network data-
bases, where the user must be able to navigate through the schema because objects
of a particular class have attributes whose values reference objects of another class.
Obviously, such navigation chains may be long and even cyclic, depending on the
database schema.

Example 2.3
Let us also allow path expressions in the select-clause:
select President.Salary

from Company
where Headoffice.Location = 'Rome'

This query obtaines the salaries of all presidents of companies with their head
office in Rome.
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Path expressions may also occur in comparison expressions:

Example 2.4

The following query searches for all companies whose head office address is
identical to the address of its president:

select *
from Company
where Headoffice == President.Domicile

Note that Domicile is defined for President by inheritance from Person.
In cases where the head office and the domicile of the company’s president
are objects of class Address, object identity (rather than value identity) will
be tested. Using ‘=="instead of ‘=" is meant to mark this distinction. If, on
the other hand, only the location is of interest, it is necessary to test the equal-
ity of values:

select *
from Company
where Headoffice.Location = President.Domicile.Location

2.2.3 Explicit join

With the help of path expressions, predefined relationships between objects can be
traversed. In order to deal with these situations, relational databases require a join
operation. Clearly, object-oriented databases must still be able to process such
explicit joins, because generally not all the relationships which are of interest have
been predefined in the schema:

Example 2.5

We are interested in persons and vehicles where the name of the person is
identical to the name of the president of the company that manufactures the
car:

select p, f
from p in Person, f in Vehicle
where p.Name = f.Manufacturer.President.Name

As one can see in Figure 1.8, there is no predefined relationship that could
have been used directly in this context. Here Name is defined for presidents
by inheritance.
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2.2.4 Equal treatment of attributes and methods

When looking at the properties of an object, one often cannot distinguish between

attributes and methods with no parameters. It is possible, therefore, to refer to meth-

ods and attributes in the same way. Let us suppose that for class Vehicle, in addition

to the attributes, there is a parameterless method PresentValue which determines this

value when requested. In Example 2.1, the use of * produces the result of applying

PresentValue to the respective objects, as well as the values of the attributes.
Methods may be also called with parameters:

Example 2.6

Suppose that we are interested in managers’ deputies and that there is a
boolean method Deputy with a parameter which allows us to test, for all
managers, whether the manager currently under consideration is a deputy.

select al, a2
from al in Employee, a2 in Employee
where al.Deputy(a2)

Note that method Deputy actually has two parameters, but since we are using
a path expression, the first parameter appears before the name of the method
and is not syntactically treated as a parameter of the method.

2.2.5 Access to abstract types and classes

The notions of abstract data and object types, as well as the associated principle of
encapsulation, are supported in object-oriented database systems by the class con-
cept. Consequently, abstraction which results from encapsulation must be respected
and, in particular, queries must not be allowed to access the internal representation
of instances of the class in question. In other words, query expressions may refer
only to information which is declared as public.

Let us suppose that in Figure 1.8 a private (and therefore invisible) attribute
DateofBirth has been defined for class Person, and that the age of a person can be
determined with a specific method Age which uses the date of birth. Direct access to
DateofBirth must not be permitted, but only the calculation of age, provided that
method Age is public.

On the other hand, it should be possible to use public properties and methods
in query expressions without any restrictions; in particular, names of methods should
be allowed wherever names of attributes might occur.

Example 2.7

We want to search for all persons over the age of 50, supposing that method
Age is public and determines the age of a person on the basis of the (private)
attribute DateofBirth:
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select *
from Person
where Age > 50

The age of everyone called Peter Smith is determined as follows:

select Age
from Person
where Name = 'Peter Smith’

If no distinction is made between attributes and parameterless methods, methods
may replace attributes in path expressions; this allows sequences of method calls to
be defined in one expression.

In some situations access to the internal structure of an object type may be
desirable. BLOBs (Binary Large OBjects) are a typical example of this. They are
used to display large data values (for example, audio or video data). However, if one
wishes to access, say, the first 250 bytes of a picture object classified as a BLOB, the
system must support an appropriate read operation, even if this requires access to the
internal representation of the picture object.

2.2.6 Access to sets of objects

Query languages for object-oriented databases must support the manipulation of sets
of objects, or, to use a more general term, collections, because in an object database
a query result may consist not only of sets but also, for example, of lists (or bags,
fields, and so on). In this context it is important to distinguish the two roles of a
class: a class can be used as a type, thereby stating the structure and behaviour of
objects, and as a set of such objects existing at some point of time: that is, its exten-
sion. Typically, class extensions have to be maintained explicitly by the programmer.
In particular, different extensions of the same class can be maintained at the same
time by assigning different names.

Example 2.8

The following query determines all persons over the age of 50:

select Name
from Person
where Age > 50

In this example Person denotes both a class and its extension. If it is possi-
ble to name sets of objects, one could define MyFamily as a subset of the
objects in Person and use this new set for further queries:

MyFamily :=

select p

from p in Person
where Name = MyName
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select Name
from MyFamily
where Age > 50

Such a technique closely resembles the defintion and processing of views in
relational databases.

In languages with an SQL-type syntax it should be possible to use in the from-clause
any kind of collection that can be derived from the database: thus not only sets but
also, for example, lists. Moreover, it must be possible to use named collections. The
following example shows that such collections may arise implicitly as the value of
an expression.

Example 2.9

The following query searches for the names of manufacturers of blue vehi-
cles:

select Name
from (select Manufacturer from Vehicle
where Colour = ‘blue')

The use of collections in queries can also be extended to where-clauses. This allows
the formulation of selection conditions which test for membership within such a col-
lection:

Example 2.10

Let us determine the number of companies whose presidents’ annual salary
exceeds 200000 dollars:

select count(f)

from f in Company

where President in
(select a
from a in Employee
where Salary > 200000)

Set-valued attributes or methods in path expressions are problematic when several
such attributes or methods occur in the same path expression:

Example 2.11

We should like the following query to determine the salaries of employees
working in companies’ subsidiaries:
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select f.Subsidiaries.Employees.Salary
from £ in Company

The path expression is evaluated from left to right for each company £ in the
extension of class Company. First the set of subsidiaries of a given company
f will be determined. To avoid a type error, we cannot apply attribute
Employees to the result of f.Subsidiaries, because the latter is a set,
whereas Employees is defined only for single subsidiaries. If we apply
attribute Employees to every element of the set we shall obtain a set of sets,
because for every subsidiary there exists a set of employees. If attribute
Salary is then applied to every element of this set, again a type error will
occur, because the salary is defined only for the elements of the individual sets.

One solution to intermediate sets in path expressions is to implicitly remove
the set structure whenever single values are expected; to put it another
way, sets whose elements are themselves sets are by default unnested.
Following this strategy, Employees is not applied to a set of subsidiaries, but
to each subsidiary in turn. The result is a set of sets; however, Salary
is applied to each element, that is, each employee, such that for one given
company f the final result is a set of salaries. Because the path expression has
to be applied to each company, for the final result of the query a nesting of
sets has again to be removed so that one set of salaries will ultimately be
derived.

Another strategy would be to state the unnesting of sets explicitly by means
of a flatten operator:

flatten(select flatten(flatten(f.Subsidiaries) .Employees) .Salary
from f in Company)

In any case, defining the semantics of path expressions becomes a subtle mat-
ter when attributes or methods may be set-valued.

Implications of a class hierarchy

Because a subclass relationship represents a specialization between classes, which
means that every object of the subclass is also an object of the superclass (IsA rela-
tionship), objects belonging to a subclass inherit those properties defined in its
superclasses, unless the properties are overwritten by the subclass.

Example 2.12

The following query determines the qualifications of employees whose name
is Peter Smith. Note that the attribute Name is not defined explicitly for class
Employee but is inherited from its superclass Person:
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select Qualifications
from Employee
where Name = 'Peter Smith’

The following query asks for employees aged over 50; it is assumed that a
method Age as discussed in Example 2.7 is defined for Person and thus

inherited by Employee:

select * from Employee where Age > 50

We like to use IsA relationships explicitly in query expressions.

Example 2.13

We first determine employees and everyone else over the age of 50:

select * from Person where Age > 50

In contrast to this, the following query selects only persons over 50 who are
not employees:

select *
from p in Person
where Age > 50 and p not in Employee

Queries of this type may result in heterogeneous sets: that is, sets containing ele-
ments of different types. The first query in the last example defines objects of class
Person as well as objects of class Employee. For the latter there are more attributes
defined than for class Person, which may lead to type errors, if the result of the query
is used for further processing. There are various ways to remedy this situation, for
instance by stating that all objects in the resulting set are to carry all the attributes
and that their values are to be null values if they would otherwise be undefined.
Alternatively, it can be stated that objects of a heterogeneous set are to be repre-
sented only by their identities.

Ultimately, neither of these possibilities is satisfactory. If we choose the first,
we are confronted with the problematic issue of null values, as known from rela-
tional databases. On the other hand, choosing the alternative may not deliver the
intended query result and thus may necessitate further processing. The next example
illustrates how further processing of a heterogeneous set can be achieved by using a
case expression. In doing this, however, we go beyond select-from-where instruc-
tions.

Example 2.14

We want to determine both employees and other persons over 50 and then
process the data depending on their class membership.
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case (select *
from Person
where Age > 50)
if Employee then
else. .. ‘
end case

2.2.8 Generating and modifying objects

A data manipulation language must allow modification operations to be carried out
on instances of classes. We shall deal with the operations insert, modify and delete,
and discuss some language aspects in connection with these operations.

To generate new objects of a certain class, we assume the existence of a
generic method ‘new’ which, in principle, could be applied to every class.

Example 2.15

Inserting new objects into the class Address could be implemented as fol-
lows:

insert new(Street, Location)
values ('Broadway', 'New York')
into Address

First, a new object with the attributes Street and Location is generated
using ‘new’, and subsequently values are attached to these attributes and the
object is inserted into the existing extension of the class Address.

In the simplest case only the atomic values of an object are affected by a modifica-
tion operation:

Example 2.16

The following modification operation ensures that Ford will manufacture
only red cars:

update Vehicle
set Colour = ‘'red!
where Manufacturer.Name = 'Ford'

Obviously, update operations become more complex as soon as objects that contain
references to other objects are to be generated. It must be possible to supply these
references in the form of values or to automatically assign them a default value, gen-
erally nil, which will later be replaced by the correct value. This is illustrated by the
following example.
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Example 2.17

Let us consider the insertion of a new vehicle for which an object
Manufacturer already exists. The first instruction selects the identity of the
manufacturer with the name of Ford in variable m; the second instruction then
inserts a new vehicle made by that manufacturer:

m := select £
from f in Company
where Name = 'Ford’

insert new(Model, Manufacturer, Colour)
values ('Mondeo', m, 'red')
into Vehicle

The following closed expression achieves the same effect:

insert new(Model, Manufacturer, Colour)
values ('Mondeo', select f
from £ in Company
where Name = 'Ford',
'red’)
into Vehicle

In principle, both expressions contain a type error, because the query defines
a set (with one element) and the manufacturer of a vehicle is not set-
valued. To avoid such situations, an appropriate flatten-operator should be
available.

It is evident that insertion or modification operations must also be capable of gener-
ating complex objects such as lists. In other words, the modification operations of
the data manipulation language must be able to use the constructors provided by the
type system. And finally, modification operations may also have an effect on exist-
ing collections, as shown in Example 2.18:

Example 2.18

John Smith is to be employed in Ford’s subsidiary in Chicago. In order to
realize this modification the following procedure may be required:

(1) Insert John Smith into the class Employee.

(2) Select the object from the class Subsidiary of the company with the
name Ford and the location ‘Chicago’ in its address.

(3) Insert the object Employee with name John Smith into the set
Employees of this subsidiary.
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2.2.9 Generating new classes, instances and operations

A data manipulation language of an object-oriented database must allow views to be
defined on a given database state. Similarly to relational databases where relations
are defined by query expressions, we can regard a set of values defined by a query
expression as a view. In object-oriented databases, sets of object identities and exten-
sions of classes can also be defined. Moreover, it should also be possible to define
sets of objects with values. It must be possible to generate classes and their exten-
sions either via the appropriate constructs of the definition language or dynamically
by queries. Of course, it must be possible to use these classes in subsequent queries
in the same way as the classes defined in the schema.

Example 2.19

Let us define a view in which person objects, their name values and vehicles
manufactured by Ford are to be interrelated in such a way that for each tuple
the name of the person and the name of the company’s president correspond.
For this purpose we introduce a new class K and assign to this class a set of
tuples as described below:

create class K as
select p, p.Name, £
from p in Person, f in Vehicle

where f.Manufacturer.Name = ‘Ford’
and p.Name = f.Manufacturer.President.Name

The result of this query is of the following type:
{[p: Person, Name: String, f: Vehicle ]}

Obviously, this type must be permissible for the object model in question.

Thus, the language used for defining views must not only be able to use the type con-
structors of the underlying object model but also contain the associated instance con-
structors. A distinction must be made depending on whether the outcome of the
query is to consist of new objects or not. In accordance with relational views it is
justifiable for views to introduce no new object identities, because they constitute
derived data and objects: that is, view formation is object-preserving. But it is also
tenable to define a view as object-generating in order to be able to realize, for exam-
ple, inheritance on the objects in the view.

Note that in the previous example both variants would be justifiable. As an
object-preserving feature, the identities of the persons could be used. However, this
requires an operator to collect for each person all the corresponding vehicles into one
set; in this case the type of the query would become {[p: Person, Name: String,
Vehicles: {Vehicle} ]}, where {Vehicle} is a set type with element type Vehicle.
Thus the view would serve to expand the properties of the existing objects of class
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Person dynamically. The definition of new objects requires the dynamic generation
of object identities for objects that are to be included in the result of a query. There
are at least two different ways to achieve this. One possibility is to generate new
objects during the calculation of the query result: that is, to assign new identities to
the elements of the resulting set. In our last example every generated instance of the
resulting class of the type

{{ p: Person, Name: String, f: Vehicle ]}

would then be an independent object. A second possibility would be first to generate
values which could later be converted into objects if required.

The dynamic generation of objects in queries leads to another problem,
because it needs to be clarified how the new class is to be integrated into the already
existing class hierarchy. Again, there are various approaches. On the one hand, it can
be argued that results have no superclass, with the possible exception of a class
Object which is the root of the given hierarchy; on the other hand, one can establish
some rules which govern how the super- and subclasses of a view can be derived
from the existing ones.

Finally, we should like to point out that the above-mentioned strategies
for generating new classes and their instances can also be extended to cover opera-
tions, since generating new classes requires that class-specific behaviour can
also be generated dynamically. The language used must allow for the introduc-
tion of new operations, for which there are at least two options: first, referenc-
ing existing implementations when new object types are generated, that is,
resorting to operations previously formulated with a definition language; or, second,
dynamically generating operations in queries as instances of a separate class
Operation.

2.3 Navigating with path expressions

In object-oriented databases, if we want to process the overall structure of a com-
pound object which is defined by aggregation, we have to follow references between
objects. For this purpose typically a navigating technique based on path expressions
is used. Now we are going to explain the relationship between path expressions and
relational join operations and then, after having discussed some more examples, we
shall outline some possible extensions of path expressions. We shall not go into for-
mal details — this is postponed to Chapter 3.

Attributes and methods in object-oriented databases are formally scalar or
set-valued functions. For example, an attribute which is defined for a class can be
regarded as a function from the extension of the class to a set of values. Object-
oriented databases take advantage of this functional relationship to develop a
simpler syntax. We want to illustrate the relationship between join expressions and
path expressions by an example based on the schema in Figure 1.8. Consider
schemata for companies and vehicles defined as follows:
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CREATE TABLE Company
(CompanyID INT NOT NULL,
Name VARCHAR NOT NULL,
Street VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
President INT NOT NULL,
PRIMARY KEY (CompanyID),
FOREIGN KEY (President)
REFERENCE Employee (EmplNo)
):

CREATE TABLE Vehicle
(VehicleID INT NOT NULL,
Model VARCHAR NOT NULL,
Manufacturer INT NOT NULL,
Colour VARCHAR NOT NULL,
PRIMARY KEY (VehicleID)
FOREIGN KEY (Manufacturer)
REFERENCES Company (CompanyID)
)

The president of the company manufacturing the car with number 93 can then be
determined by the following SQL expression:

select c.President
from vVehicle v, Company c
where v.vVehicleID = 93 and v.Manufacturer = c¢.CompanyID

This expression is evaluated in the following manner: first, all vehicles with number
93 are selected; then a join between these tuples and the company tuples is per-
formed, joining tuples where the manufacturer of the vehicle is identical to the com-
pany under consideration, finally by projection all attributes of the tuples are deleted
from the resulting set, except the attribute President.

In an object-oriented schema, however, two classes Vehicle and Company
would have been defined (cf. Figure 1.8):

Company: [
Name: String,
Headoffice: Address,
President: Employee ]

Vehicle: [
Model: String,
Manufacturer: Company,
Colour: String ]

Let #93 be the object identity of the vehicle in question and assume that we can refer
to this identity by variable v. Manufacturer, Headoffice and President are attributes
whose values reference respective objects of classes Company, Address and
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case {select *
from Person
where Age > 50)
if Employee then
else...
end case

2.2.8 Generating and modifying objects

A data manipulation language must allow modification operations to be carried out
on instances of classes. We shall deal with the operations insert, modify and delete,
and discuss some language aspects in connection with these operations.

To generate new objects of a certain class, we assume the existence of a
generic method ‘new’ which, in principle, could be applied to every class.

Example 2.15

Inserting new objects into the class Address could be implemented as fol-
lows:

insert new(Street, Location)
values ('Broadway', 'New York')
into Address

First, a new object with the attributes Street and Location is generated
using ‘new’, and subsequently values are attached to these attributes and the
object is inserted into the existing extension of the class Address.

In the simplest case only the atomic values of an object are affected by a modifica-
tion operation:

Example 2.16

The following modification operation ensures that Ford will manufacture
only red cars:

update Vehicle
gset Colour = 'red'
where Manufacturer.Name = 'Ford’

Obviously, update operations become more complex as soon as objects that contain
references to other objects are to be generated. It must be possible to supply these
references in the form of values or to automatically assign them a default value, gen-
erally nil, which will later be replaced by the correct value. This is illustrated by the
following example.
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Example 2.17

Let us consider the insertion of a new vehicle for which an object
Manufacturer already exists. The first instruction selects the identity of the
manufacturer with the name of Ford in variable m; the second instruction then
inserts a new vehicle made by that manufacturer:

m := select f
from £ in Company
where Name = 'Ford!'

insert new(Model, Manufacturer, Colour)
values ('Mondeo', m, 'red')
into Vehicle

The following closed expression achieves the same effect:

insert new(Model, Manufacturer, Colour)
values ('Mondeo', select f
from £ in Company
where Name = 'Ford’,
‘red')
into Vehicle

In principle, both expressions contain a fype error, because the query defines
a set (with one element) and the manufacturer of a vehicle is not set-
valued. To avoid such situations, an appropriate flatten-operator should be
available.

It is evident that insertion or modification operations must also be capable of gener-
ating complex objects such as lists. In other words, the modification operations of
the data manipulation language must be able to use the constructors provided by the
type system. And finally, modification operations may also have an effect on exist-
ing collections, as shown in Example 2.18:

Example 2.18

John Smith is to be employed in Ford’s subsidiary in Chicago. In order to
realize this modification the following procedure may be required:

(1) Insert John Smith into the class Employee.

(2) Select the object from the class subsidiary of the company with the
name Ford and the location ‘Chicago’ in its address.

(3) Insert the object Employee with name John Smith into the set
Employees of this subsidiary.
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2.2.9 Generating new classes, instances and operations

A data manipulation language of an object-oriented database must allow views to be
defined on a given database state. Similarly to relational databases where relations
are defined by query expressions, we can regard a set of values defined by a query
expression as a view. In object-oriented databases, sets of object identities and exten-
sions of classes can also be defined. Moreover, it should also be possible to define
sets of objects with values. It must be possible to generate classes and their exten-
sions either via the appropriate constructs of the definition language or dynamically
by queries. Of course, it must be possible to use these classes in subsequent queries
in the same way as the classes defined in the schema.

Example 2.19

Let us define a view in which person objects, their name values and vehicles
manufactured by Ford are to be interrelated in such a way that for each tuple
the name of the person and the name of the company’s president correspond.
For this purpose we introduce a new class X and assign to this class a set of
tuples as described below:

create class K as
select p, p.Name, £
from p in Person, f in Vehicle

where f.Manufacturer.Name = 'Ford'
and p.Name = f.Manufacturer.President.Name

The result of this query is of the following type:
{[p: Person, Name: String, f: Vehicle ]}

Obviously, this type must be permissible for the object model in question.

Thus, the language used for defining views must not only be able to use the type con-
structors of the underlying object model but also contain the associated instance con-
structors. A distinction must be made depending on whether the outcome of the
query is to consist of new objects or not. In accordance with relational views it is
justifiable for views to introduce no new object identities, because they constitute
derived data and objects: that is, view formation is object-preserving. But it is also
tenable to define a view as object-generating in order to be able to realize, for exam-
ple, inheritance on the objects in the view.

Note that in the previous example both variants would be justifiable. As an
object-preserving feature, the identities of the persons could be used. However, this
requires an operator to collect for each person all the corresponding vehicles into one
set; in this case the type of the query would become {[p: Person, Name: String,
Vehicles: {Vehicle} ]}, where {Vehicle} is a set type with element type Vehicle.
Thus the view would serve to expand the properties of the existing objects of class
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Person dynamically. The definition of new objects requires the dynamic generation
of object identities for objects that are to be included in the result of a query. There
are at least two different ways to achieve this. One possibility is to generate new
objects during the calculation of the query result: that is, to assign new identities to
the elements of the resulting set. In our last example every generated instance of the
resulting class of the type

{[ p: Person, Name: String, f: Vehicle ]}

would then be an independent object. A second possibility would be first to generate
values which could later be converted into objects if required.

The dynamic generation of objects in queries leads to another problem,
because it needs to be clarified how the new class is to be integrated into the already
existing class hierarchy. Again, there are various approaches. On the one hand, it can
be argued that results have no superclass, with the possible exception of a class
Object which is the root of the given hierarchy; on the other hand, one can establish
some rules which govern how the super- and subclasses of a view can be derived
from the existing ones.

Finally, we should like to point out that the above-mentioned strategies
for generating new classes and their instances can also be extended to cover opera-
tions, since generating new classes requires that class-specific behaviour can
also be generated dynamically. The language used must allow for the introduc-
tion of new operations, for which there are at least two options: first, referenc-
ing existing implementations when new object types are generated, that is,
resorting to operations previously formulated with a definition language; or, second,
dynamically generating operations in queries as instances of a separate class
Operation.

2.3 Navigating with path expressions

In object-oriented databases, if we want to process the overall structure of a com-
pound object which is defined by aggregation, we have to follow references between
objects. For this purpose typically a navigating technique based on path expressions
is used. Now we are going to explain the relationship between path expressions and
relational join operations and then, after having discussed some more examples, we
shall outline some possible extensions of path expressions. We shall not go into for-
mal details — this is postponed to Chapter 3.

Attributes and methods in object-oriented databases are formally scalar or
set-valued functions. For example, an attribute which is defined for a class can be
regarded as a function from the extension of the class to a set of values. Object-
oriented databases take advantage of this functional relationship to develop a
simpler syntax. We want to illustrate the relationship between join expressions and
path expressions by an example based on the schema in Figure 1.8. Consider
schemata for companies and vehicles defined as follows:
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CREATE TABLE Company
(CompanyID INT NOT NULL,
Name VARCHAR NOT NULL,
Street VARCHAR NOT NULL,
Location VARCHAR NOT NULL,
President INT NOT NULL,
PRIMARY KEY (CompanyID),
FOREIGN KEY (President)
REFERENCE Employee (EmplNo)
)

CREATE TABLE Vehicle
(VehicleID INT NOT NULL,
Model VARCHAR NOT NULL,
Manufacturer INT NOT NULL,
Colour VARCHAR NOT NULL,
PRIMARY KEY (VehicleID)
FOREIGN KEY (Manufacturer)
REFERENCES Company (CompanyID)
)i

The president of the company manufacturing the car with number 93 can then be
determined by the following SQL expression:

select c¢.President
from Vehicle v, Company c
where v.VehicleID = 93 and v.Manufacturer = c¢.CompanyID

This expression is evaluated in the following manner: first, all vehicles with number
93 are selected; then a join between these tuples and the company tuples is per-
formed, joining tuples where the manufacturer of the vehicle is identical to the com-
pany under consideration; finally by projection all attributes of the tuples are deleted
from the resulting set, except the attribute President.

In an object-oriented schema, however, two classes Vehicle and Company
would have been defined (cf. Figure 1.8):

Company: [
Name: String,
Headoffice: Address,
President: Employee ]

Vehicle: [
Model: String,
Manufacturer: Company,
Colour: String ]

Let #93 be the object identity of the vehicle in question and assume that we can refer
to this identity by variable v. Manufacturer, Headoffice and President are attributes
whose values reference respective objects of classes Company, Address and
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Employee. The attributes can be regarded as functions. If, for instance, function
Manufacturer is applied to an object belonging to class Vehicle, it gives as the result
the object identity of the respective company; accordingly, function President will
give us for every company the object identity of its president. Manufacturer and
President are functional in the sense that for every vehicle there is but one manu-
facturer and for every company there is but one president. If one takes into consid-
eration that function Manufacturer gives precisely the object identity from which the
president is to be determined, then the above SQL expression can be regarded as a
composition of functions:

President (Manufacturer(v))

Note that this notation is only possible because the object with the identity #93
— in other words, the value of the variable v — belongs to class Vehicle and
accordingly the result of the application of Manufacturer to #93 is the identity of
an object of class Company. This ensures that the attributes Manufacturer and
President can be applied in the desired manner. But also note that the above compo-
sition of functions references the employee who is president of the company,
whereas the relational SQL expression supplies the employee number of the presi-
dent. If the name of the president is of interest, the following adjustment becomes
necessary:

Name (President (Manufacturer{v)))

Generally, object-oriented languages do not use expressions that have to be evalu-
ated from the inside out, but rather expressions which allow evaluation from left to
right. These expressions are called path expressions. For our example we obtain the
path expression:

v.Manufacturer.President .Name

The dot-notation renders bracketing superfluous. In a path expression the variable
which contains the identity of the object to be processed is positioned in front of the
first dot. The name of the class to which the object belongs is often used as the vari-
able name. In order to be able to distinguish between a class and a variable, variables
are written here with a small initial letter. Moreover, in an SQL expression the vari-
able can be omitted if only one class is contained in the from-clause and appears
only once. We have already employed this short-hand notation in the examples
above and, as a rule, will continue doing so.

To emphasize the usefulness of path expressions we present some more
examples:

Example 2.20

The following query determines the names of the presidents of manufactur-
ers producing blue vehicles.
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select vehicle.Manufacturer.President.Name
from vehicle in Vehicle
where vehicle.Colour = ‘'blue’

As mentioned above, we do not need to include the variable vehicle in this
case; instead we can write:

select Manufacturer.President.Name
from Vehicle
where Colour = 'blue’

The next query is to search for the names of presidents of companies with
head offices in Detroit:

select President.Name
from Company
where Headoffice.Location = 'Detroit'

The following query is to search for vehicles whose manufacturer’s name is
the same as the name of the company’s president:

select * from Vehicle
where Manufacturer.Name = Manufacturer.President .Name

And finally we show how the relational query in Section 1.4.1 can be
expressed using path expressions. Remember that this query was presented to
illustrate how awkward querying in relational databases might become. The
task of the query is to find out whether an employee named Lacroix is
employed in Ford’s Ghent subsidiary. Using path expressions we can write:

select e
from e in Employee, ¢ in Company, s in Subsidiary
where c¢.Name = 'Ford' and

s in c.Subsidiaries and

s.0ffice.Location = 'Ghent' and

e in s.Employees and

e.Name = 'Lacroix'

These examples illustrate that path expressions are indeed a compact and elegant
technique for the tracing of relationships. Not only such rather aesthetic arguments,
but also the aspect of efficiency advocates the use of path expressions. Applying ref-
erences to objects in path expressions rather than using key values as in relational
databases often enables more efficient query evaluation. Tracing relationships by
means of calculating a join generally imposes a high system overhead, because keys
have to be mapped to addresses by means of index structures. This may be avoided
if references between objects are used instead. To a certain extent, tracing references
corresponds to a materialized join in a relational database.
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In principle, path expressions have to be completely specified. If one were to
request the hp of an automobile, the following path expression would achieve the
desired effect:

automobile.Drive.Engine.HP

However, if there is only one path in the schema graph connecting Automobile and
Engine (cf. figure 1.8), then the path expression automobile.HP could be used as
a short-hand notation.

A number of further generalizations of path expressions have been proposed, and
we should like to present some thoughts on this topic. First, paths based on a subclass
relationship can be followed in the reverse direction; thus in order to determine the hp
of all the cars owned by a certain employee the following expression becomes possible:

employee.Fleet.Drive.Engine.HP

If we want to express explicitly that we are interested only in vehicles which are
automobiles, we can insert variables into the path expression to produce this tie, as
illustrated in the next example:

employee.Fleet [x] .Drive.Engine.HP

In order to ensure that only vehicles of type Car are considered, for example, a
where-clause may be included in the corresponding SQL expression:

select Fleet{x].Drive.Engine.HP
from Employee
where x in Automobile

Finally, as a further possible generalization, not only inheritance relationships but
also aggregations may be followed in any direction. For example, a query determin-
ing the office location of a subsidiary where a particular employee works could be
expressed as follows:

employee.Employees™.Office

Note that Employees is an attribute of class Subsidiary. With the notation
Employees we express that the relationship between subsidiaries and employees is
to be traversed in reverse order for these employees. Therefore, the result of the
above expression is the value of the attribute Office of those objects belonging to
class Subsidiary and thus of objects belonging to class Address.

2.4 Inheritance

Now we come back to inheritance to look at some interesting aspects in more detail.
We first recall the basic terminology we have introduced so far. Inheritance is based
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on a hierarchy of classes, which is implied by defining a class as a specialization or,
using a different term, by an IsA relationship, of one or several other classes. The
subordinate classes are called subclasses and the superordinate classes are referred
to as superclasses. Subclasses inherit the structure and behaviour of their super-
classes. The same attribute or method, but with a different type, respectively imple-
mentation, may be defined for different classes; names may thus be overioaded. If a
subclass provides specific structure and behaviour, this will override inheritance.
Sometimes certain values, so-called default values, or simply defaults, may also
be inherited. On the other hand, class attributes, that is, attributes which are
not applicable to individual objects but to the set of all objects, and class methods
might not be inherited. Inheritance conflicts may arise if multiple inheritance takes
place. If a message is sent to an object, then according to the rules of inheritance,
a class to provide the attribute, respectively method implementation, will be
selected. The selected class is called the receiver class of the message. The actual
receiver class corresponding to an object and a message can be decided only at run
time; late binding of attributes and method impiementations to objects is therefore
required.

If for two classes K1, K2 we have K| IsA K>, we consider every object in class
K. as belonging to class K> as well. From this it follows that an IsA relationship
expresses a subset relationship between class extensions, implying that an object in
general is an element of several class extensions. However, for each object there
exists a unique class to which it is primarily assigned; this class is called the base
class of the object. When we talk about the class of an object, we refer always to its
base class. If there are one or several direct or indirect superclasses of a base class
then — as a consequence of the subset relationships — every object of the base class
is also an object of each of its superclasses. This, however, is to be understood in a
logical sense as meaning that the object can be treated as an object of the superclass
as well.

In this section we shall examine interesting inheritance issues in greater
detail. Examples are based on the scenario in Figure 1.8, but we shall expand or vary
it if necessary. The following discussions will be at a more informal level — a formal
treatment is postponed to Chapter 3.

2.41 Reuse by inheritance, redefinition and conflicts

Let us consider the following definitions for the classes Person, Employee, Manager
and Shareholder, including their IsA relationships (Figure 2.1):

Classes Employee and Shareholder inherit all the properties of class Person
according to the IsA relationships stating that every object of classes Employee and
Shareholder is also an object of class Person. Consequently, the attributes Name,
Age, Domicile and Fleet of class Person are also applicable to classes Employee and
Shareholder. This implies that each object belonging to the classes Employee or
Shareholder has values for these attributes without having to define the attributes
within those classes; in other words, we see reusability of type information.

Let us now define a default value for the employee’s salary:
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Person

|«

Vehicle

{

Shareholder Employee

Figure 2.1 A nontrivial case of inheritance.

Employee IsA Person: |

Salary: integer (value: 1000) ]

This default has the effect that for each object of class Employee a salary of 1000
dollars is automatically assigned, unless a different salary for specific employees is
explicitly defined. Here we see reusability of values.

When specific properties of subclasses have to be defined, a redefinition of
inherited properties occurs. For example, we may define an additional attribute
Driver for class Manager:

Manager IsA Employee, Shareholder: |

Driver: Employee ]

The redefinition should be valid for all objects belonging to class Manager. As
Driver is also defined for superclass Employee, this property is overwritten by the
redefinition.

Class Manager, unlike Employee and Shareholder, has two immediate super-
classes, namely Employee and Shareholder. We have multiple inheritance. In prin-
ciple, Manager inherits the attributes of all superclasses, including the indirect
superclass Person. But because Employee and Shareholder already inherit the attrib-
utes of Person, it is sufficient to consider only the immediate superclasses. Two prob-
lems can be observed:
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(1)  For Employee and Shareholder attribute Account is defined with a different
type; the name Account is overloaded. Which of the two possible versions of
Account is to be inherited by Manager? Or should both versions be inherited?
We are facing an inheritance conflict.

(2) The second problem is of a more indirect nature. Both Employee and
Shareholder inherit the attributes from Person. If these attributes were to be
inherited by the class Manager, the question arises whether they should still
be considered properties of Person or whether, in principle, they should be
considered as different properties of Employee and Shareholder. The latter
case again causes an inheritance conflict, whereas the former, which seems to
be appropriate in most situations, does not create any difficulties.

There are several approaches to the issue of inheritance conflicts. One possibility
would be to assign priorities, which could be defined, for example, depending on the
order in which IsA relationships appear in class definitions. We have written:

Manager IsA Employee, Shareholder

We can interpret this in such a way that if an inheritance conflict occurs the defini-
tions of Employee have priority over the definitions of Shareholder. Another fre-
quently encountered technique is based on from-clauses which allow us to define
which attribute is to be inherited from which class. We could write the following:

Manager IsA Employee, Shareholder: [
Staff: {Employee},
Account inherited from Employee]

This notation gives us more flexibility in handling inheritance conflicts. These con-
flicts can be avoided by restricting the inheritance hierarchy. In our example we can
achieve this by introducing an additional class EmplSha which would act as a super-
class of Manager. Next we redefine Account for EmplSha and thus override the def-
initions of Employee and Sharehoider. If Account is to be valid for Manager in the
same way as it is defined for Employee, the following definitions are in order:

EmplSha IsA Employee, Shareholder: [
Account: Integer]

Manager IsA EmplSha: [
Staff: {Employee}]

In principle, inheritance of methods involves the same problems as inheritance of
attributes. Let us look at class Employee, for example. The methods which can be
applied to an object of this class are either directly attached to this class or are a
result of inheritance. Let us further suppose that MoreSalary is a method intended to
effect a rise in salary. If a message is sent to an object of class Employee to execute
the method MoreSalary, Employee will be consulted first in order to determine the
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in a program or query where we expect to find an object of class K, for example as
the value of a variable, an object of class K is also permissible. Accordingly, an
object of a superclass should be substitutable by objects of its subclasses. This
requires that the types attached to classes K1, K> must relate to each other accord-
ingly; that is, it should be impossible for a type error to occur at run time. Evidently,
objects of a subclass can replace objects of a superclass only when all the properties
of the superclass are also defined for the objects of the subclass. Thus the type of the
subclass must be a subtype of the type of the superclass in an appropriate sense.
Using a more technical term, what we require is a form of polymorphism which says
that variables may be bound by values of different type.

To each class we assign a rype, which, in particular, defines the attributes
applicable to the objects in the respective extensions and also the allowed values.
Every attribute represents a structural property of the objects and therefore has itself
a type attached to it. Let us consider the type assigned to class Person:

[ Name: string,
Age: integer,
Domicile: Address,
Fleet: {Vehicle} ]

The type assigned to Person is an example of a tuple type; this means that all objects
of this class are represented by tuples and that the individual components of the
tuples are values of the type assigned to the respective attributes. Name and Age
have base types, whereas Domicile is of a reference type and Fleet is of a set type.
A reference type is indicated by a class name; for every employee the address com-
ponent is a reference to an object of class Address. The set type Fleet is defined over
the element type Vehicle. Again, the element type is indicated by a class. Thus, for
every employee the fleet component is a set of references to objects of class Vehicle.
We can see that a type is assigned to a class in order to describe the structures of its
objects, and that a class is itself a type for references to objects.

Now we are ready to say more precisely what we expect from a subtype in
order to achieve substitutability. A type T" is a subtype of a type T and vice versa T
is a supertype of T', if either T = T” or the conditions stated below apply.

e If T is a class, then every subclass T” of T is a subtype of T. For example,
Employee, Manager and Shareholder are all subtypes of Person, and Manager
is also a subtype of Employee and Shareholder.

e If Tis a tuple type, then 7" is a subtype of T, if 7" is also of tuple type and every
attribute in T is defined for T’ as well. Moreover, for corresponding attributes
the T"-type must be a subtype of the T-type. For example, if T is the type of class
Employee, then every type containing additional attributes is a subtype.
Specifically, as a consequence of inheritance the type of Employee is a subtype
of the type of Person and the type of Manager is a subtype of the types of
Person and Employee. Furthermore, the type of Manager remains a subtype if
attribute Driver is explicitly defined for Manager with type Employee, because
class Employee is a subtype of class Person.
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e If T'is a set type, then 7" is a subtype of T, if T" is also a set type and the ele-
ment type of 7" is a subtype of the element type of T. For example, set type
{Employee} is a subtype of {Person}.

Example 2.21

Assume first the situation as depicted in Figure 2.1. By inheritance, all attrib-
utes of class Employee are also defined with the same type for class
Manager. Therefore, the type of Manager is a subtype of the type of
Employee. Let us illustrate substitutability using the following query, which
determines all employees who have the same domicile as their drivers:

select a
from a in Employee
where a.Domicile.Location = a.Driver.Domicile.Location

Since every manager is also an employee and no redefinition of attributes
occurs, all attributes of Employee are inherited by Manager. Wherever we
expect an employee, a manager might occur. This means that we can bind
variable a by an employee object as well as by a manager object. This sub-
stitutability enables us to use Domicile on the left-hand side and Driver on
the right-hand side of the equation in the where-clause and to apply them
either to an object of class Manager or to an object of class Employee,
depending on the content of variable a.

Assume now that Driver is redefined in class Manager by type Employee.
Does substitutability still hold? The answer is yes, because Employee is a
subtype of Person and therefore Domicile will be defined for a.Driver
independently of a being an employee or a manager.

This example shows that substitutability allows us to state queries in a concise form.
Substitutability of objects and redefinition of methods requires late binding. We shall
illustrate this in the next example.

Example 2.22

We should like to compute an indicator for the success of employees; how-
ever, for managers a different algorithm must be applied. We therefore assign
two different implementations of a method SuccessIndicator to classes
Employee and Manager. The signature

SuccessIndicator (Employee): Integer

is assigned to class Employee. We redefine the signature for class Manager:

SuccessIndicator {Manager): Integer
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The following query determines all employees, and in particular all man-
agers, whose SuccessIndicator is greater than 50:

select a
from a in Employee
where a.SuccessIndicator > 50

When processing this query different implementations of the method
SuccessIndicator must be used for the objects of classes Employee and
Manager. Therefore, it is not possible to provide a static binding of one
implementation of SuccessIndicator to the variable a at compile time;
instead, a dynamic binding at run time is required.

2.4.3 Safety

A language can be classified as safe when for each program or query, it is possible
for the compiler to decide whether one of the error situations listed below might
occur during execution:

® A type restriction defined in the schema is violated. For example, values of
the wrong type are assigned to attributes, results of method calls differ from
the defined result type, comparison operations are applied to values of a dif-
ferent type, or method calls have arguments of the wrong type.

o An undefined property of an object is referred to; for instance, a query needs

an attribute which is not defined, or a method is called for which no signature
is defined.

Safety is an important feature of programming languages in general, because it

allows errors to be detected at compile time which otherwise might occur at some
later time and cause an expensive correction to become necessary.

Example 2.23

The following query contains an obvious type violation, because the type of Fleet
is different from the type of FamilyMember:

select a
from a in Employee
where FamilyMember = Fleet

Note that in this case the properties to be inherited must be defined first in
order to check safety; the attribute FamilyMember is inherited from class
Person by Employee.

Type violations of this kind will always occur, unless we are dealing with the trivial
case where the database does not contain an object of class Employee. Therefore,
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the query must be rejected. The next query, however, contains only a potential type
violation.

Example 2.24

Here the attribute Account is not defined for persons in general, but only for
a subset of persons, namely Employees.

select Account

from Person

where Domicile in

(select Headoffice from Company)

When processing this query, a type violation will occur as soon as a person is
found who is not an employee or a shareholder and whose domicile is ident-
ical to the head office of a company in the database.

We are now interested in the question of whether or not Account will be defined for
the objects considered in the query. Unlike the query in Example 2.23, there exist
interesting states of the database in which such type violations will not occur. If
every person is an employee or a shareholder, or if only employees or shareholders
have their domicile at the same location as the head office of a company, then only
objects which are employees or shareholders, for which the attribute Account is
defined, will be considered. It is evident, however, that this query must also be
rejected if safety is to be guaranteed by the compiler, because information about
states usually cannot be taken into account. In addition, Account is defined for
Employee and Shareholder with different types, which is a further source of type
violation.

Example 2.25

The next query illustrates (cf. Example 2.13) that a variable of class type,
in this case p which is typed by class Person, can always be used for
referencing objects of the subclass of its type, in this case Employee and
Manager.

select *
from p in Person
where (p in Employee or p in Manager) and p.Age > 50

This query determines all persons who are employees or managers and are
over 50. Since p is of type Person, all objects considered have the proper-
ties defined for persons. It is interesting to see that this form of query is much
more compact than processing both subclasses separately, but in an almost
identical manner.
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Note that the reverse case, where objects of a superclass are referenced by a variable
of the type of one of its subclasses, will in general result in a type violation. This is
due to the fact that properties defined solely for a subclass might now be accessed
for an object which belongs to the superclass and not to the subclass.

The following examples are concerned with safety in the case of redefined
attributes and methods. We do not explicitly consider set types because analogous
arguments apply.

Example 2.26

Let us consider the situation where attribute Driver is redefined for class
Manager:

Employee IsA Person: |

’

Driver: Person,

]

Manager IsA Employee, Shareholder: |

’

Driver: Employeel]
and the query:

select Domicile

from p in Person

where p in

(select Driver from Employee)

p 1s a variable of type Person. The inner select-expression may, however, sup-
ply a heterogeneous set containing objects of type Person and type Employee,
because managers are also employees, and attribute Driver of type Employee
applies to them. Yet, in spite of such heterogeneity we are not dealing with a
type violation, because all employees are persons as well and thus all proper-
ties of Person — particularly Domicile — apply equally to Employee.

The next example shows that redefining methods may be problematic.

Example 2.27

We are interested in a method Deputy, which applies to classes Employee
and Manager. This method allows us to identify employees and managers
who may act as deputies for a given employee, respectively manager. Let us
further assume that a different algorithm is required for managers than for
normal employees. We shall consider the two following signatures for
method Deputy:
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Deputy (Employee, Employee): Boolean
Deputy (Manager, Manager): Boolean

The condition to be fulfilled by employees a1l and a2 to enable them to be
deputies of each other are as follows (where Denomination is a new prop-
erty of employees):

al.Denomination = a2.Denomination and not (al == a2)

Additionally, for managers m1 and m2 we take into consideration their party
membership (another new property of employees):

ml.Denomination = m2.Denomination and
ml.Party = m2.Party and not(ml == m2)

Now, if we want to determine the deputies of all employees, the following
query seems an obvious choice:

select al, a2
from al in Employee, a2 in Employee
where al.Deputy(a2)

However, this query is not safe, because if al references an employee who is
also a manager, the implementation of Deputy attached to Manager will be
executed. On the other hand, if a2 references an employee who is not a man-
ager, an argument of the wrong type will be passed and thus an attempt will
be made to access the non-defined attribute Party.

These examples show that redefining properties can be done to a limited degree only,
otherwise safety can no longer be guaranteed. In both the preceding examples we
took the intuitive approach to redefining attributes and signatures by choosing sub-
types of the original types. With respect to attribute Driver, we redefined Person by
Employee; with respect to method Deputy, we redefined Employee by Manager. In
the first case, redefinition did not affect safety, but in the second case safety was vio-
lated. Obviously, the situation is not symmetrical for attributes and methods. This
can be explained as follows (for the present, however, ignoring update operations
and therefore restricting ourselves to queries):

ey

Let us examine two classes ClassA and ClassB and an attribute Attr, which is
defined in both classes, and let us further assume that ClassB is a subclass of
ClassA. Thus the attribute Attr is redefined in ClassB and we can write the
following:

ClassA:

[ ...

Attr: classC,
.1
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ClassB IsA ClassA:

[... ,
Attr: ClassD,

-]

Assuming that a is a variable of type ClassA, the following question is of
interest: when is it permissible for variable a to reference objects of ClassB?

Assume variable a references an object of ClassB. If ClassD is a subclass of
ClassC (as shown in Figure 2.2), then a.Attr will always supply an object
which has at least the properties required by an object from ClassC.
Therefore, redefinition cannot lead to a type violation in this case. If ClassD,
however, is a superclass of ClassC, type violations generally will occur dur-
ing the execution of a query referring to objects of ClassA. For example, the
expression a.Attr.Attr’ will lead to a type violation as soon as a refer-
ences an object of class ClassB and Attr' is an attribute which is defined only
for ClassC.

We may conclude that the type of a redefined attribute must be a subtype of
the type of the original attribute.

We shall now look at the redefinition of methods. For this purpose we shall
consider two classes ClassA and ClassB and a method Meth for which both
classes contain a signature. Assuming that ClassB is a subclass of ClassA we
can write the following:

ClassB IsA ClassA
Meth (ClassA, Typell, ..., Typelk): TypeA
Meth(ClassB, Type2l, ..., Type2l): TypeB

Let us suppose that a is a variable of type ClassA. Again it is of interest to
establish when it is permissible for variable a to reference objects from

Figure 2.2 Safety and redefinition of attributes.
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ClassB as well. As a first obvious restriction the number of arguments in both
signatures must be equal: that is, k = L.

Let a reference an object belonging to ClassB. With respect to the result, we
can apply the same arguments as we did under (1) and come to the conclu-
sion that TypeB must be a subtype of TypeA.

Now the relationship between the argument types is of interest. Our example
has shown that the argument types of the redefining signature cannot be strict
subtypes. Since variable a is of type ClassA, one can at best guarantee the
restrictions of the types of the arguments of the signature attached to ClassA.
From this it follows that the types of the arguments of the redefining signa-
ture must be supertypes of the arguments of the redefined signature.

Consequently, the conditions for redefining methods somewhat oppose our
intuition, because the signatures attached to the more specific class must have
argument types which are more general than or equal to those of the signa-
tures attached to the more general classes. Only then can safety be guaranteed
by a compiler.

Finally, let us turn to update operations with respect to attributes. Here we have to
learn that whenever updates are allowed, redefining the types of attributes cannot be
permitted. To see this let us suppose that a is a variable of type ClassA, where ClassB
is a subclass of ClassA. If a references an object of ClassB, it may happen that a
value of the type of the respective attribute with regard to ClassA will be assigned
to an attribute which is redefined in ClassB. The type of the redefining attribute then
must be equal to, or a supertype of, the type of the redefined attribute. Considering
the conclusions we reached when discussing queries, namely that the type of the
redefining attribute must be a subtype of the type of the redefined attribute, it follows
that redefining and redefined types must be identical. But this implies that whenever
updates may occur attributes must not be redefined if safety is to be guaranteed.

2.4.4 Discussion

A class hierarchy combined with a mechanism for inheritance enables the reuse of
properties. In particular, the possibility of reusing methods renders object-oriented
databases attractive to software engineers. Yet, we have also seen that one important
goal, namely (type) safety, is not always compatible with the notion of reusability.
With respect to this matter we should like to discuss two further aspects.

First, the conflict between establishing inheritance and guaranteeing safety is
a problem for object-oriented languages in general and not a problem that specifi-
cally affects object-oriented databases. Second, it is mostly in very particular situa-
tions that safety can no longer be guaranteed. It appears that in real situations this
problem occurs only in instances of a special kind of recursion where the class
whose method is under consideration itself acts as an argument type. In such cases
one intuitively understands that class specialization requires specialization of the
type of the argument as well; but it is precisely this procedure that jeopardizes safety.
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On the other hand, it is hard to see how for methods such as the already mentioned
MoreSalary with the signature

MoreSalary (Employee, Integer): Boolean

a specialization of the arguments can be required by the specialization of the class.
It is scarcely conceivable that the argument type Integer should be specialized
merely because Employee has been specialized to Manager.

Moreover, we have described inheritance as a monotonic mechanism where
subclasses may override an inheritance but cannot actually refuse it. Therefore, all
properties of a superclass are also properties of their subclasses. Such monotonicity
is merely a natural consequence of the IsA relationships between the classes.
However, there are also examples where monotonicity renders adequate modelling
more difficult.

Example 2.28

We want to manage geometrical objects with the help of a database. Let us
consider two classes Rectangle and Square, with squares being special-
izations of rectangles, since every square is by nature also a rectangle. For
these classes the following definitions seem appropriate:

Rectangle: [

Centre: Point,

SideLength: Integer,
SecondSideLength: Integer])

Square: [
Centre: Point,
Sidelength: Integer]

If we establish for square and rectangle the obvious IsA relationship Square
IsA Rectangle, then inheritance is not in order, because squares have fewer
properties than rectangles and not more. This is contrary to our previous
assumptions, which were based on the concept of monotonicity of inheritance
for subordinate classes.

If inheritance is to be realized, we must reject the intuition of an IsA rela-
tionship and write the following:

Square: [
Centre: Point,
SidelLength, Integer]

Rectangle IsA Square: [
SecondSideLength: Integer]
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This type of problem, too, is not inherent to object-oriented databases, but charac-
teristic of object orientation in general. In order to achieve more flexibility when
operating an inheritance mechanism, some object-oriented languages, such as
Smalitalk, define the underlying class hierarchy separately from the IsA relation-
ships. When working with databases such a procedure may be questioned, because
an IsA relationship is an essential abstraction concept in the design phase of a data-
base and the resulting abstractions should not be so readily abandoned in the later
stages of software development.

Inheritance is not the only approach to achieving reuse of structure and
behaviour; there is another, rather different technique, which is commonly known as
delegation. As delegation is independent of a class hierarchy, it can be useful in sit-
uations where the desired effect of reuse could not be achieved by inheritance in an
intuitive way. To demonstrate this we shall show by means of an example how mul-
tiple inheritance can be simulated by single inheritance. In fact, there exist object-
oriented database systems, for example, Gemstone Smalltalk (cf. Section 4.4), which
do not support multiple inheritance.

Let us look again at Figure 2.1 and assume that multiple inheritance is not
supported. We thus have to find a representation based on single inheritance. Assume
we define Manager to be only a subclass of Employee:

Manager IsA Employee: [
Staff: { Employee 1}]

To make it possible to query the shares of a manager we extend the above definition
of Manager as follows. First we add a private attribute AsShareholder with type
Shareholder. Whenever we create a Manager object we now have to create a
Shareholder object as well; this shareholder object implements the role of the corres-
ponding manager object with respect to its shareholder properties. Note that here we
reuse all properties of class Shareholder for our purposes. To make the shares of a
manager accessible, we next add a public method MyShares to Manager. To imple-
ment this method we make use of delegation: any call to MyShares will delegate this
call to the corresponding AsShareholder object by executing the path expression
asShareholder. Shares, for example. Taking these extensions into account we
come up with the following definition of class Manager:

Manager IsA Employee: [
AsShareholder: Shareholder,
Staff: { Employee 1},
MyShares: Integer]

private: AsShareholder

2.5 Bibliographical notes

Requirements for and the properties of languages of object-oriented databases can
be found in Bertino and Martino (1993), Kemper and Moerkotte (1994) and Loomis
(1995), amongst others. In Section 2.2 we based our arguments on Kim (1990) and
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Manola (1991). The use of path expressions in connection with object-oriented data-
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expressions are Kifer et al. (1992), Kim (1990) and Bancilhon et al. (1992).
Generalizations of path expressions, particularly abbreviating mechanisms, are dis-
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A formal frame-
work for structure
and behaviour

3.1 Modelling of structure 3.4 Bibliographical notes
3.2 Modelling of behaviour
3.3 Formal treatment of path

expressions

In this chapter we present a formal framework for object-oriented databases,
providing more details on the concepts underlying the intuitive discussions
in the previous chapter. In particular, we define the concept of objecr base
schema and object base. We conclude the chapter with a formal treatment of
path expressions applying the newly introduced formalism.

In order to make a clear distinction between the various aspects of
object-oriented databases, an object base schema SC will be further divided
into a structure schema SC,,, and a behaviour schema SC,,,,. SC,,,. defines
the types and classes, whereas SC,,,,, is mainly responsible for attaching
methods to classes. An object base d(SC) then consists of class extensions
and method implementations, according to the definitions and restrictions
stated in SC,,,. and SC,,,...

Struc

7
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3.1 Modelling of structure

First we want to examine the modelling of the structural aspects of object-oriented
databases, beginning with the definition of values, objects and types and then pro-
ceeding to classes, class extensions, class hierarchies and inheritance.

Let us assume that A is a set of attribute names and O is a set of object iden-
tities, where each object identity consists of the symbol # followed by a positive
integer number. In order to simplify matters, we shall mostly use the short forms
attribute and object instead of talking about attribute name or object identity. Let
further nil € O be the empty reference. The set of allowed values then can be defined
inductively in the following manner:

Definition 3.1

Let D be the set of values composed of the union of integer numbers, floats,
strings, and boolean values.

(i)  All elements in D are values. (atomic values)
(i) All object identities in O are values. (reference values)

(iii) Letn =0, and let A, € A be distinct attributes and w; values, 1 <i < n,
then all expressions are also values if they comply with the following
structure:

@ [A;:w,..,A,: w,]; subexpressions of the form A, : w;, 1 <i<nare
called components. (tuple values)

(b) {wy,... w,} where w, distinct, 1 <i < n. (set values)
Let W be the set of all complex values defined in this way.

The order of the components in a tuple value is irrelevant. If necessary, we treat a
tuple value as the set of its components. In particular, we consider two tuple values
as being identical, if they possess identical components, but possibly in a different
order. We shall admit tuple values of the form [ ] and denote them as empty tuple
values. A set value of the form { } denotes an empty set, which we also write as
usual; that is, &. In order to simplify matters when developing our formal setting,
we shall disregard lists, bags, and so on as they can be dealt with similarly to sets.
According to the definition given above, object identities are also values, which is
necessary because references between objects are to be expressed.

In terms of structure we can now represent an object by means of an object
identity and a value:

Definition 3.2

An object is a pair (o, w), where o is an object identity in O and w is a value
inW.
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Example 3.1

Let us look at some objects in the context of our running example (Figure
1.9). The object with the identity #1 represents information about vehicles
and persons which are summarized in a tuple value. vehicles denotes a set
of reference values each referring to a concrete vehicle, and Person denotes
a set of tuple values. The component Fleet of each of these values is itself
a set value of references. Note how the use of reference values, that is, object
identities, avoids redundancy. Since every vehicle is an object with a unique
identity, we can restrict ourselves to the respective object identities.

(#1, [Vehicles: {(#10, #11, #12},
Persons: {[Name: 'Slim', Age:40, Domicile:#80, Fleet: {#10, #11}1}1)

(#10, [Model: 'Golf', Manufacturer: #41, Colour: 'red'])
(#11, [Model '323', Manufacturer: #42, Colour: 'blue'l])
(#12, [Model: 'R4', Manufacturer, #43, Colour: 'green'])

(#41, [Name: 'VW', Headquarters: #80,...1)
(#42, [Name: 'Mazda‘', Headquarters: #81,...1)
(#43, [Name: 'Renault',6 Headquarters: #82,...1])

Making a distinction between an object’s identity and its value has further conse-
quences than merely making objects distinguishable independently of their values.
Distinguishing between identity and value allows us to maintain several copies of
the same objects: that is, objects with different identities but with identical values.
Consequently, we have already established two different equality operators: ‘==’ for
identity of objects, that is, equality of object identities, and ‘=’ for equality of values
(cf. Section 2.2).

Sometimes it is not sufficient to make a distinction solely between identity and
equality. Let us exemplify this by considering two tuple values w, = [A: o],
w, = [A: 0,] where 0, and o, are object identities and 0, # 0,, and consequently
w, # w,. If the objects referenced by o, and o, have the same value, for example (0,
w) and (0,, w) respectively, then w, # w, applies, even though substituting 0,, 0, by
w would make both objects equal. One solution to this unsatisfactory situation is to
distinguish between shallow equality, that is, equality of values without substituting
references by the corresponding values, and deep equality, that is, equality only after
recursive substitution of references by their values. It is easy to see that the following
implications hold true: identity of objects implies shallow equality and shallow equal-
ity implies deep equality. Of course, the reverse implications do not generally apply.

Values of a similar structure are characterized by a common type and object
identities of similar objects by a common class. Object identities are also values (ref-
erence values) and therefore a class is also a type. Later we shall assign a type to
every class in order to define the permissible values for the objects of a class. Types
and classes are therefore recursively related: a class may act as a type in order to type
references among objects; on the other hand, a type may be attached to a class when
the structure of its objects is to be defined.
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Given a set of class names, we shall first define types and class hierarchies.
According to the underlying hierarchy, types of classes are interrelated. This will
give rise to a subtype ordering. After these definitions we are able to introduce a
structure schema. Then we shall define extensions of classes and value sets of types.
Having done ail this we will finally be able to define an instance of a given structure
schema. The formal framework so far will not reflect inheritance; this will be the
final step.

Definition 3.3

Let K be a finite set of class names. The set of all types over K is defined
inductively as follows:

(i) integer, float, string, and boolean are types. (base types)

(i) Everyclass in K is a type. (reference type)

(iii) IfA,, .., A, € A are distinct attributes and T, T, ..., T,, n 2 O are types,
then every expression which conforms to one of the following is also a
type:

(@ [A T, .., A, :T,] subexpressions of the form A, : T;, 1 <i<n
are called components. (tuple type)
() {T} (set type)

Let T(K) be the set of all complex types defined in that way. Let A : T be a
component of a tuple type. If T is a set type, then the attribute A is said to be
set-valued, otherwise A is said to be scalar.

Analogous to a tuple value, for a tuple type the order of the components is irrelevant;
a tuple type can also be considered as the set of its components, if appropriate.
A tuple type of the form [] is called an empty tuple type. Furthermore, we may write
T instead of T(K) if this short-hand notation does not imply ambiguities.

Example 3.2

Here we give the type definitions corresponding to the values presented in
Example 3.1. Vehicle and Company are classes. Later we shall see how
extensions are attached to classes, which will then allow us to ascertain that
the above values are indeed of the desired type.

[Vehicles: {Vehicle},
Person: {[Name: String, Age: Integer,
Domicile: Address,
Fleet: { Vehicle}]}]

[Model : String, Manufacturer : Company, Colour: String]

[Name : String, Headquarters : Address,...]
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e K

Vehicle

Automobile

Figure 3.1 Graphic representation of a class hierarchy.

Classes are arranged in a hierarchy, which is based on the IsA relationships between
the participating classes. If a class K is subordinate to a class K’, then every object
of K is also an object of K”. A class hierarchy of this kind is the basis for the inheri-
tance of properties, and we have already seen how IsA relationships between classes
imply corresponding subtype relationships between types of the classes involved. In
order to introduce subtypes we need some preliminaries.

Let K be a set of class names and object be a specific class name in K such
that all other classes are subclasses of class object.

Definition 3.4

A class hierarchy with respect to K is a partial order (that is, a reflexive, anti-
symmetrical and transitive relation) IsA on K such that K IsA object for every
class K € K. If K IsA K’ , then K is a subclass of K’ and accordingly K" is a
superclass of K.

Class hierarchies are often presented graphically (Figure 3.1).

Example 3.3

In addition to the hitherto used classes vehicle and Company, let us con-
sider a class Automobile, which is a subclass of vehicle. We then obtain
the graph shown in Figure 3.1 with the obvious directions of the edges.

A given class hierarchy IsA induces a subtype order < in accordance with the defin-
ition presented below. Analogous to the role of the class object within a class hier-
archy, any is a type of which every other type is a subtype.

Definition 3.5

Let us assume a set K of class names, a set T of types and a class hierarchy
IsA. The subtype order < on T is the smallest partial order which is closed
with respect to the following rules:
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(i) IfKIsAK' thenalsoK<K'forK,K’' e K.

(i) LetT=[A,:T,,..,A,:T].T=[A":T,..,A",:T’,]betwo tuple types
in T. If n 2 m and if for every component A’;: T", 1 <i < m of T there
exists acomponentA;: T;, 1 <j<nof T where A’;=A;and T, < T", then
T < T’ also holds true.

(iii) LetT, T € T.If T <T’, then also {T} < {T"}.

(iv) T<anyforallT € T.

In (1) a subtype order for classes is defined which is consistent with the class hier-
archy. The condition stipulated in (ii) states that two tuple types T and T” are included
in the relation T < 77, if all attributes of T” (possibly in a different order) occur in T
as well and types of attributes with the same name are subtypes of one another recurs-
ively; T may contain new attributes not occurring in 7”. Note that according to this
definition base types such as integer or string are incomparable with respect to ‘<",
The conditions stated in (iii) and (iv) require no further explanation.

Having introduced these terms we now can define a structure schema, which
will assign types to classes according to the respective class hierarchy:

Definition 3.6

A structure schema has the following form:
SCS”‘M(' = (K’ ISA’ type)

K is a finite set of class names, /sA a class hierarchy and type: K — T is a
mapping which assigns a type to every class. Structure schemas are well
formed in such a way that fype has the following property:

K IsA K’ = type(K) < type(K")

We now want to define an object base with respect to its structural component
d(SC,,,.), in a way which reflects SC,,,.. An object base contains objects whose
classes are ordered in a hierarchy and which have a possibly structured value. Let us
begin by assigning objects to classes. The corresponding mapping will interpret IsA
according to the intended semantics by a subset relationship; moreover, every object
identity is attached to a selected class — its base class.

Definition 3.7

A base extension is a mapping inst which assigns pairwise disjoint finite sets
of object identities to the class names in K. If 0 € ins«(K) for K € K, then K
is called the base class of o.

An extension for a given mapping inst is a mapping Inst which assigns sets of
object identities to the class names K e K taking into account the class hierarchy:

Inst(K) = inst(K) U { 0l o € inst(K"), K’ € K, K" IsA K}
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Example 3.4

Let us restrict ourselves to the classes Vehicle and Automobile. By means
of inst disjoint sets of object identities are attached to these classes. Inst then
takes the class hierarchy into account; thus with regard to the class hierarchy
represented in Figure 3.1 we have the following:

inst{Object) = &

inst(Vehicle) = {#13},
inst(Automobile) = {#10, #11, #12},
Inst(Object) = {#10, #11, #12, #13},
Inst(Vehicle) = {#10, #11, #12, #13},
Inst(Automobile) = {#10, #11, #12}.

Now we can link types to value sets:

Definition 3.8

A mapping dom which attaches to every type a corresponding value set
(domain) is defined as follows:

(i) dom(integer) is the set of all integer numbers (analogous for string,
float, boolean);

(i) dom(K) = Inst(K) for every class K e K;
(iii) Foratupletype T=1A,: T, ..., A,: T, n20, we have

dom(T) := {[A;:w,, ..., A, w,] | w, € dom(T), 1 <i<n};
(iv) For a set type {T} we have
dom({T}) = {{w\, ..., w,} | w; € dom(T) forn>0,1 <i<n}.
Finally, we can attach values to objects according to the types of their classes, which
allows us to define the structural part of an object base. However, this definition still

does not reflect inheritance.

Definition 3.9
Let SC,,,. = (K, IsA, type) be a structure schema, O the set consisting of all

object identities and W the set of all values. An instance (without inheritance)
of SC,,,. is given by:
d(SC,,,.) = (inst, val).

Here inst is a base extension and val: O — W a mapping with the property:

o e inst(K), K € K = val(o) € dom(type(K)).
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Classes Types
K - T
type
inst 1 l dom
val
(o] - w
Obiject identities Values

Figure 3.2 Formal object model (without inheritance).

The diagram in Figure 3.2 provides a summary of what has been discussed so far:
classes have types and are instantiated; types define values whereas objects have val-
ues. In order to reflect an assignment of object identities to classes, the diagram in
Figure 3.2 needs to commute.

So far we have used class hierarchies to define extensions of classes and to
order types. However, the main purpose of a class hierarchy is to provide the basis
for inheritance to achieve reusability. The next example serves to illustrate what is
missing so far in our formal framework.

Example 3.5

Let us consider the classes Employee and Person. Every employee is a per-
son. This IsA relationship implies that all properties of a person apply equally
to an employee; therefore the definition given below of the respective types
seems obvious. Unfortunately, it does not yet have the desired effect, because
type(Employee) is not a subtype of type(Person).

Employee IsA Person

type(Person) = [Name: string,
Age: integer,
Domicile: Address
Fleet: {Vehicle}]

type(Employee) = [Qualifications: {string},
Salary: integer,
FamilyMembers: {Person}]

In the above example the desired intent is to define attributes not only for Person,
but also implicitly for Employee, according to the condition for a well-formed sub-
type ordering. If reusability of definitions is to be permitted, we must differentiate
between the type directly attached to a class by means of the type mapping and the
type implied through the class hierarchy IsA via inheritance of type information.
Analogous considerations apply to default values. Defaults (cf. Section 1.5.2)
are values which are to apply to all objects in a respective class. A default inherited
from a certain class applies to an object unless it is overwritten by a more specific
value attached either to a subclass of the respective class or directly to the object.
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Example 3.6

We want to express that all vehicles, and in particular vehicle #4, are green
without having to specify this for every vehicle separately. We define a
corresponding default value for class Vehicle; this is achieved in a formal
manner by allowing us to apply function val to classes, for example to class
Vehicle in this example.

type(Vehicle) = [ Model: string,
Manufacturer: Company,
Colour: string ]

val(Vehicle) = [ Colour: 'green']

val(#4) = [ Model: 'Golf',
Manufacturer: #41]

#4 IsA Vehicle

Analogous to Example 3.1 the intent here is to ensure that every value defined as a
default for class Vehicle is also defined for every individual vehicle, unless a differ-
ent colour is assigned explicitly to a particular vehicle. Consequently, the vehicle
with object identity #4 is green. Again we must differentiate between the value
directly attached to an object and the value implied through the class hierarchy IsA
via the inheritance of values.

In order to express inheritance in the terms described above, we need to
expand our current formal framework. We can restrict ourselves to inheritance in
connection with tuple types, because we need attributes to access type information
and class values. The following technique acquires the components to be inherited
from the next superclass relative to the class hierarchy for which the component in
question is defined. A class K’ is called the next class to class K with respect to a cer-
tain property; if K IsA K’, the property is defined for K’, and for every other class K
for which the property is defined as well, the following holds: if K IsA K” and K~
IsA K, then K’ = K. Note, that because K IsA K, for all classes K, every class is its
own superclass or subclass.

To simplify matters we shall assume for the time being that there are no inher-
itance conflicts (Section 2.4.1); we shall later present a property for structure
schemata guaranteeing that no conflicts will occur (Definition 3.13).

We expand the mapping type introduced earlier to a mapping Type, thus tak-
ing into account inheritance of attributes:

Definition 3.10

Let SC,,.. = (K, IsA, type) be a structure schema, K € K aclass, A € A an
attribute and T e T a type. Type : K — T is a mapping with the following
property:

If rype(K) is a tuple type, then A : T is a component of Type(K) when-
ever there exists a superclass K’ of K in which A is defined with type
T: that is, A : T is a component of type(K’) and, in addition, K" is the
next superclass to K in which A is defined.
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In this expanded framework we have to adapt the property of well-formedness
accordingly. A structure schema SC,,,,. = (K, IsA, type) is now well formed in the fol-
lowing way:

K IsA K’ = Type(K) < Type(K").

Let us now consider the inheritance of defaults and to this end define W, to be the
set of all tuple values in W. We define a function val, : K — W, which has the
following property:

If K € K and A : w is a component of val (K), then Type(K) contains a com-
ponent of A. Further, if this component is A : 7T, then also w € dom(T).

In contrast to val, val, expresses schema information. Accordingly, a structure
schema SC,,,. now has the form SC,,,. = (K, IsA, type, val,). Now we are ready to
expand the mapping val to a mapping Val, such that inheritance of defaults is taken
into account:

Definition 3.11

Let SC,,... = (K, IsA, type, val,) be a structure schema, O a set of object iden-
tities and W a set of values. Val : O — W is a mapping with the following
property:

Let 0o € O, K the base class of 6, A & A an attribute name and w € dom(A).
If Type(K) is a tuple type having a component with respect to A, then A : w is
a component of Val(o) if either A : w is already a component of val(o) or the
following applies:

(i) val(o) does not contain a component of A, and

(i) there is a superclass K’ of K, such that A : w is a component of val (K"),
and, in addition, K’ is also the next superclass to K having a component
of A.

Otherwise we have Val(o) = val(o).

The arguments we have put forward are illustrated in Figure 3.3 and allow us to take
into account the inheritance of attributes and defaults:

Classes Types
K - T
Type
Inst 1 l dom
Val
(o] - w
Object identities Values

Figure 3.3 Formal object model (with inheritance).
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Definition 3.12

Let SC,,.. = (K, IsA, type, val,,) be a structure schema. An instance of SC
has the following form:

Struc

d(8C,,,.) = (inst, val),
where inst is a base extension and the following holds:
o € inst(K), K € K = Val(o) € dom(Type(K)).

One should be aware of how inheritance is realized here: inheritance implied by
SC,,.. and d(SC,,,.) is made explicit by means of the expansion of fype and val to
Type and Val respectively. Obviously, this is in line with our intention to reuse defi-
nitions and values attached to superclasses without having to define them redund-
antly in subclasses.

As promised earlier we conclude this section by giving a definition for struc-
ture schemata without inheritance conflicts.

Definition 3.13

Let SC,,,.. = (K, IsA, type, val) be a structure schema. SC,,,. is called free
from inheritance conflicts if for all triples of classes K, K, K" € K with K"
IsA K, K" IsA K’ the following applies:

(i) I rype(K) and rype(K’) contain a component of A but rype(K") does not,
then there exists a class K"’ with type(K"’) containing a component A;
moreover, K" IsA K, K" IsA K’ and K" IsA K"’.

(ii) val,, is treated in an analogous way.

Example 3.7

Let us assume that a class K has two superclasses which are not ordered by
IsA and let us further assume that for both superclasses there is defined an
attribute A, but with different types. Without additional precautions it is not
clear which of the two definitions of A is to be valid for K:

type(K) =[], KIsSAK', KIsAK", type(K') =[A : T"], type(K")=[A : T"]

We can solve this inheritance conflict by introducing an additional class K
which redefines attribute A with the desired type. This explicit overwriting
removes the ambiguities. Note that the new class hierarchy meets the condi-
tion of being free of inheritance conflicts:

KIsAK, KIsAK" KIsAK,
type(K) = [1, type(K) = [A : T'], type(K”) = [A: T"], type(K) = [A: T]
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3.2 Modelling of behaviour

The behaviour of an object is given by the methods that can be applied to it.
Therefore, modelling the behaviour involves, on the one hand, determining which
methods are applicable to which objects, and, on the other, defining what effects
these methods have. We capture these two aspects in the following way:

o Methods are assigned to classes. The applicability of a method to an object
follows from the inheritance rules, analogous to the inheritance of attributes
and defaults.

e We attach signatures to methods which define the types of the input para-
meters and the result. We do not consider how methods are implemented.
This procedure is analogous to that used within abstract data types, where the
externally visible interfaces are defined by means of signatures separated
from the externally invisible implementations of the operations.

Let us assume that M is a finite set of method names. An expression of the form
M KXT X..xT, > T),

where k20, M € Mis amethod, K € Kisaclass, T,, T € T are types, | i<k, is
called a signature, which is associated with class K with respect to method M. Types
T, 1 <i<k, state the expected type of the input arguments and type T states the type
of the result. Having clarified signatures we can continue:

Definition 3.14

A behaviour schema is an expression
SChuar = (K, IsA, S),

where K is a finite set of classes and S a finite set of signatures with the fol-
lowing property:

IEM:KXT)X.XT, >T,M:KXxT)x..xT,—>T)eS
where k, [ 20, thenk=[,T=T"and T, =T for 1 i< k.

If T is a set type, then M is said to be set-valued, otherwise M is said to be
scalar.

A behaviour schema which is defined in the above manner allows us to attach
signatures of methods with the same names to different classes; however, not more
than one signature per method for each class is allowed.

Analogous to well-formed structure schemas we shall now introduce a condi-
tion which is known as contravariance of the method arguments and covariance of
the method results. We have encountered this requirement in an informal way already
in Section 2.4.3; we shall use it again later to study safety of path expressions.
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Definition 3.15

A behaviour schema SC,,,., = (K, IsA, S) is said to be well formed if the
following holds:

M:KXT\X..xXT, 5T, M :K'xT'x.XxXT,>T)e S,K'IsAK, kl>0
= k=T <T,T,<T,,1<i<k

Signatures define the allowed method calls. Let S = (M : K X T, X ... X T, = T).
Method M can be applied to all objects of class K which inherit the signature of M
that is attached to K. A call of M is called allowed if it is in accordance with S:

M(o, wy, ..., w), respectively o. M(w,, ..., wy)

where 0 € Inst(K) and w, € dom(T)), 1 i <k.

Whenever for some w; it is true that w; € dom(T")), T'; < T, we shall assume
that only the T; part of w; will be considered for the method call (see Definition 3.5).
This actually means that methods may also be called with values which are of a sub-
type of the respective argument type stated in the signature.

If an object o inherits a signature of a method M which is attached to a class
K, then K is called the receiver class. The selection of a receiver class is known as
method resolution. This leads to the following:

Definition 3.16

Let SC,,... = (K, IsA, S) be a behaviour schema. An instance to SC,,,,, is
expressed as

d(SCy,pev) = (inst, impl, res),

where inst is a base extension and imp! and res respectively are mappings of
the following form:

(1)  implis a mapping which attaches a partial function / (the ‘implementa-
tion’) over the respective value sets to signatures S € S. If S=(M : K
x T, % ... x T, = T), then the following holds:

I : dom(K) x dom(T,) X ... Xx dom(T,) — dom(T).

(i) res: (M,K) — S is a partial mapping which attaches a signature S € S
of the foorm S = (M : K'xX T, X ... x T, > T) to a method call M
(0, wy, ..., w,). Moreover, let K be the base class of object o, then K IsA
K’ applies. If no such signature exists, then res is not defined for the
respective method call.

Example 3.8

Let us consider classes Employee and Person. Employee has in part the
following structure:
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type (Employee) = [ . . . ,
Salary: integer,

FamilyMembers: {Person}]

In order to increase the salary, for example, a method with the following
signature could be used:

(MoreSalary : Employee X integer — integer).

If a member is added to the family of an employee, a method with the signa-
ture

(Offspring : Employee X Person — {Person})

can be used to reflect the new situation.

It should be noted that according to the definition given above, the implementation
of a method is expressed by means of a partial function. Proposals as to how to real-
ize such functions in the form of programs will be presented in the second part
of this book, when we examine languages used with concrete examples of object-
oriented databases.

The selection of a receiver class according to a method call depends either on
the base class of the object alone, or, in addition, on the argument types. We can dis-
tinguish between the following strategies.

Let us suppose that M(o, w,, ..., w,) is a method call and K is the base class
of 0. The receiver class is that class K’ for which either

(1)  asignature to M in the form (M : K'x T, x ... x T, - T) is defined and which
is also the next class to K with respect to IsA for which this holds. Thus the
selection depends only on the base class of the object (single dispatch).

or

(2)  asignature to M in the form (M : K’ x T, x ... x T, — T) is defined, where w,
€ dom(T}), 1 £i <k, and which is also the next class to K with respect to IsA
for which this holds. Thus the selection depends not only on the base class of
the object but also on the types of the arguments (multiple dispatch).

The first strategy has the advantage that it is easier to implement; unlike the second
strategy, however, it may happen that the correct typing of the arguments is not guar-
anteed with respect to the selected implementation, even if a suitable implementa-
tion defined for a superclass exists.

Example 3.9

Let us examine classes Employee and Manager from Example 2.27. The sig-
natures of the method for Deputy are expressed in the following manner:
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(Deputy : Employee X Employee — boolean)
(Deputy : Manager X Manager — boolean)

Let us assume that we want to send a message to a manager concerning
Deputy. If we apply the first strategy, where the selection of the implemen-
tation depends only on the receiver object, then the implementation attached
to class Manager will be selected. In situations where the second parameter
is not a manager we can expect a type error at run time. Using the second
strategy, however, would mean that in these situations implementations of the
class Employee would be selected and a type error would be avoided
because every manager is also an employee.

Unless explicitly stated otherwise, we shall assume that the strategy of single selec-
tion is applied, which is realized accordingly by means of the mapping res.

The following definition summarizes what has been said in this chapter; the
reader is also referred to the illustration in Figure 3.4:

Definition 3.17
Let SC,,,. = (K, IsA, type, val,) be a structure schema and SC,,,,, = (K, IsA,

S) a behaviour schema with instances d(SC,,,.) = (inst, val) and d(SC,,,,.) =
(inst, impl, res). Then an object base schema SC is given by:
SC = (K, IsA, type, val, , S);

and an object base by:

d(SC) = (inst, val, impl, res).

IsA

Class

K> fy‘ly
Ta
T > Type Signatures €S

A/jom impl ™. N

inst
W 3 Values Implementation

val
Objects €O

Figure 3.4 Summary of the formal model.
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An object base schema SC integrates the important aspects we have examined with
regard to the structure and behaviour of object-oriented databases: a hierarchy of
typed classes with (possibly) attached defaults and a set of method signatures. An
object base d(SC) represents a possible state: that is, it contains a set of objects with
values, an abstract implementation for each signature and a strategy to realize inher-
itance according to the definitions expressed in SC. In the next section we shall
exemplify the application of these definitions by means of path expressions.

3.3 Formal treatment of path expressions

There are two reasons to look at path expressions in detail. First, path expressions
are a distinctive feature of object-oriented languages. Despite their elegance they
require a nontrivial formal treatment; the latter is mainly due to the complex data
structures, particularly sets, which do not exist in relational languages. Second,
analysing path expressions allows us to put our formal framework into practice and
thus to demonstrate its relevance. We restrict ourselves to the basic structure of path
expressions, first dealing with expressions consisting of scalar attributes and meth-
ods and then looking at the more general case, namely set-valued attributes and
methods.

3.3.1 Scalar path expressions

Let O be a set of object identities, V a set of variables, W a set of values, T a set of
types and A, K, M pairwise disjoint sets of names for attributes, classes and meth-
ods respectively. Let us further refer to an object base schema SC = (K, IsA, type,
val,, S) and an associated object base d(SC) = (inst, val, impl, res). We may then
inductively define scalar path expressions as follows:

Definition 3.18
(P1) Each object identity o and each variable v is a scalar path expression.

(P2) If pg, py, ..., P, are scalar path expressions and M is a scalar attribute,
k =0, or a scalar method, £ > 0, then

Poe-M(p,..., p)

is also a scalar path expression, where p,, ..., p; are the arguments. In
the case k = 0 we write instead of p,.M() the shorter p,.M.

Let P be the set of all (for the time being, scalar) path expressions.
It should be noted that in a path expression p,.M(p,, ..., p;) the expression p, supplies

the object identity to which the method M is applied; and, if £ > 1 applies, the expres-
sions p, ..., p, supply the required parameter values.
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Example 3.10
Examples of scalar path expressions are:

#41

employee

employee.Domicile
automobile.Drive.Engine.HP
employee.Deputy (company.President)

Here, employee, automobile and company are variables.

Methods are characterized by signatures which define the required types of the para-
meter values as well as the result type. It is necessary to ensure that methods are called
only for objects for which there exists a signature. For reasons of static type checking (cf.
Section 2.4.3), each path expression needs to be assigned a type in such a way that the
value defined by the path expression is exactly of this type or at least a subtype thereof.

For this purpose we need to clarify what we understand by the type Type of a
path expression. At first glance there do not seem to be any difficulties in determin-
ing the type of a path expression p with the general form p,.M(p,, ..., p,), as only the
signature for M needs to be consulted in order to select the result type of this signa-
ture as the type for p. However, the question arises of which signature to select if
there are several signatures whose result types may even be incomparable with
respect to the subtype order <. In order to make the right selection in accordance
with inheritance, we obviously need to know the type of the path expression p,,.
Therefore, we shall follow an inductive approach to determine the type of a path
expression, thereby applying a simple form of type inference.

First, we extend the domain of the already introduced mapping Type, that is,
the set of class names K, by the set of path expressions P and thus also by the set of
object identities O and the set of variables V. We can assign a type to a path expres-
sion p, provided that its structure conforms to certain criteria of well-formedness.
Unless these criteria are fulfilled, the type of p is not defined.

Before looking at the general case, we shall deal with some special cases of
path expressions: that is, path expressions which are given by an object identity or a
variable. First, the type of an object identity o is its base class: that is, Type(o) = K,
provided that o € inst(K). With respect to variables we assume that the type of each
variable is given in advance. For example, if a path expression is used within an SQL
expression, the type could have been defined within the from-clause. In particular,
for the following we always can assume Type(v) € K.

Definition 3.19

Let p = p,.M(p,, ..., p) be a path expression in P and let Type(p,) € K. Then
the type of p is defined as follows:

(T1) Let M be an attribute, that is, k£ = 0. If there exists a component of the
form M : T of Type(Type(p,)), then Type(p) = T. Otherwise, Type(p) is
not defined.
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(T2) Let M be a method. If there exists a superclass K of Type(p,) such that
K is the next superclass with a signature S of the form (M : K X T, X ...
X T, = T), then Type(p) = T, provided that Type(p) < T, 1 < i<k
applies. Otherwise Type(p) is not defined.

Example 3.11

Here we show the types of the path expressions presented in our previous
example:

Type (#41) = Company

Type (employee) = Employee

Type (employee.Domicile) = Address

Type (automobile.Drive.Engine.HP) = integer

Type (employee.Deputy (company .President)) = boolean

We assume that the types of the variables employee and automobile are
the classes Employee and Automobi le, respectively. For the last expression
we further assume the signature:

(Deputy : Employee X Employee — boolean)

The following is an example of a path expression for which there is no type
defined:

vehicle.Manufacturer.HP

This is because attribute HP is not defined in the class referenced by
Manufacturer. A further example of this kind is:

company .Headquarters.Place.Address

A path expression is called typed, if a type is defined for it. A typed path expression
has a structure which is well formed in the following manner:

Let p = po.-M(p,, ..., p) be a typed path expression.

e The type of p,, that is, Type(p,), is a class; therefore a path expression p at
least represents a possible successive application of attributes or methods.

o The attribute M or a signature to the method M is indeed defined for Type(p,).

o Provided that M is a method, then, with respect to the selected signature, the
arguments p,, ..., p; are of the type defined therein or of a subtype thereof.

Having clarified the syntax and the type of scalar path expressions we shall now turn
our attention to their semantics; that is, we shall be able to indicate what value is
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defined by a path expression, respectively when it is not defined. Subsequently, we
shall demonstrate that the type of this value is the type of the path expression or a
subtype thereof.

We shall restrict ourselves to expressions without variables and thus require
that variables must be bound according to their type before the path expression is
evaluated. When evaluating an SQL expression, these bindings may, for instance, be
supplied by the from-clause. Let P’ C P be the set of variable-free, typed path
expressions and let sem : P - W be a partial mapping. Since methods are partial
functions, sem cannot be defined for all vectors of arguments of method calls. We

shall define the mapping sem inductively and in this way obtain an obvious strategy
for the evaluation of path expressions. The semantics sem of a path expression p is

defined as follows:

Definition 3.20

Let p be an object identity; then sem(p) = p. Let p = p,.M(p, ..., p,) be a scalar,
variable-free, typed path expression and assume that sem(p;) is defined,
0<i<k

(S1) Let M be an attribute and therefore £ = 0. Because p is typed, Val(p,)
contains a component of the form M : w. Then
sem(p) =w

(§2) Let M be a method. Since p is typed, there is an implementation of M
in the form I = impl(res(M,Type(p,))). If I(sem(p,), sem(p,), ..., sem(p,))
is defined, then

sem(p) = I(sem(p,), sem(p,), ..., sem(p;))

Otherwise, sem(p) is not defined.

Example 3.12
Based on the class extensions shown in Figure 1.9 the following values are
obtained:
sem(#41) = #41
sem(#68.Domicile) = #82
sem(#10.Drive.Engine.HP) = 80

Let us now consider a variable-free, typed, scalar path expression p; let T be the type
of p. Having defined what we mean by the type of a path expression and its semant-
ics, the interesting question then is whether we can guarantee, for every object base,
that the value defined by the semantics is indeed of type T, respectively, of a subtype
of T. We shall demonstrate that the answer is positive; in other words, we are going
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to prove the safety of path expressions. The crucial point here is that the selection of
an attribute or a signature of a method to be applied to an object takes place through
the inheritance mechanism, which itself depends on the base class of the object in
question. The actual selection is, therefore, not visible from the syntactic structure
of a path expression, but depends on the concrete objects being referenced during the
evaluation of the path expression.

To demonstrate the problem of safety in more detail let us consider a path
expression of the form p = p,.M,.M,, where M, and M, are assumed to be methods.
The type of p is given by the result type of method M, as stated in the signature of
M, under consideration; this signature itself depends on the result type of the signa-
ture considered with respect to M. Let us assume that 7, is the class which appears
to be that type. If a subclass T, of T exists for which there is defined a different sig-
nature to M,, then the implementation of M, which is actually selected for evalua-
tion of p may differ from the one which has been assumed for determining the type
of p. Indeed, the types of the value defined by a path expression and of the path
expression itself may differ! Well-formed structure and behaviour schemata,
however, guarantee that these two types are ordered by <, that is, T*, < T, applies, as
is in fact desired. Let us look at this in more detail.

Proposition 3.1

Let p =py,.M(p,, ..., p;) be a variable-free, scalar, typed path expression, where
Type(p) = T. Assume sem(p) is defined. Then sem(p) € dom(T*), where T*
<T.

The proof of the proposition is a simple induction on the number of occurrences of
attributes and methods appearing in a path expression p. For brevity we restrict our-
selves to methods; attributes can be treated similarly to methods without arguments.

Assume first that in p there is only one occurrence of a method: that is, all p,,
0 < i < k are object identities. Then, because the type of p depends on the base class
of p,, the signature of method M which is selected during evaluation of p and the
signature being considered for the definition of Type with respect to p coincide.
Therefore, we have sem(p) € dom(T).

Assume now that the proposition holds for a number of method occurrences
m’2 1. We have to show that the proposition still holds if m = m’+ 1. Let p be a path
expression with m occurrences of methods and let Type(p) = T. We can construct p
out of some p’ for which the number of occurrences is m’. Let p’=p',.M’ (..., p’ ...)
and Type(p’) = T"; there are two cases:

o p=pM(.p .)Mp, .. p). Because of our assumptions we have
sem(p’) = o', where Type(o’) < Type(p’). According to method resolution and
the contravariance and covariance of methods we can conclude sem(p) is
defined and moreover sem(p) € dom(T*), where T* < T, as desired.

e p=7poM (., p.Mp, .., p) ..). Because of our assumptions we have
sem(p’) = 0", where Type(o’) < Type(p”). According to method resolution and
the contravariance and covariance of methods we can conclude that
sem(p’.M(p,, ..., p)) is defined and moreover that sem(p’.M(p,, ..., py) €
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dom(T})), where T, < T, and T, is the argument type of the corresponding sig-
nature with respect to M. Therefore sem(p) € dom(T*), where T* < T, as
desired.

3.3.2 Set-valued path expressions

We now want to include set-valued path expressions in our discussion.

Definition 3.21

Letp =p.M(p,, ..., po), k2 0. p is a set-valued path expression, provided one
of the two following conditions applies:

(P3) p, is a path expression and M a set-valued attribute or a set-valued
method.

(P4) p, is a set-valued path expression and M an attribute or a method.

If k =0, that is, no arguments are given, we can write simply p,.M. Now P is
the set of all (scalar and set-valued) path expressions.

Example 3.13

The following examples illustrate various possibilities of forming set-valued
path expressions:

person.Fleet

person.Fleet.Manufacturer
person.Fleet.Manufacturer.Subsidiaries
person.Fleet.Manufacturer.Subsidiaries.Manager
person.Fleet.Manufacturer.Subsidiaries.Manager.Employees

The type of a set-valued path expression p = p,.M(p,, ..., p,) can be deter-
mined analogously to scalar path expressions. It should be taken into account, how-
ever, that the type of an attribute or the result type of a method may be a set. If p =
Po-M(py, ..., p) is a path expression, it is not sufficient to require only Type(p,) € K
(cf. Definition 3.19); in a set-valued path expression either Type(p,) € K or Type(p,)
= {K}, K € K must apply. In the latter case the attribute or the method M has to be
applied to the individual elements of the set defined by the path expression (which
corresponds to the effect of a flatten operator). To give the semantics of set-valued
path expressions, in an analogous way to scalar path expressions, we shall consider
variable-free expressions only.

Definition 3.22

Let p = po-M(p,, ..., p) be a typed, set-valued, variable-free path expression
and let us further assume that sem(p,) is defined, 0 < i < k.
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(S3) Let M be an attribute and therefore k£ = 0.

— Let p, be scalar and M set-valued:
W’ = {wlp’=sem(p,), Val(p') contains a component M : W, w € W}
— Let p, be set-valued and M scalar:

W ={wlp’ e sem(py), Val(p") contains a component M : w}
— Let p, be set-valued and M set-valued:

W' ={wlp’ e sem(p,), Val(p") contains a component M : W, w € W}

Define sem(p) = W".

(S4) Let M be a method and assume sem(p;) is defined, 0 < i < k. Let
p’ = sem(p,), if p; is scalar, respectively p’;, € sem(p)), provided p; is set-
valued, 0 <i < k. Let further I = impl(res(M,Type(p’y))). Let at least one
of p, and M be set-valued; then we have

W,= {W l w e I(p'O’pllv ---’p,k)}

If M is scalar and W’ = & holds, then sem(p) is not defined. Otherwise
define sem(p) = W".

Example 3.14

Let us look at the path expressions in our previous example, assuming a sit-
uation as shown in Figure 1.9.

sem(#60.Fleet) = { #10, #11 }

sem(#60.Fleet .Manufacturer) = { #41, #42 }

sem(#60.Fleet .Manufacturer.Subsidiaries) = { #50, #51, #52 }
sem(#60.Fleet .Manufacturer.Subsidiaries.Manager)

= { #60, #65, #66 }

sem(#60.Fleet .Manufacturer.Subsidiaries.Manager.Employees)
= { #65, #66, #68,... }

Types of set-valued path expressions and their semantics are related in an analogous
way to scalar path expressions (see Proposition 3.1). However, if the last method to
be applied in a set-valued path expression is scalar, we must take into account the
fact that we obtain a result in the form of a set. This does not necessarily have to be
considered a type violation. In accordance with the approach used for relational sys-
tems we can interpret a set of this kind as a set consisting of possible answers. The
following two path expressions may further illustrate this situation, referring to
Figure 1.9:

#60.Fleet .Manufacturer yields the answers: #41, #42,

#60.Fleet .Manufacturer.Subsidiaries.Manager Yyields the
answers: #60, #65, #66.
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3.4 Bibliographical notes

The formal framework for an object-oriented data model which we have introduced
in this chapter is based on Kanellakis et al. (1992); the reader is also referred to
Abiteboul et al. (1995). New findings regarding deep equality have been published
by Abiteboul and Van den Bussche (1995). A different, logic-oriented approach to
formalizing object-oriented databases has been studied by Kifer et al. (1995) and
will be considered in Chapter 7 of this book. Finally, the formalization of path
expressions is based on Kifer et al. (1992) and Frohn et al. (1994).
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4 Case studies

4.1 Architecture and 43 0O
persistence model of 4.4 GemStone
object-oriented databases 4.5 ObjectStore

4.2 Ilustra 4.6 Bibliographical notes

In this chapter we substantiate our observations on object-oriented database
systems by describing four commercially available systems:

Illustra from Informix Software, Inc.,
O: from O; Technology,
GemStone from GemStone Systems, Inc., and

ObjectStore from Object Design, Inc.
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Following the topic of this book, we confine ourselves to the underlying models and
languages. We do not claim that our selection of systems is complete, but they show
the multitude of possibilities from which you can choose when taking design deci-
sions for object-oriented database systems:

¢ Iilustra is a development of Postgres, which itself has its roots in Ingres, one
of the first relational database systems. Following this tradition, Illustra
expands relational concepts by the concepts characteristic of object orienta-
tion.

o O is a database system in the classical sense, because it possesses independ-
ent languages for the definition and manipulation of databases. The language
concepts of relational databases are mapped onto a specific object model and
expanded accordingly.

® GemStone extends the object-oriented programming language Smalltalk and
aims to make a database system out of Smalltalk.

e Similarly, ObjectStore extends the object-oriented programming language
C++ by adding persistence.

Hence, while the first two systems can be considered to be rooted in database
systems, the other two can be seen as originating from programming languages. The
selection made here therefore reflects at least the two different directions of devel-
opment that an object-oriented database system can take:

e a database system equipped with an object model and an appropriate
language, or

e a high-level (and object-oriented) programming language extended with data-
base functionality.

Within the database approach we can distinguish a more recent branch called object-
relational systems, which still emphasize the relational view while extending it care-
fully with object-oriented concepts. We present one example from each tradition in
more detail: Illustra for an object-relational system, O for a system with an empha-
sis on making a database system object oriented, and GemStone for a system start-
ing from an object-oriented programming language. The design decisions of these
systems with respect to the architecture and the persistence model become clearer
when we discuss the alternative approaches to these two aspects and compare them.

4.1 Architecture and persistence model of object-
oriented databases

Object-oriented databases try to cover the same functionality as relational databases.
As a consequence, the properties characteristic of object-oriented languages and
those characteristic of databases must be integrated. Different approaches are used
for the architecture and the persistence model in order to achieve this integration.
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These differences also reflect the starting point of the development towards an
object-oriented database.

4.1.1 Architecture

Today’s database systems are typically based on a client—server architecture: a soft-
ware architecture to realize functionally distributed systems in which the compon-
ents are realized as independent processes which communicate with each other in a
predefined form (via request—reply pairs).This fundamental principle is illustrated in
Figure 4.1: one process, the client, sends a request to another process, the server,
which is known to be able to process the request. The server reacts to the request in
the desired way and then sends a reply back to the client.

The distribution of tasks between client and server in relational database sys-
tems typically is different from the distribution of tasks in object-oriented database
systems. In relational database systems client and server communicate by the client’s
sending an SQL expression to the server; the server then returns the result of the
expression in the form of a set of tuples (Figure 4.2). Therefore, the main part of the
work in replying to a request is done by the server (which is also referred to as a
query server or an SQL server); the client is responsible for the management of cur-
sors, if it cannot process the set of answers as a whole, in order to be able to view
the individual tuples in the desired sequence.

The reasons for this distribution of tasks are obvious: a database system aims
to store data as free of redundancy as possible under central control in order to
ensure integrity. The distribution of data to clients would cause a communication
effort leading to reduced overall efficiency. A further argument in favour of the
server’s processing an SQL expression is the large effort necessary to achieve effi-
ciency. The query optimization component is one of the most complicated parts of a
database system. A client can therefore process a request efficiently only if it takes
on a large part of the database functionality; normally a client, especially if it is PC-
based, cannot do that.

To respond to the specific application demands made on object-oriented data-
bases, they offer alternatives to the query-server-based architecture in which either
individual pages or entire objects are selected as a transfer unit for communication;
the resulting architecture is called a page server or an object server respectively (see
Figures 4.3 and 4.4).

Object-oriented databases must offer database support for application areas in
which relational databases have proved to be insufficient. These application areas
(see Section 1.1) are characterized by complex objects among other things. Such an

Request

Client Server
Reply

Figure 4.1 Client—server concept.
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Client Server
Application SQL
SQL
machine
Cursor tuple
management

Figure 4.2 SQL-server architecture of a relational system.

object structure, in which relationships between objects are expressed by direct
references, suggests so-called pointer chasing, for example by means of path expres-
sions, where a client, depending on the processing stage, requests from the server the
objects it needs next. In this approach it is not necessary to process joins, because
the relationships between the objects are materialized in the form of direct refer-
ences. Using this approach, the sending of an SQL expression to the server is unnec-
essary and thus object-oriented database systems can indeed be considerably more
efficient than relational databases in these application areas.

If traditional database applications are also to be efficiently supported, navi-
gational and associative access, for instance expressed in SQL, must be supported
equally well. Depending on where the emphasis is placed in a concrete object-
oriented database system, the architecture will be characterized either by a query
server or by a page or object server; hybrid architectures comprising both a query
server and a page/object server are also possible.

Client

Application

Object .
cache Object manager

Storage allocation
/O

File/index
manager

Page cache pages
manager

Page
cache

Figure 4.3 Page-server architecture.
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Figure 4.4 Object-server architecture.

The choice of server architecture has implications for the way methods are exe-
cuted. Objects encapsulate structure and behaviour; within a query- or object-server
architecture methods can be executed either at the server or at the server and the
clients, while within a page-server architecture they can usually only run at the client.
Executing them at the server has the advantage that large data transfers to the clients
can possibly be avoided, and that business rules or integrity constraints can be con-
trolled centrally. In principle, applications should not know where methods are stored
or where they are executed. If the methods are part of the programming environment
of the clients, this might have efficiency advantages, because no execution system

need exist at the server. On the other hand, object definitions are then in part distrib-
uted over clients and servers, which may cause difficulties in guaranteeing consistency.

4.1.2 Persistence model

Languages of object-oriented databases try to avoid the impedance mismatch which
can be observed when calling relational query expressions from host languages such
as embedded SQL. We have so far studied only the aspect of how object-oriented
databases attempt to remedy this situation via application-dependent data types. A
seamless integration of programming languages and databases must, however, also
find an answer to the question of how transient and persistent objects are to be
treated. Ideally, persistence should be characterized as follows:

o It should be orthogonal to the type concept, so that in principle an object of
an arbitrary type can be persistent.
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e [t should be transpareni. The programmer should see no difference in
processing with respect to persistent and transient objects.

o It should be independent of the storage medium so that no explicit read or
write operations are necessary.

The persistence model of a language can therefore be regarded as the way in which
these aspects are realized in the language.

The most obvious approach to defining persistent objects is to use specific
persistent classes. This approach corresponds to the traditional approach of a data-
base schema. Generally, this has the consequence that the programmer must move
persistent objects explicitly into transient areas and vice versa. A second option is
to instantiate objects persistently without the objects’ having to belong to specific
persistent classes. Problems may arise when persistent objects possess references to
transient objects, thus putting referential integrity in potential danger. One way of
tackling these problems is to maintain so-called inverse relationships, which facili-
tate the test for referential integrity if necessary.

A third option is based on the reachability of persistent objects. This means
that an object is automatically persistent as soon as it is referenced from some per-
sistent object. Similar techniques to those known from network systems are used
here: in the simplest case, an object becomes persistent when it is given (in addition
to its identity) a user-defined name; named objects are then persistent in their
entirety. Moreover, navigation can now start at a named object, called an entry point,
from which additional (persistent) objects can be reached via references if required.

4.2 lustra

Of the systems considered in this text, Illustra is the one closest to a traditional data-
base system. The presentation of Illustra is made more difficult by the frequent
changes of name of its manufacturer — from Miro to Montage and, most recently,
from Illustra to Informix. The ‘constant’ mother of these products is Postgres; the
philosophy of the query language of Postgres is, however, still based on Quel, while
Itlustra follows the standardization efforts for SQL3 (see Chapter 5).

Illustra essentially combines a relational view of data with central features of
object orientation. This motivates the term ‘object-relational DBMS’ (or ORDBMS
for short), which has only recently emerged. Illustra supports the four main features
which can be attributed to object-relational database systems:

support for base type extensions in an SQL context,
support for complex objects in an SQL context,

support for inheritance in an SQL environment, and

support for a production rule system.

In greater detail, the system provides for complex data and object-oriented concepts
in an SQL setting through unique record identifiers, user-defined types and
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corresponding operators as well as functions and access methods, complex objects,
inheritance of data and functions, polymorphism, overloading, dynamic extensibil-
ity, ad hoc queries and active rules to ensure data integrity. The object model of
Illustra extends SQL2 by user-defined types, hierarchies of tables, multiple inherit-
ance, object identity and overloading of functions; it has been ensured that these
extensions will conform to the expected SQL3 standard. In this section, we survey
the architecture of the system, briefly discuss its object model, and give examples of
queries.

4.2.1 Architecture

The architecture of Illustra is shown in Figure 4.5. It is a client—server architecture
where the server has the function of a query server. On the user’s side there is an
SQL parser, expected to be compliant with SQL3. The query system is supported by
a rule system for integrity purposes. Queries written in SQL are subject to opti-
mization before they are processed. A function manager takes care of user-defined
functions attached to user-defined types. Finally, access methods to physical data
structures are provided, and a storage manager handles the database.

DataBlades
Spatial SQL parser
Image Rules system
Text DataBlade Query optimizer
API and processor
and
Web metadata

Function manager
Time series

Access methods

Storage manager

gigigigigigligip

Figure 4.5 Illustra architecture.
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All these components interact with the data dictionary, holding metadata, and

reside on the server, while user interface and application code run on clients. User-
defined functions can be specified to run on either a client or the server; if a function
is run on a client, it is handled by a component called the Dispatcher. According to
the query-server architecture model, clients communicate with the server by sending
SQL expressions. The processing of these expressions may result in calling more
user-defined methods, which are themselves part. of the database, from the server.
This means that Illustra can store ‘complete’ objects in such a manner that state and
behaviour are part of the database.

4.2.2 Type and table declarations

In this subsection we look at type and table declarations in the SQL-based language
of Illustra, show how inheritance is realized, and give examples of how to use func-
tions bound to types.

Example 4.1

Referring back to Figure 1.8, the following are valid declarations:

create type Address_t (Street varchar(40),
Location varchar(30));

create type Auto_t (Model varchar(20),
Manufacturer varchar(25),
Colour char(5));

create type Person_t (Name varchar(30),
Age int,
Domicile Address_t,
Fleet setof (Auto_t));

create table Person of type Person_t;

The above definitions first create three types describing the relevant features of an
address, an automobile, and a person, respectively. Notice that type Person_t makes use
of the other two types. Finally, a table named Person is created whose tuples are of type
Person_t. The base data types used in these definitions are the standard ones from SQL;
however, as can be seen in type Person_t, the set constructor (setof) can also be used.

Another constructor, not shown in the declarations of Example 4.1, is the refer-
ence type constructor, which essentially creates a pointer to an element of another type.

Example 4.2

If attribute Fleet of type Person_t was declared as

Fleet setof(ref(Auto_t))
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this would mean that, in a relation of that type, attribute Fleet has as its
value a set of pointers to values of type Auto_t.

Example 4.1 can be continued to illustrate inheritance.

Example 4.3

The following type declarations introduce several subtypes of type Person_t:
create type Employee_t (Qualifications setof (varchar(20)),
Salary int,
FamilyMembers setof (ref (Person_t)))

under Person_t;

create type Student_t (Major varchar(20)),
GPA float)

under Person_t;

create type StudentEmployee_t (Percent float)
under Employee_t, Student_t;

As can be expected, each subtype inherits all attributes from every supertype.
Ambiguities due to multiple inheritance are avoided since the system will disal-
low a type declaration inheriting incompatible attributes from distinct supertypes.

The subtypes constructed in Example 4.3 cannot store data, so corresponding tables
are needed as well. To this end, declarations like the ones shown next are needed.

Example 4.4

The following table definitions introduce the relevant data structures for stor-
ing tuples over the types introduced earlier:

create table Employee of type Employee_t under Person;
create table Student of type Student_t under Persorn;

create table StudentEmployee of type StudentEmployee_t
under Employee, Student;

4.2.3 Function inheritance

Inheritance applies not only to attributes, but also to functions in Hiustra. In order to
illustrate this feature, consider a function determining whether an employee makes
more money than, say, employee Susan:
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create function BetterSal (Employee_t)
returns Boolean as
return $1.Salary > (select Salary from Employee where Name = 'Susan');

Given the type and table hierarchies defined above, this function, although defined
for type Employee_t, would be inherited by type StudentEmployee_t and is hence
applicable to instances of both Employee_t and StudentEmployee_t. The following
query therefore determines the names of all employees or student employees who
make more money than Susan:

select e.Name
from Employee e
where BetterSal (e);

If the query is to be evaluated on employees only (that is, excluding student work-
ers), the appropriate formulation would be

select e.Name
from only (Employee) e
where BetterSal (e);

Function names may be overloaded. For example, the following declaration intro-
duces a second function named BetterSal, now applicable to instances of type
StudentEmployee_t only:

create function BetterSal (StudentEmployee_t)
returns Boolean as
return $1.Salary >
(select Salary from StudentEmployee where Name = 'Peter'});

This function returns ‘true’ for student employees making more money than Peter.
Since student employees are specific employees, the first query shown above would
now apply one version of BetterSal to employees, the other to student employees. In
other words, multiple function definitions would be used in the evaluation of the
same query, which is a typical example of polymorphism.

In the presence of multiple inheritance, function definitions could be inher-
ited from multiple supertypes. For example, if BetterSal was defined above for type
Student_t instead of type StudentEmployee_t, it would not be applicable to instances
of the latter type, and the system would issue a run-time error.

4.2.4 Rules

Another interesting feature of Illustra is its rule system, which can be used to protect
the integrity of a database. The general form of a rule is

on event do action
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with the meaning that whenever a specified event occurs, the corresponding action
is taken. Both events and actions can here be updates or queries, so that there are
four basic forms of rules in Illustra. Examples of each form are given next.

Update-update rule:
The following rule watches for an update to Peter’s salary and propagates it to Susan:

create rule UU as
on update to Employee.Salary

where current.Name = 'Peter’
do update Employee
set Salary = new.Salary where Name = 'Susan';

Query-update rule:

The following rule watches for a retrieval of Peter’s salary; if that happens an inser-
tion is made into an audit table indicating who posed the query, what salary was
shown, and at what time the query occurred:

create rule QU as
on select to Employee.Salary
where current.Name = 'Peter'
do insert into Audit values
(user, current.Salary, current_timestamp);

Update-query rule:

In the following example, the user is notified by way of a specific query called an
alerter that some update has occurred:

create alerter PeterSal (mechanism = ‘callback');

create rule UQ as

on update to Employee.Salary
where current.Name = 'Peter’

do alert PeterSal;

The second statement defines a rule that watches for an update to Peter’s salary and
notifies alerter PeterSal if such an update occurs. The alerter, created in the first state-
ment, indicates that the Illustra server will signal to the client from which the update
was received that this update has occurred. Other forms of notifications are also allowed.

Query-query rule:

The first rule shown above essentially made sure that Peter and Susan will have ident-
ical salaries from the next update to Peter’s salary onwards. The same effect could
be achieved by the following rule:
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create rule QQ as
on select to Employee.Salary

where current.Name = 'Susan'
do instead
select Salary from Employee where Name = 'Peter'

This rule will modify any query asking for Susan’s salary in such a way that Peter’s
salary is shown instead; thus, the two salaries will always look identical.

4.2.,5 DataBlades

A novel part of Illustra is the so-called DataBlades, which have the task of simpli-
fying the development of object-oriented applications, and which essentially extend
the set of data types the system can understand and process. A DataBlade is a user-
defined type, or a collection of such types, together with the functions applicable to
it and specific customized access techniques. Therefore, a DataBlade is more than an
application-specific class, because it additionally provides optimized (internal)
access techniques. As indicated in Figure 4.5, the first available DataBlades support
text, time, spatial data, image processing, and World Wide Web applications (that is,
WWW-based access to an Illustra database). The Spatial DataBlade, for example,
provides R-trees as a specialized access method, whereas the Text DataBlade con-
tains a specific access method for full-text search. Actually, there are distinct spatial
blades for two-dimensional as well as for three-dimensional data. A time series is a
set of data organized by time of occurrence, for example data representing the move-
ment of a share or a bond price. The Web blade provides capabilities to create and
maintain Web pages for the Internet. From a database perspective, Web pages are
complex objects that can be stored, manipulated, or generated from other data. Due
to the recent explosive growth of the Internet, the automatic creation and manage-
ment of Web pages is likely to become a large area of database application.
Clearly, these DataBlades are only a starting point, as users are encouraged to
create their own specialized DataBlades in order to facilitate an object-oriented
approach in standardized and efficient software development. The basic DataBlade
supplied with the system is the Foundation blade comprising more than 40 tradi-
tional data types (including integer, character, etc.) and over 200 functions on these

types.

43 O

The O; system has been marketed by O, Technology since 1991. Oz is rooted in the
tradition of database languages. Thus, O, is familiar with the notion of a database
schema in which the classes and their hierarchy are defined. Furthermore, structured
values can be directly applied without the need for nested object structures. O: also
comprises an object-oriented version of SQL. O, Technology is involved in the stan-
dardization bodies of ODMG (see Chapter 5).
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Figure 4.6 O: architecture.

O: has a client—server architecture which contains the following components
(see Figure 4.6):

e the core, called OzEngine, a language-independent object base system which
supports the object model of O and its schema administration;

e O:look, a graphic tool for the creation, presentation and editing of database
objects;

e O;SQL, an SQL-like query language, which we shall discuss in the following
sections;

e O,Tools, a programming environment with graphic browser, editors, debug-
ger and schema documentation;

e interfaces for C and C++;

e 0,C, a 4GL programming language which represents a superset of C.

The O:Engine consists of three levels. The Schema Manager forms the top level,
which is responsible for the creation, use, modification and deletion of classes, meth-
ods and global names; furthermore, its tasks include the realization of inheritance
and checking the consistency of the schema. The Object Manager forms the middle
level and organizes the manipulation of objects, including the sending of messages
(method calls). Moreover, it is responsible for internal aspects like persistence, index
structures and clustering. The lowest level is made up of a development of the
Wisconsin Storage System (WiSS), which here assumes the role of an intelligent
disk server.
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The client-server architecture of the O:Engine is a page server; only the low-
est level of the O:Engine is on the server. This separation is possible because mod-
ern workstations have sufficient processing capacity to take over a considerable part
of the functionality of the system. According to this separation the server does not
recognize objects. This means that no queries or methods can be carried out directly
at the server. In a previous version O: was based on an object-server architecture;
however, this approach was abandoned due to excessively high implementation
demands. Figure 4.6 gives an overview of the architecture.

Below we shall discuss the data model and languages related to it in more
detail. The main aspects of the data model have been described in Chapter 3. The
characteristic element of O is that it treats objects and values as independent con-
structs. A value is of a type which may be defined recursively by means of atomic
types and type constructors and is therefore possibly structured. An object has
an identity, a value, a behaviour which is defined by the applicable methods,
and belongs to a class. Object identities can be used in the form of attribute values
as references to other objects.

4.3.1 The declaration language

The primary elements of the declaration language of O have, in their ‘pure’ form,
already been introduced in Chapter 3. In order to emphasize the existing correspond-
ences, we choose largely the same order for the presentation of the individual
constructs.

Values may be atomic or structured. Atomic values may assume one of the
following forms:

integers, for example, 1, 35, -54371;
o reals, for example, 3.1415; —26.5E10;
¢ individual characters, for example, ‘A’, ‘T’, always included in single quotes;

e character strings, for example, “This is a sentence”, always included in
double quotes;

e the boolean values true or false;

o bit strings, different from character strings due to not being limited to char-
acters.

Moreover, O, knows about reference values, although they should only appear
in connection with class names. Structured values could be tuple, set or list values,
with sets differentiating between ‘unique sets’ (sets in the ordinary sense) or
‘sets’ (sets which could contain multiple copies of the same element). Such values
are now formed by prefixing them with the respective keywords. Examples of struct-
ured values, formed by using the constructors tuple, set, unique set or list, are the
following:
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tuple (Name: "John Smith", Age: 32)

tuple (Name: tuple (Name: "John", FamilyName: "Smith"),
Age: 32)

set (1, 2, 3, 5, 7, 11)

set (1, 1, 2, 3, 5, 7, 11, 7, 2)

unigque set (1, 5, 11, 13)

list (1, 2, 7)

A type is the description of a possibly complexly structured domain which is formed
using:

o the atomic types integer, real, char, string, boolean and bits;
o the type constructors tuple, unique set, set and list, and

e class names.

Class names can be either system-defined or user-defined. The system-defined class
names are given either by O; itself or by the toolbox O:Kit (for example, Object,
Date, Bitmap or Money). If the name of a user-defined class (for example, Person)
is used in a type definition, an instance of this type references an object of the rele-
vant class. If the class name in the type definition carries the keyword type as a
prefix, an instance of this type contains a value (but not an object) with the same
structure as the type of the relevant class.

For the purpose of reuse, types can be given a name; this is demonstrated in
the following example:

create type Text: list (string)

Type definitions are mainly used in attributes or in the definition of the structure of
a class. The general form of a class definition is the following:

class <Classname> [ <Options> ]
type <Type-Specification>
method <Method-Specifications>
end

Details will be given below. In principle, the type clause assumes the function that
the mapping fype had in Chapter 3. Correspondingly, the keyword method introduces
a signature de§cription. Apart from class definitions, type definitions in O, are used
in the definition of methods in order to define the types of the parameters and the
return value.

Subtypes in O, are defined as known from Chapter 3. First, this means that
new attributes can be defined for a subtype. Moreover, the types of attributes of the
supertype can themselves be specialized by a subtype.

Example 4.5

Examples of subtype relationships are:
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tuple{ Name: string,
Address: tuple( Street: string, Location: string),
Telephone: string)

is a subtype of

tuple( Name: string,
Address: tuple( Street: string, Location: string))

Moreover,
list{ tuple{ Name: string, Age: integer))
is a subtype of

list{ tuple( Name: string))

Note that, regarding the formation of subtypes, lists are treated like sets.

As usual, an object in O has an identity which is generated by the system and not
visible to the exterior, a value which must be taken from a domain described by an
admissible type, and a behaviour which is described by methods bound to the object.
On the language side, the symbol * takes into account the differentiation between an
object and its value: if x designates a variable to which an object identity can be
assigned, *x denotes the value of the relevant object (the symbol * decapsulates the
relevant object).

We should like to mention the persistence model of O, which is based on the
following principles:

® Objects and values can be named.
¢ Each named object or each named value is persistent.

® Objects which are referenced by persistent objects or values are also persis-
tent.

For example, the command
create name Persons : set(Person);

creates a name Persons which is initialized with the empty set and can then take up
objects of type Person; the set named Persons is thereby defined as persistent.

The distinction between objects and values is also relevant to the com-
parison of objects, which is necessary, for example, in selections. O, makes the
differentiations which are common for object-oriented systems (compare Section
3.1):

e Two objects are called shallow equal if all their attribute values at the outer-
most nesting level are equal. This implies that with each object-valued
attribute the same object must be referenced.
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e Two objects are called deep equal if their values are equal across all nesting
levels. When a test to establish deep equal values is carried out, object refer-
ences in attribute values are replaced by the value of the referenced object and
compared; this is iterated until all references are resolved. Deeply equal
objects cannot therefore be distinguished according to their (possibly com-
plex) values alone.

Example 4.6

Consider the following tuple values of objects:

val(#1) = [A: "xyz", B: #2, C: #3]
val (#4) = [A: "xyz", B: #2, C: #3]
val (#2) = [D: "abc", E: "efg"]
val(#3) = [F: "hij", G: "klm"]
val (#5) = [D: "abc", E: "efg"]
val{(#6) = [F: "hij", G: "klm"]
val(#7) = [A: "xyz", B: #5, C: #6]

Objects #1 and #4 are shallow equal, because values and references are equal
in their attributes, whereas objects #1 and #7 are deep equal, because all
values are also equal in the referenced objects. Note that #1 and #7 are not
shallow equal, because they are different in the references which appear as
values of attributes B and C.

The most general structuring unit in Oz is the schema, an application-oriented col-
lection of class, type, application, object, value and name definitions. For each data-
base an individual schema must be created and named with the ‘create schema’
command. An instance or database of a schema is called ‘base’ and also has to be
explicitly declared and named. Thus a base is a collection of objects and values
whose structure and behaviour conform to the definitions contained in the associated
schema. Class definitions and the definitions of named objects and values can be
used in different schemas via the commands ‘export schema’ or ‘import schema’.
Furthermore, it is possible to use objects or values from different databases within
one application via the command ‘import base’.

The definition of a class comprises a name (which generally starts with a
capital letter), a type specification and a list of methods; additionally, the position
of the class in the existing class hierarchy has to be determined. It should be
noted that O; operates with only one predefined class, the class Object; new classes
therefore become subclasses either of Object or of already defined classes. With
regard to methods, a class definition often has only a signature specification of the
form

<Methodname> [( <List-of-Arguments> )] [: < Resulttype>]

which is implemented separately.
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The methods associated with a class and the attributes of the type of a class
are treated equally by the system if the type at the outermost nesting level is a tuple
type and the methods need no parameters. Correspondingly, the attributes and meth-
ods are collectively called the properties of a class. All properties of a class can be
declared as private or public, or rather as read or write. We shall not use these options
in the following.

The rules for redefining methods are different from the contravariance/
covariance rule in Chapter 3. This means that O, gives up the aim of (type) safety;
the compiler therefore cannot guarantee that no type errors will occur at run time.
The rule applicable in O, demands that, in a redefined method, parameter and result
types are subtypes of the respective types of the signature of the supertype. Because
of this, additional flexibility with modelling is achieved in many cases.

Example 4.7

Some classes of our running example shown in Figure 1.8 can be described
with the definition language of O: as follows:

class Person
type tuple( Name: string,
Age: integer,
Domicile: Address,
Fleet: set(Vehicle) )
method adult: boolean
end;

Note that in this example class Person automatically becomes a subclass of
the root Object of the class hierarchy.

class Employee inherit Person
type tuple( Qualifications: set(string),
Salary: integer,
FamilyMembers: set(Person) )
method isFamMembOf (pl: Person);
method delete
end;

The implementation of the first of these methods is shown below; the imple-
mentation of the second will be discussed in the following section.

class Vehicle
type tuple( Model: string,
Manufacturer: Company,
Colour: string )
end;

class OttoEngine
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type tuple( HP: integer,
cc: integer )
end;

class VehicleDrive
type tuple( Engine: OttoEngine,
Gearing: string )
end;

class Automobile inherit Vehicle
type tuple( Drive: VehicleDrive,
Carbody: string )
end;

An implementation of method adult associated with class Person can be
given as follows:

method body adult: boolean in class Person
{ if (self->Age >= 18) return(true);
else return(false);
Y

As usual in object-oriented programming languages, self is a method yield-
ing the identity of the called object. Method adult is inherited by subclass
Employee and can therefore be used, for example, in the following imple-
mentation of method isFamMembO£:

method body isFamMembOf (pl: Person) in class Employee
{
printf (" %s is ", self->Name);
if (self in pl->FamilyMembers) {
if (self->adult) printf(" an adult ");

else printf(" a minor "); }
else printf(" no ");
printf(" family member of %s.\n ",
pl->Name) ;

};

The following, bigger example shows a detailed specification and subsequent imple-
mentation of methods using the language O.C, which is based on C.

Example 4.8

We examine the definition of a class DATE to incorporate date values (or
rather: date objects). The class definition should have the following form:

class DATE
type string;
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method year: integer, month: integer, day: integer,
to_string: string,
valid: boolean,
compare {(date2:DATE) : integer

end

These method names can then be associated with implementations in the
following way:

method body year: integer in class DATE
{
int day,month,year;
sscanf (*self, "%$d.%d.%d", &day, &month, &year) ,
return year;
}i

method body month: integer in class DATE
{ ... )}

method body day: integer in class DATE
{ ...}

method body to_string: string in class DATE
{ return *self; };

method body valid: boolean in class DATE
{
char rest([100];
int day,month,year;
if (sscanf (*self,"%d.%d.%d%s",

&day, &month, &year,rest) != 3)
return 0;
if ((month < 1) || (month > 12)
|| (day < 1) || (day > 31)
|1 year < 1981)
return 0;
if (((month == 4) H (month == 6)
|| (month == 9) || (month == 11))
&& (day > 30))
return 0;
if (month == 2)
return (day <= 28) ||
({(day == 29) && (year%4 == 0
&& year%100 != 0 || year%400 == 0));
return 1;

}:

method body compare (date2:DATE): integer in class DATE

{
if ((self->get_vyear) != (date2->get_year))
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return (date2->get_vyear) - (self->get_year);
if ((self->get_month) != (date2->get_year);
return (date2->get_month) - (self->get_month);
return (date2->get_day) - (self->get_day);
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4.3.2 The query language

We shall now discuss the essential features of the query language of O». First of all,
it has to be noted that O» makes a clear distinction between a query language for ad
hoc queries to a database (0.SQL), a database programming language (O2C), and
programming language interfaces via which access to O: databases is possible from

other languages like C++.

In principle, the query language of O, is an extended SQL with, amongst

others, the following properties:

® Path expressions for navigation in complexly structured objects are

supported, provided the references encountered are single-valued.
o It is possible to call user-defined methods in queries.
e User-defined collections of objects can be formed.

o Generic methods are available, for example for copying (copy and

deep_copy) or testing for equality (equal, deep_equal etc.).

Example 4.9

As a first query example to the car sales database, consider the query ‘show
the name of the company in which Meier is president’. Note that, according
to the persistence rules of O», class Company cannot be queried directly;

instead a (persistent) name, say Companies, needs to be declared first:

create name Companies set (Company);

For the following query, we assume that the set Companies of Company

objects is not empty anymore.

select x.Name
from x in Companies
where x.President.Name = 'Meier’

Here, x is a variable for iterating through the current extension of class
Company. For each company object which fulfils the given selection condi-
tion the value of the attribute Name is returned. The above requires that an
extension for class Company has been introduced via a name declaration (see
below); in the case discussed here, the class definition and its extension are

assumed to have the same name.
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The query language of O2 is based on a series of design decisions, the most impor-
tant of which are listed here:

o The result of a query evaluation may be an object or a value. The value may
be constructed from the values present in the database; an object as a result,
however, is always one which does exist in the database. In other words, the
language cannot create new objects.

o Although the language has a syntax based on SQL’s, it is of a functional
nature, which means that queries can be assembled from basic functions by
using composition and iteration.

e The language is — as opposed to programming language interfaces — typed
dynamically, which means that type checking occurs only at run time.
Moreover, it allows free access to values contained in objects, which means
that it does not observe the encapsulation principle.

With the following examples we should like to illustrate some aspects of the language:

for example the possibility of accessing all nesting levels of a complex structure and
the possibility of dynamically constructing sets, lists, tuples or nested structures.

Example 4.10

We consider the query ‘show the names of all employees over 50 working in
(any) subsidiaries in Boston’. This query can be phrased as follows:

select x.Name

from x in

flatten(select y.Employees
from y in

(select s
from ¢ in Companies, s in c.Subsidiaries
where s.Office. Location = "Boston"))

where x.Age > 50

Note that this query fomulation exploits the persistence concept of Oz so far we
have only introduced Companies as a persistent name (see Example 4.9). Everything
referenced from an object in set Companies is thus persistent also.

The example also demonstrates that O2SQL does not allow path expressions
in their full generality; in particular it is not possible to write the where-clause of the
innermost select as ‘c. Subsidiaries.Office.Location’, since this would be set-valued
which is not allowed in O..

A simpler formulation of the same query, avoiding one level of nesting, is
obtained if a name for objects in class Subsidiary is introduced first:

create name Subs set(Subsidiary);

Now the query can be written as follows:
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select x.Name
from x in flatten

(select y.Employees

from y in Subs

where y.Office.Location = "Boston")
where x.Age > 50

Note that the set of subsidiaries in Boston is searched by the variable y; the inner
select expression extracts the set of employees from each subsidiary object and
hence produces a set of sets. The flatten operator eliminates one level of set nesting
and thus produces a set of employees (a similar comment applies to the first formu-
lation of the query shown above). The structure encountered by the query is there-
fore manipulated. Finally, the names of those over 50 are displayed.

An even simpler formulation of the same query is the following:

select x.Name

from y in Subs, X in y.Employee
where y.Office.Location = "Boston" and x.Age > 50

Example 4.11

The following example shows the possibility of dynamically constructing
tuple structures. We consider the query ‘show the qualifications of presidents
of companies in Boston who earn more than 100000, together with the com-
pany names’. To answer this query we assume that the named query
BostonCompanies has already been defined as follows:

define BostonCompanies as
select x from x in Companies
where x.Headoffice.lLocation = "Boston"

The actual query can then be phrased as follows:

select tuple( CoName: b.Name,

PrQual: b.President.Qualifications)
from b in BostonCompanies
where b.President.Salary > 100000

Thus, a tuple structure with the two attributes CoName (company name) and
Proual (president qualifications) is formed as output. The values of these are
obtained by accessing the components of those Boston companies which
satisfy the selection condition.

Example 4.12

The following queries illustrate the possibility of forming nestings:

(1) ‘Show the names of the companies from Boston’:
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select co.Name
from co in (select c
from ¢ in Companies
where c.Headoffice.Location = "Boston")

(2) ‘Show the names of companies which have another company’s sub-
sidiary in the same location as their head office’:

select co.Name
from co in Companies
where co.Headoffice.Location in
(select d.Office.Location
from ¢ in Companies, 4 in c.Subsidiaries
where ¢ = co)

An equivalent formulation of the same query is the following:

select co.Name
from co in Companies, d in co.Subsidiaries
where co.Headoffice.Location = d.0ffice.Location

(3) ‘Show the names and addresses of the head office and subsidiaries of
those companies which have subsidiaries in the same location’:

select tuple (CoName: c.Name,
CoAddress: c.Headoffice,
SubsAddresses: select d.Office
from d in c¢. Subsidiaries
where d.Office.Location in
(select o.Office.Location
from o in c¢.Subsidiaries
where d !'= o))
from ¢ in Companies
where count (select d.Office
from d in c¢.Subsidiaries
where d.Office.Location in
(select o.Office.Location
from o in c.Subsidiaries
where d !'= 0)) > 0

As a longer example, we now consider the task of deleting an employee.
Recall that in Example 4.7 we have already noted the signature of a corresponding
method in the declaration of class Employee; now an implementation is to be allo-
cated to it. The following steps need to be undertaken:

(1)  The respective employee is removed from class Employee.
(2)  All references to it are also removed.
(3)  The employee is newly inserted into class Person.
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First, we complete our class declarations of the running example (compare Example
4.7) as follows:

class Company
type tuple( Name: string,
Headoffice: Address,
Subsidiaries: set(Subsidiary),
President: Employee )
method public Empl_own_Veh: set (Employee)
end;

create name Companies: set (Company);

class Subsidiary
type tuple( Name: string,
Office: Address,
Manager: Employee,
Employees: set(Employee) )
end;

create name Persons: set(Person);

The implementation of method delete can then be carried out as follows; it assumes
that objects have been associated with name Companies, and that Employees is the
name of a set of objects of type Employee:

method body delete in class Employee {

02 Company co

02 Subsidiary su;

02 Person p;

02 Employee empl;

02 unique set (Employee) set_empl;

(*delete references starting from Company/Subsidiary, if necessary®*)

for ( co in Companies )
{ if {( co->President != nil )
{ if ( self == co->President ) co->President = nil; }
for (su in co->Subsidiaries )
{ if ( su->Manager != nil )
{ if ( self == su->Manager )
su->Manager = nil; }
set_empl = set_empl + su->Employees;
for ( empl in su->Employees )
{ if ( self == empl )
su->Employees -= unique set(self); }
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P = new Person;

p->Name = self->Name;

p->Age = self->Age;
p->Domicile = self->Domicile;
p->Fleet = self->Fleet;

(* code for determining the set set_empl of those
employees who have 'self' as a familymember goes here *)

for ( empl in set_empl )
{ if ( self in empl->FamilyMember )
{ empl->FamilyMember -= unique set(self);

empl->FamilyMember += unique set(p);
}
}
Employees -= unique set(self);
Persons += unique set(p);:
Y

end;

Finally it should be noted that the query language of O: fulfils most of the general
requirements of object-oriented database languages, which were listed in Chapter 2.
However, the expressive power of the language is limited, because the integration of
the database language and the programming language is achieved only within the
framework of a higher language such as O.C.

4.4 GemStone

The GemStone system was developed by the Servio Logic Development
Corporation, which later changed its name to GemStone Systems Inc., and has been
marketed since 1987 (as the first database system of its kind). First, we give a brief
system overview and then analyse the principal aspects of working with the
GemStone Smalltalk language (previously called OPAL).

441 System overview

GemStone combines the concepts of an object-oriented language, in this case
Smalltalk, with the functionality of a database system; its main characteristics are:

e It supports large collections of possibly large objects; an individual object can
be simple or complex and as a byte string occupy up to 1 GB of storage space.

o It supports user-defined types and behaviour, object identity and inheritance;
methods can be dynamically created and changed.
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o It has a uniform language for data definition and manipulation; this language,
called GemStone Smalltalk, is a derivative of Smalltalk-80. Programs are
themselves objects in the system.

o In addition to GemStone Smalltalk, a series of high-level languages such as
other Smalltalk languages, C or C++ can be used for writing application pro-
grams; furthermore, GemStone can be coupled with SQL databases via gate-
ways.

o It provides a multi-user environment with protection and anthorization mech-
anisms, index and cluster management for complex objects, and supports
replication.

We should like to note at this point that GemStone closely follows Smalltalk and
shares the Smalltalk philosophy, namely that everything in the system is an object.
This means in particular that there is no distinction between types and classes.

GemStone has a client—server architecture in which we can distinguish dif-
ferent processes:

e Gem server processes: These can execute methods and evaluate queries. A
Gem server also contains cache memory for objects and for pages; each client
process is associated with a Gem server.

e A Stone monitor process: 1t allocates new object identities (called object-
oriented pointers, OOPs for short), coordinates transactions and manages
error situations. The Gems and the Stone are connected to each other via
interprocess communication.

® Page server processes: These allow a Gem server to access files on a page
level; the database, which is managed by a page server, can spread over sev-
eral network nodes.

® Applications: They form the actual clients and are all associated with a Gem
server.

The Stone uses an object table for mapping OOPs to physical addresses; this table
can comprise up to 23' entries, which means that a database can contain up to
231 = 2 % 10’ objects. An object can be stored separately from its subobjects, but the
OOPs for the values of the respective instance variables are always stored together,
that is, are clustered.

The Gems can be seen as virtual machines on which a compiler or an inter-
preter for GemStone Smalltalk is mapped. According to Figure 4.1, the Stone
together with the processes corresponding to these machines (Gem processes) forms
the server.

The interface programs, with which the Gem processes communicate, use
libraries of functions or methods of the programming language being used (for
example, the GemStone C Interface (GCI) contains a library of C functions). These
functions can be called from application programs to execute GemStone Smalltalk
code (for example, as a reply to a query by the user), to send messages to GemStone
objects, or to have direct access to the system kernel.
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To support the user during the development, execution and debugging of
Smalltalk programs, GemStone has a Smalltalk programming environment, which is
a collection of special interface programs for editing programs, browsing a database
or establishing classes and methods.

The following sections give an introduction to GemStone Smalltalk, which is
a high-level programming language which also has database functionality so that
applications can be written using only this language.

4.4.2 Introduction to GemStone Smalltalk

First, we describe the basic principles of the functionality of GemStone Smalltalk.
Objects with structure and behaviour as well as classes with instances are concepts
of the language. As already mentioned, there is no differentiation between classes
and types; both notions can be used synonymously. Methods and structures common
to all objects of one class are held in a class-defining object (CDO) such that the def-
inition of a new class can be considered as an object; all instances of a class contain
a reference to ‘their’ CDO. Moreover, each object is an instance in exactly one class.

Objects may have an internal structure which is described via instance vari-
ables or attributes.

Example 4.13

Figure 4.7 shows an object of a class Employee. This object has the three
instance variables Name, Domicile and Salary. Domicile references the object
of the class Address. Objects of the class Address have the two attributes
Street and Location.

It should be noted that not all objects have attributes; in particular, certain base types
like Smalllnteger or Character have no further internal structure. Objects of this
class also have no identity of their own.

Employee
Name
String
Ray Ross
Domicile
Address
Street
String
Alameda
Location
String
Gresham
Salary
Smallinteger
45578

Figure 4.7 Employee objects with three instance variables.
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A message expression in GemStone Smalltalk is built out of an identifier (or
an expression), which represents a receiver object and a message. A message is built
out of selectors, which specify the message to be sent, and arguments; these can
themselves be written as message expressions.
GemStone Smalltalk, as a Smalltalk derivative, knows three kinds of mes-
sages:

® Unary messages: These do not have arguments; the selector is a single iden-
tifier, for example

7 negated

® Binary message expressions: There is a single selector consisting of one or
two special characters and one argument, as for example:

Binary messages are also used for comparisons, for example

which returns ‘true’. Analogously,

myObject = yourObject

returns ‘true’ if both objects are of the same value, whereas
myObject == yourObject

returns ‘true’ if both objects are identical (have the same OOP).

e Keyword messages: These have a receiver, and the selector is given by up to
15 pairs of the form ‘keyword argument’ with each keyword ending with ‘:’,
for example,

7 rem: 3
or

arrayOfStrings at: (2+1) put: 'Curly’

Moreover, message cascades can be formed if a series of messages are to be sent to
the same object; for example,

arrayOfComposers add: 'Mozart';
arrayOfComposers add: 'Beethoven'.
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has the same effect as

arrayOfComposers add: 'Mozart'; add: 'Beethoven'.

4.4.3 Structure definition in GemStone Smalitalk

Similarly to Smalltalk, GemStone Smalltalk offers an extensive hierarchy of prede-
fined classes (Kernel classes), which are shown in Figure 4.8. Let’s look at some of
these in more detail:

Object
Association
SymbolAssociation
Behaviour
Class
Metaclass
Boolean
Collection
SequenceableCollection
Array
InvariantArray
Repository
String
InvariantString
Symbol
Bag
Set
Dictionary
SymbolDictionary
LanguageDictionary
SymbolSet
UserProfileSet
CompiledMethod
Magnitude
Character
DateTime
Number
Float
Fraction
Integer
LargeNegativelnteger
LargePositivelnteger
Smallinteger
MethodContext
Block
SelectionBlock
Segment
Stream
PositionableStream
ReadStream
WriteStream
System
UndefinedObject
UserProfile

Figure 4.8 Hierarchy of Kernel Classes.
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® Object, Set: These classes do not have attributes, they only have methods.

e Association: The attributes of this class are key and value; instances are pairs
of associated objects.

e Fraction: The attributes of this class are numerator and denominator.

® Magnitude: This class uses methods for linearly ordered objects, as for exam-
ple Integers; it also uses comparison operators such as ‘<’ or “>=" and con-
version functions like asInteger or asLowercase.

® Boolean: This class has only the two instances true and false and as methods
the boolean functions such as or, xor or not; no subclasses of this class can be
defined.

Each class in the hierarchy inherits structure and behaviour from its superclass.
Multiple inheritance is not possible; if required, it has to be simulated by single
inheritance (cf. section 2.4.4). When declaring a new class, a ‘suitable’ position in
the hierarchy, where the new class will be located, has to be specified; the default
position is the root object of the hierarchy.

To introduce a new subclass of an existing (kernel or user-defined) class the
message subclass has to be sent to this class. As the result of this message the class
defines a new subclass of itself. This message is a keyword message in which,
among others, the following keywords can be defined:

subclass: astring
instVarNames: anArrayOfStrings
classVars: anArrayOfClassVars
inDictionary: aDictionary
constraints: aConstraints
instancesInvariant: invarBoolean
isModifiable: modifyBoolean

In this message instVarNames: may have up to 255 arguments, which are expressed
in the following form:

#( 'stringl' ‘'string2' ...)

Each of these strings represents the name of one instance variable. Extending
Smalltalk, attributes may be typed; the type is given as a constraint as part of the
argument of the constraint keyword, as shown in the following example for the
attribute Name of class Employee:

constraints: #[ #[ #Name, String ]
We should comment on the syntactical usage of the #-symbol. # is used as an array

delimiter. The argument to constraints is an array whose elements are arrays of pairs
of elements. The first of these elements is always a symbol that represents the name
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of the corresponding instance variable. Note that instance variable names are used
as strings when defined as part of the argument to instVarNames; however, when it
is intended to refer to the variable itself it must be preceded by #.

Class variables indicated in classVars contain values which can be accessed
by all objects of the respective class at run time. A class Employees could, for exam-
ple, have an instance variable Profession and a class variable Average salary, with
the latter being continuously updated by an appropriate method.

In inDictionary it could be stated in which directory this class is to be
installed; for example,

inDictionary: UserGlobals

makes the relevant class part of a global area.

By using keyword isModifiable we can state whether class definitions can be
modified or not. If the argument is the boolean true, then values for instVarNames or
constraints can be changed afterwards.

Finally, we can specify in a class declaration whether or not the instances of
this class may be changed; this is done by stating the booleans true or false in
instancesInvariant.

Example 4.14

As a first example of using GemStone Smalitalk we refer to the relational
schema Employees, where each employee is described by the attributes
Name, Department and Salary. In GemStone Smalltalk we may define it as
follows:

(1) Declare a class for tuple objects whose instances are individual tuples
with the attributes mentioned.

(2) Declare a set object whose elements are the already declared tuple objects.

Since the given class hierarchy does not know the class tuple, a new subclass
of Object is declared in the first step:

Object subclass: 'Employee'

instVarNames: #('Name' 'Department' 'Salary')
classVars: #()

inDictionary: UserGlobals

constraints: #[ #[ #Name, String 1,

#[ #Department, String ],
#[ #Salary, SmallInteger ]]
instancesInvariant: false :
isModifiable: false.

As a next step a subclass of the class set is declared for sets of employee
tuples as follows:
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Set subclass: 'Employees'
instVarNames: #{()
classVars: #()
inDictionary: UserGlobals
constraints: Employee
instancesInvariant: false
isModifiable: false.

Instances of class Employees are sets. These sets do not have instance vari-
ables because no argument is stated to instvVarNames; however, the elements
of the sets have instance variables, namely instances of class Employee, as
can be concluded from the keyword constraints. If we would like to atlow arbi-
trary elements in the sets we could state class object as an argument of key-
word constraints or even omit it.

Example 4.15

To give a more complex example we refer to Figure 1.8. In the following
declarations we shall omit clauses when their argument has not changed or is
empty. We start defining vehicleDrive to consist of an OttoEngine:

Object subclass: 'OttoEngine’

instVarNames: #( 'HP' 'CC')

constraints: #([ #[ #HP, SmallInteger ],
#[ #CC, SmallInteger ] 1.

Object subclass: 'VehicleDrive'

instVarNames: #{ 'Engine' 'Drive' )

constraints: #[ #[ #Engine, OttoEngine ] ,
#[ #Drive, String ] 1.

The following class Vehicle references inter alia the class Company, which
is not yet defined:

Object subclass: 'Vehicle'
instVarNames: #( 'Model' 'Manufacturer' 'Colour' )
constraints: #[ #[ #Model, String ],

#[ #Manufacturer, Company 1,

#[ #Colour, String 1 1.

Now, class Automobile can be defined as a subclass of Vehicle:

Vehicle subclass: 'Automobile’

instVarNames: #( 'Drive' 'Carbody’' )

constraints: #[ #[ #Drive, VehicleDrive],
#[ #Carbody, String ] 1.
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Object subclass: 'Address'
instVarNames: #( 'Street’ 'Location' )
constraints: #[ #[ #Street, String ],

#[ #Location, String ] 1.

To prepare the definition of class Person, which should have a set-valued
attribute Fleet, a set of vehicles is defined:

Set subclass: 'Vehicles'
instVarNames: #( )
constraints: Vehicle.

Class Person can now be defined as follows:

Object subclass: 'Person'’
instVarNames: #( 'Name' 'Age' 'Domicile' 'Fleet' )
constraints: #[ #[ #Name, String 1],

#[ #Age, SmallInteger ],

#[ #Domicile, Address ],

#[ #Fleet, Vehicles 1 1.

The result of the above declarations is shown in Figure 4.9.

Object
OttoEngine
VehicleDrive
Vehicle
Automobile
Address
Collection
Bag
Set
Vehicles
Person

Figure 4.9 Extract from the class hierarchy of the Vehicle example, including the
declarations.

4.44 Method generation in GemStone Smalltalk

After the declaration of structure is finished, methods may be defined, to generate
instances, to initialize classes or simply to use classes and objects.

Two kinds of methods can be distinguished (as in Smalltalk): class meth-
ods and instance methods. The former are understood only by classes, the latter only
by instances. Most classes understand the message new to create a new instance of
a class, as for example in

Vehicle new.

In general, the definition of a method always contains a message pattern, with which
the method can be activated, followed by a message body, which contains the selec-
tor and (optionally) formal parameters, (optionally) temporary variables, one or
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more statements and a return statement. To give an example let us look at method
new in more detail.

Example 4.16

Sending new to a class creates a new object of this class where all attributes
of this object are initialized with ril. If values different from nil are to be
assigned we have to introduce a class method, as in the following example
with respect to class OttoEngine:

classmethod: OttoEngine
makeEngine
~ (self new) HP: 136;
CC: 1998
%

The first line instructs the programming environment to understand the sub-
sequent text as a method to be compiled and installed in the respective class;
% is the command delimiter. The second line is the message pattern, which
can then be used for instantiation of the class as follows:

OttoEngine makeEngine.

The third line starts with a hat (), which denotes the return value of the
method; this is specified more precisely by the items following ~. In the
example, this is (self new). self is a special variable to which all methods have
access and which represents the receiver. (self new) sends the message
new to the receiver, which in our case is class OttoEngine, and a new
instance is created. The remaining parts of the line assign values to the cor-
responding attributes with the help of keyword messages. The return value of
the method is therefore a new instance of OttoEngine with the indicated
values. If the following message is then sent to OttoEngine,

(OttoEngine makeEngine) HP

a new instance, as explained above, is created, from which the value 136 of
the attribute HP is returned; to make this possible the following instance
method must have been defined for OttoEngine.

method: OttoEngine
HP (* message pattern *)
~ HP (* return statement *)

Obviously, this kind of initialization of objects is awkward, because the method has
no formal parameters through which it would be reusable for different calls. This
problem is solved by defining a method for instance creation whose arguments spec-
ify the values to be assigned to attributes.
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Example 4.17

To continue the preceding example, such a method is obtained as follows:

classmethod: OttoEngine
newHP: aNumber newCC: anotherNumber

| tempEngine |

tempEngine := gself new.

tenmpEngine HP: aNumber; CC: anotherNumber;
~ tempEngine

%

Whenever this method is executed, a new object is created. First, the tempo-
rary variable with the name tempEngine, which is defined in line 3, is
instantiated by calling new. A keyword message with the relevant values is
then sent to the resulting object; finally, the new object is delivered. To cre-
ate a new Otto engine, a method call of the following kind is now sufficient:

OttoEngine newHP: 136 newCC: 1998

4.4.5 Data manipulation

Once the structure of a database and the methods for its initialization are defined,
methods to manipulate objects can be introduced. The following example shows
some elementary methods of that kind:

Example 4.18

The following methods are instance methods which are applicable to objects
of class Employee:

Object subclass: 'Employee’

instVarNames: #('Name' 'Department' 'Salary’)
classVars: #()
inDictionary: UserGlobals

constraints: #[ #[ #Name, String 1,
#[ #Department, String 1],
#{ #Salary, SmallInteger 1]
instancesInvariant: false
isModifiable: false.

We assume that there already exist instances of this class.

method: Employee
Name
~ Name (* supplies the name of the receiver *)
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method: Employee
Department
“Department (* supplies the department of the receiver *)

method: Employee
Salary

~"Salary (* supplies the salary of the receiver *)

method: Employee

Name: aString (* message pattern *)
Name := aString (* allocates a new value to the name of the receiver)
%

method: Employee
Department: aString
Department := aString
%

method: Employee
Salary: aSmalllInt
Salary := aSamllInt
%

The first three messages (of type accessing) are trivial, but are necessary for
accessing the attribute values of an employee object. We shall need them
later. The last two messages (of type updating) can be used to fulfil (at least)
two functions: update of objects (here especially, transfer of an employee
from one department to another, or for salary adjustment) and as an alterna-
tive means of assigning values to newly created objects.

Among the Kemel classes there is a class behaviour which provides a method
compileAccessingMethodsFor: anArrayOfSymbols

which automatically creates accessing and updating methods. For each element

stated in anArrayOfSymbols, the method creates methods to access instance vari-

ables and to assign values. The following is an example in which the above-

mentioned six methods would be created:

Employee compileAccessingMethodsFor: # (#Name #Department #Salary)

Example 4.19

The following (class) method creates a new instance of the class
Employee:
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classmethod: Employee
newName: aName

| tempEmpl |

tempEmpl := self new.
emplEmpl Name: aName
~ emplEmpl

%

The (instance) methods of the last example (Department and Salary) can
be used to assign values to the attributes Department and Salary, which
are initialized with nil.

Database objects cannot be explicitly deleted in GemStone. Instead, the approach
used here can be compared to the approach used in network database systems: an
object is deleted by means of destroying its reachability. It will, however, remain in
memory until the system releases the memory it occupies for reuse by means of
garbage collection. Objects become unavailable by assigning nil to all referencing
attribute values.

Example 4.20

The class Set inherits a method remove from its superclass Bag. Let E denote
an instance of class Employees, which is a subclass of Set; E is a set of
employees. Let victim denote an object in E which is to be deleted. The fol-
lowing message performs the desired task:

E remove: Victim

If E was the only place where Victim was referenced, it has now become
unavailable and thus its storage will be released.

The query language in GemStone Smalltalk can be regarded as a combination of meth-
ods designed for the various subclasses of Collection. We shall look at the methods do,
select, reject and detect, but there are several other methods that could be used.

Example 4.21

We want to produce a list of employees. First we provide a method which
returns the attribute values as one string:

method: Employee

asString

~ (self Name) + ' ' +
(self Department) + ' ' +
(self Salary asString)
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The symbol + denotes concatenation of strings. Note that the value of salary
is still to be converted from SmallInteger to String. The following
method prints a set of employee objects as a table, with one object per line:

method: Employees

asTable

| aString |

aString := String new.

self do: [ :n | aString := aString + n asString.
aString := aString add: Character 1f 1.

~ aString

%

First, a new instance of the class string is created and assigned to the tempo-
rary variable aString. Then the do method is sent to self; the argument is
enclosed in square brackets and is called a block. The effect of do is to iter-
ate over the elements of the receiver and evaluate the block for each individ-
ual element. In the example above, the variable n ranges over the elements in
the receiver set in the following way. The current value of object aString is
concatenated with the string that results from sending method asString to
the current object binding n. Then the result of this step is concatenated with
a linefeed character to obtain the desired tabular form.

The previous example shows how we can iterate over the elements of a collection
object; we shall now concentrate on how to extract subsets and elements of sets. To
simplify method code Gemstone Smalltalk provides path expressions, which are an
extension to ordinary Smalltalk.

Example 4.22

The following code selects the set of all employees who work in the research
department; it is assumed that an instance of Employees with the name Emp1
already exists:

| researchEmpl |
researchEmpl := Empl select: [ :anEmpl

| anEmpl .Department = 'Research' ].
researchEmpl asTable.

The select method is inherited from Collection. It evaluates a block (like
the do method) on the elements of the receiver, which serve as arguments in
sequential order. The values for which the block evaluation is true are col-
lected in an object of the same type as the receiver, and this object is finally
delivered. In the above example, select is sent to Emp1; the desired employ-
ees are computed by accessing the values of the attribute Department of
each object in Emp1 in a path expression. A table is delivered, created by the
method asTable as shown in the last example.
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Example 4.23

The following method computes all employees of the research department
who earn more than 50 000:

| researchEmpl50 |
researchEmpl50 := Empl select: [ :anEmpl |
(anEmpl .Department = 'Research')
& (anEmpl.Salary > 50000) 1.
researchEmpl50 asTable.

Here ‘&’ denotes logical And; ‘I’ would denote logical Or and ‘~’ Not.

If we are interested in the set of all objects for which a given selection block evalu-
ates to false, the method reject can be used instead of select:

Example 4.24

The following query will compute the set of all employees who do not work
in the research department:

|nonResearchEmpl |
nonResearchEmpl := Empl reject: [ :anEmpl

| anBmpl.Department = 'Research' |
nonResearchEmpl asTable.

Finally let us look at method detect, which enables us to extract a certain element
out of a set:

Example 4.25

The following expression defines an employee named Smith, if such an
object exists. If there is more than one such object, the first one found will be
returned:

Empl detect: [ :anEmpl | anEmpl.Name = 'Smith' ].

If no such object exists, an error message is returned and the interpreter stops;
this can be avoided by adding an exception block, for example:

Empl detect: [ :anEmpl | anEmpl.Name = 'Smith' ]
ifNone: [ nil 7J.

So far we have considered only path expressions referring to scalar attributes. Set-
valued attributes may also occur inside a path expression, for example:

aPers.Fleet.*.Model = '2CV’
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In this expression, for each given object aPers, the model of each vehicle in the set
aPers.Fleet is considered to see whether its model is ‘2CV’, Note that * can be con-
sidered as a flatten operator.

In order to speed up processing of a query, indices which use the values of
attributes as keys can be used. Indices can be defined for instances of subclasses of
Collection. Two kinds of indices are provided: an identity index to support queries
concerning the identity of objects, and an equality index, which supports queries
concerning equality.

Example 4.26

The following message sent to Emp1 creates an identity index for the attribute
Name:

Empl createldentityIndexOn: 'Name’
whereas
Empl createIdentityIndexOn: 'Address.Location'

creates an index on the location part of the address for objects in Empl.

We can take advantage of indices when processing a select method. To indicate syn-
tactically that an index should be used, the square brackets are replaced by curly
ones. For example, to use a possibly existing index on attribute Department we can
write:

researchEmpl := Empl select: { :anEmpl
| ankEmpl.Department = 'Research' }.

Finally, we should like to demonstrate how to sort objects for instances of class Bag.

Example 4.27

In the following the method sortAscending expects as arguments an array
of path expressions; sorting is done with respect to the first path and then with
respect to the second one:

| returnArray tempString |

tempString := String new.
returnArray := Empl sortAscending:
#( 'Name' 'Department' ).
returnArray do: [ :n | tempString add: (n Name);
add: ' '; add: (n Department);

add: Character 1f ].
~ tempString.



138 Case studies

First, employees are sorted according to the values of Name; employees with
the same name are sorted according to the values of Department. A list of
the sorted objects is then delivered. Method add is defined for class
SeqguenceableCollection (see Figure 4.8) and is used here to concatenate
strings.

If we want to sort names in ascending order, but departments in descending
order, we could write:

returnArray := Empl sortWith:
#( 'Name' 'Ascending’
'Department' 'Descending').

4.5 ObijectStore

ObjectStore is another attempt to extend an object-oriented programming language
to embrace the functionality of a database system. ObjectStore is based on C++,
because this language is considered to be of the greatest importance in the applica-
tion areas envisaged for ObjectStore. The data model on which ObjectStore is based
is essentially the object model of C++. The persistence of an object is seen ortho-
gonally to the type of the object. Thus objects of any C++ type can be either tran-
sient or persistent; that is, there can be transient and persistent objects for one and
the same type within a program.

ObjectStore has a page-server architecture, which means that the process-
ing of objects takes place exclusively at the clients. Referencing of objects is organ-
ized as in C++. Thus, in principle, no additional effort is necessary for the processing
of persistent objects as compared with transient (ordinary C++) objects. But this is
true only if an object which is persistently stored in the database has already been
moved into the main memory of the client. The client always assumes that this is the
case. If this assumption is incorrect — and at the beginning of the processing this is
almost always the case — a page fault will be raised which results in a request to the
object needed: that is, the relevant page of the server.

We are especially interested in the extensions to the object model of C++
made by ObjectStore. Among them is an extension of the given class library by a
class for collections; subclasses of this class are classes for sets, multisets (bags),
lists and arrays. In queries such collections can be accessed associatively. Another
interesting extension is bi-directional relationships between objects to support ref-
erential integrity.

Example 4.28

The following class definitions demonstrate the use of bi-directional relation-
ships (inverse_member) and of sets (os_Set).

class Employee

{
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public:
string Name;
int Salary;
Subsidiary * EmplSubsidiary
inverse_member Subsidiary::Employees;

}i

EmplSubsidiary is an attribute of reference type of class subsidiary,
which states for each employee the subsidiary in which this employee works.
EmplSubsidiary is defined as an inverse attribute; the complementary part
is the multi-valued attribute Employees representing the relationship
between Subsidiary and Employee. It should be noted that Employees is
here of set type {Employeel}, as can be seen in the following definition of
the class Ssubsidiary (see also Figure 1.8):

clagss Subsidiary
{
public:
char* Name;
Address Location;
Employee* Manager;
os_Set<Employee*> Employees
inverse_member Employee:: EmplSubsidiary;
void Add_Employee (Employee *e)
{Employees -> insert(e);}

int Works_Here (Employee *e)
{return Employees -~> contains(e);}

I

Correspondingly, in Subsidiary, the attribute Employees is inversely
defined to the relationship between Employee and Subsidiary represented
by the attribute EmplSubsidiary.

The method Add_Employee, applied to a concrete subsidiary, adds a refer-
ence to a new employee to the set of employees in the subsidiary, and the
method Works_Here tests whether a reference to an employee, which has
been passed on as a parameter, belongs to the set of references of employees
of the subsidiary. Note that these two methods use the special methods
insert and contains, which are defined in the class for collections.

Inverse relationships support referential integrity. If, for example, an employee
related to a Subsidiary is deleted, the reference to it is automatically removed from
the set Employees. Another interesting effect is that, when a reference to an
employee is inserted into a set of Employees of a subsidiary (see above), the
attribute EmplSubsidiary automatically receives the reference to the relevant sub-
sidiary as a value.
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Associative access to objects of a collection type is achieved by using
boolean C++ expressions. The result of such a query expression is the subset of the
collection for which the boolean expression evaluates to true.

Example 4.29

In the following example we first define a set of employees and then the sub-
set of overpaid employees by selecting those from the set of all employees
who satisfy the stated condition.

os_Set<Employee*> AllEmployees;

os_Set<Employee*> &
Overpaid = AllEmployees [: Salary >= 100000 :];

The boolean expression [: Salary >= 100000 :] is evaluated with
regard to each object of the set A11Employees. To achieve this, ObjectStore
maintains a range variable which is basically implicit and which is assigned
the references to the individual objects one after the other. If explicit refer-
ence to this variable is required, this may be used. We can also write the
boolean expression as

[: this ~-> Salary >= 100000 :].

Example 4.30

It is possible to iterate over the individual elements of a collection, as demon-
strated by the following program segment to increase salaries by 10 per cent.

Subsidiary* d;

foreach (Employee* e, d -> Employees)
e->Salary *= 1.1;

foreach is an ObjectStore construct for iterating through the elements of a
collection. e is a variable over the elements of the collection; these are pre-
cisely the references to the objects of the type Employee which form the
employees of the subsidiary d. Note thatd -> Employeesande -> Salary
are path expressions in a slightly different notation: if we replace the arrow
by a dot, we obtain the notation we have used so far.

A path expression in general is formed by several -> expressions in sequence. The
expression

a -> EmplSubsidiary -> Name
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determines the name of the subsidiary of the employee associated with a. Path
expressions also result implicitly from using nested queries.

Example 4.31

We wish to determine, from a particular set of employees, those who are
employed in a subsidiary with a manager called ‘Primus’.

os_Set <Employee*> TheseEmployees;

TheseEmployees|:
EmplSubsidiary!:
Manager -> Name == 'Primus' :] :]

The path expression contained in this query has the following form:
TheseEmployees -> EmplSubsidiary -> Manager -> Name

But note the difference: whereas this path expression determines for each
employee of the set TheseEmployees the name of the manager of its subsidiary,
the nested query shown above defines a subset of the set TheseEmployees.

In nested queries it is sometimes necessary to refer to the object of an outer
level. The following expression determines those employees who are man-
agers of their subsidiaries.

TheseEmployees|[: d = this,
EmplSubsidiaryl:
Manager == d :] :]

‘this’ is the range variable connected with the outer query. In order to be able
to refer to the range variable of the outer query from the inner query, this vari-
able must be given an alias name, here d, in order to distinguish it from the
range variable of the inner query, which also has the name ‘this’.

In ObjectStore conventional join operations can be expressed, in which relationships
between objects, defined via attribute values, are established. Be aware that there is
actually no real need for such operations in ObjectStore applications, because join
operations are expressed by attributes of reference type. Consider, for example, the
path expressions given above. The individual attributes each have as their value a
reference to their related object; the desired join has thus already been materialized.

Example 4.32

The following expression joins projects and employees, with the join being
defined via the attributes ProjectNo and Works. We assume that both attri-
butes are of type int.
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Project [: Employee [: ProjectNo == Works &&
Name == 'Fred' :] :]

4.6 Bibliographical notes

Overviews of commercially available object-oriented database systems and of
research and development projects in this area can be found in Kemper and
Moerkotte (1994); numerous references to early relevant literature can also be found
in the bibliography of Vossen (1993). The client— server architecture which is cur-
rently popular in database systems originated from process communication in oper-
ating systems; for details, see Tanenbaum (1995). The section on Illustra is based on
Manola (1994) and on Stonebraker (1996). As was mentioned in Section 4.2, Illustra
is a representative of the emerging species of object-relational database systems;
another example of that class of systems is the common server version of IBM’s
DB2, described in detail in Chamberlin (1996). More detailed information about O
can be found, in particular, in the original publications on this system, for example
in Bancilhon et al. (1988), Lecluse et al. (1988), Lecluse and Richard (1989), Velez
et al. (1989) or Deux et al. (1990); Bancilhon et al. (1992) is a compendium of these
original publications, which were published during the development of this system.
For further information on GemStone we refer the reader to Ullman (1988),
Butterworth et al. (1991), Maier et al. (1986), Penney and Stein (1987) or Purdy et
al. (1987). For ObjectStore we refer to Lamb et al. (1991), Orenstein et al. (1992)
and Soloviev (1992).

Up-to-date information on the systems we have discussed in this chapter can
be found on the World Wide Web; the respective URLSs are:

For Ilustra: http://www.informix.com
For Oa: http://www.o2tech.fr
For GemStone: http://www.gemstone.com

For ObjectStore: http://www.odi.com
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5.1 SQL3 5.3 The OMDG proposals
5.2 OMG standards 5.4 Bibliographical notes

In this chapter we look at the efforts being made to achieve standardization
in the field of object-oriented databases. It has been argued that the lack of
accepted standards is one of the reasons why these systems fail to play a
more dominant role in the marketplace. Therefore, the development of
standards has become a priority, and even more so when it was proved that
they had a positive impact on products as soon as they had been introduced
to object-oriented syszems.

We examine three different standards in this chapter. First, we
describe SQL.3, a development of the relational language standard SQL
which will reflect object-oriented properties for the first time. SQL3 may be
considered as moving towards object-relational systems of the type described
in the preceding chapter. Next, we discuss the standardization proposal
ODMG-93, which has been put forward by the Object Database
Management Group (ODMG). This group is a consortium of vendors
whose main objective is to develop standards for object-oriented databases.
We highlight essential aspects of their most recent proposals, which are
expected to be incorporated in commercially available products in the near
future.

Before dealing with the ODMG we turn our attention to the
‘superordinated’ activities of the Object Management Group (OMG), which
is concerned with standardization of architectures in object-oriented syszems
and so far has been more successful than the ODMG. In particular, we
take a brief look at some essential aspects of the Object Management
Architecture (OMA) and Common Object Request Broker Architecture

143
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(CORBA) specifications. A reason for us to emphasize the work of the
OMG is that their standards are stable and have already been integrated in
commercially available products, whereas OMDG standards are still under
discussion. Furthermore, we want to point out the different character of the
two groups and their standardization work: while ODMG strives to establish
a portability standard, OMG has always intended to introduce an interoper-
ability standard. In view of the increasing penetration of the software market
by object orientation in general and object-oriented products in particular,
both in database systems and in other types of system, and in view of the
current paradigm shift in software development (where configurable compon-
ents derived from reference models are starting to replace large monolithic
systems), these aspects will be of greatest importance in the future.

5.1 SAQL3

The language standard SQL (the accepted abbreviation for Standard Query
Language) has been used for relational databases for more than ten years and is now
supported by most developers of relational (and other) database systems. In 1992
SQL Version 2 (known as SQL92 or SQL2) was adopted, and work on a follow-up
version was begun at about that time as well. Version 3 of the SQL standard (SQL3
for short) is to reflect the increasing use of object-oriented concepts in relational
databases in the future. Therefore, we describe the essential features of SQL3 next.
The reader should bear in mind, however, that the SQL3 standard had not yet been
adopted at the time of writing this book (Spring 1997) and that some information
given in this section may no longer apply when the standard is finally adopted. At
the moment, it is expected that the standard will be completed in 1999.

5.1.1 Extensions of SQL2

In this section we assume that the reader is familiar with the basics of SQL. (In
Section 1.3 of this book, the basic features of SQL concerning table declarations,
update operations and queries are explained.) Compared with SQL2, the new fea-
tures of SQL3 include not only obvious further developments and extensions of
existing concepts, but also some completely new concepts. Some developments
belonging to the former category are listed below:

e The trigger concept provides extended possibilities for monitoring integrity.
Triggers are used in database systems, for example, to check automatically
whether key or foreign-key conditions are satisfied after update operations
have been carried out. If necessary, warnings are issued or corrections are
automatically performed.
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o Improved security measures based on the Grant and Revoke commands.
These SQL commands enable allocation or withdrawal of access rights to
tables or views.

e Extended query possibilities, for example by using recursion, additional
predicates (for example, ‘for all’, ‘for some’) or extended join operations.

e A restricted possibility to define complex structured values by means of the
Row data type, which renders an attribute tuple-valued (see next example).

e New, predefined data types, in particular enumeration types, Boolean values
and so-called Large Objects (LOBs) for holding large storage objects. These
objects can be either binary (Binary LOBs or BLOBs) or of type Character
(Character LOBs or CLOBs).

Example 5.1

We shall exemplify the application of the Row data type by means of the
following declaration of a table for persons:

create table Person
(Name varchar (40),
Age int,
Address row(Street varchar(30),
Location varchar (20),
Telephone row(Areacode char(5),
Number char(7))));

The attribute Address here is tuple-valued and consists of the three attrib-
utes Street, Location and Telephone; Telephone is itself tuple-valued.

5.1.2 Value and object types

The second category mentioned above comprises concepts which are not available
in SQL2. They include the aspects listed below, which are also known collectively
as the Major Object-Oriented SQL Extensions (MOOSE):

e Extension of the current SQL type system to include abstract data types
(ADTs). We can distinguish between value types, which act as a generaliza-
tion of the SQL2 domain concept, and object types supporting objects with a
value-independent identity.

e In an ADT structure declaration the type constructors LIST, SET and MULTI -
SET can be employed.

® Specialization of types such that each subtype has exactly one (direct or indi-
rect) ‘maximal’ supertype which itself has no other supertype. This method
of constructing subtypes applies equally to value and object types.

e Table hierarchies as a form of specialization for relations: that is, a table can
be defined as a subtable of one or more other tables (see also the next sub-
section).
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o User-defined functions as part of an ADT. Functions may be realized either in
SQL or as external functions; type checking is essential. Overloading of func-
tion names, however, is permitted.

e Method and function calls inside SELECT-expressions.

We shall illustrate the SQL approach to abstract data types with the help of some
examples. As mentioned already, user-defined data types (or UDTs for short) are
divided into value and object types and have the following essential properties:

The values (instances) of value types behave like values of the predefined
types of this language: that is, they ‘exist permanently’ and need not be explicitly
created or destroyed. On the other hand, instances of an object type behave like
objects in other object-oriented languages: that is, they have a well-defined lifetime,
must be created explicitly and can cease to exist. Unlike value types, object types
have a distinct identity, which is independent of the value, and therefore they can be
referenced from multiple locations and hence shared by other objects.

As the following example illustrates, complex objects without identity can be
constructed with the help of value types.

Example 5.2

In our running example the following declarations create a table
Automobile whose attribute Drive takes as value an instance of value type
VehicleDrive; the latter type has the attribute Engine which takes as value
an instance of value type OttoEngine:

create value type OttoEngine
(HP int,
CC int);

create value type VehicleDrive
(Engine OttoEngine,
Gearing varchar (12));

create table Automobile
(Drive VehicleDrive,
Carbody varchar (20}) ;

Concerning the use of value types, it should be noted that for each attribute of such
a type a system-internal observer and a mutator function are created. Formally, these
are available externally at the interface of the (encapsulated) ADT for querying and
modifying a current value. A constructor function, which is also generated intern-
ally, serves to create or initialize values. In addition to these constantly available
functions, functions specific to value types or to object types can be introduced.
Furthermore, with the help of the options Public and Private it can be determined
whether attributes and functions should be visible from the outside. Finally, it is pos-
sible to create subtypes of value types, and to do this across multiple levels. Every
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subtype inherits the attributes and functions of each supertype; multiple inheritance
is allowed.
Next, we shall look at object types and in particular the following example:

Example 5.3

In our running example object types may be used in the following manner:

create object type Person
(Name varchar (30),
Age int,
Domicile Address);

Address here designates the following value type:

create value type Address
(Street varchar(25),
City wvarchar(25));

The next declaration introduces a subtype of object type Person:

create object type Employee under Person
(Qualification varchar(30),
Salary decimal(7,2),
FamilyMembers set (Person));

Finally, the following declaration uses these types within a table:

create table Company
(Name varchar(30),
Headoffice Address,
Subsidiaries set (varchar(30)),
President Employee) ;

These examples indicate the complexity that future relational database structures may
have. One should be aware, however, that even SQL3 contains redundancies which
could lead to conflicts between developers and users of database products, because,
like SQL2, the standard defines the syntax of a language but not its semantics.

The object identity of instances of object types can even be made visible. This can
be achieved by declaring the corresponding type with the option WITH OID VISIBLE.

5.1.3 Subtables

We continue our discussion of SQL3 by describing the possibility, mentioned earl-
ier, of declaring tables as subtables of already existing ones. In many respects the
concept of tables goes further in SQL3 than it does in SQL2:
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Example 5.4

Standardization

As opposed to the relational data model, tables in SQL3 can be more than just
sets of tuples. A table can now be a multiset or a list of tuples. For this pur-
pose one of the options SET, MULTISET or LIST must be included in the dec-
laration of a table, where the second of these is the default setting. Note that
this novel feature merely makes explicit what has been a reality in most com-
mercial relational systems for a long time, namely that tables are multisets of
tuples (allowing duplicate entries), which are even stored in a specific
sequence (thus being ordered and de facto constituting a list).

Every tuple within a table can be equipped with a unique row identifier,
which may be used either implicitly for identification or explicitly, for exam-
ple as a foreign-key value. Row identifiers are specific data types with sys-
tem-wide unique values. For each base table a row identifier can be declared
explicitly by using the option WITH IDENTITY. Any such table then has an
additional attribute with the name IDENTITY, which will not be visible in the
result of Select *-queries. On the other hand, this attribute can be accessed
implicitly, for example to create aggregations.

Unlike Example 5.3, the following declares Person as a table with the new
attribute Partner:

create table Person with Identity
(Name varchar(30),
Age int,
Domicile Address,
Partner Person Identity);

Identity is now another attribute of the table Person, and the value of this
attribute for every tuple is a unique value of the implicitly defined type
Person Identity. This additional type can be used just like an ordinary
type, in this case as the value of the attribute Partner.

In particular, the notion of a row identifier is used for the creation and maintenance
of subtables, which are also new in SQL3. A table may be declared as a subtable of
one or more other tables, as illustrated in the next example:

Example 5.5

The following declares a subtable of the table declared in the previous exam-
ple:

create table Employee under Person
(Qualification varchar (10),
Salary int,
FamilyMembers set(Person Identity));
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The table Employee inherits all attributes from the table Person and addi-
tionally defines others. Instance-wise, each tuple in the table Employee must
have a corresponding tuple in the table Person.

The above-mentioned row identifiers ensure tuple correspondence between tables
and subtables as mentioned in the previous example. Every base table that has an
associated sub- or supertable is implicitly marked with a row identifier: that is, with
an attribute of the type Identity. In the previous example the table Person had an
implicitly defined attribute of type Person Identity, and the table Employee an
attribute of the type Employee Identity, where the latter type is a subtype of the first
type.

When using subtables and row identifiers it is important that the update oper-
ations are defined in such a way that the tuples of a subtable lattice are (and remain)
consistent with each other. The following rules are under discussion for SQL3:

e If atuple is inserted into a table which is a subtable of another table, then a tuple
with the same row identifier needs to be inserted into the supertable. Since the
tuple of the subtable has more attribute values than needed for the supertable,
the tuple of the supertable results from the new tuple by a projection.

e If atuple in a table which has subtables is modified, all inherited attribute val-
ues in the subtable are modified accordingly.

e If a tuple in a table which is a subtable is modified, the corresponding tuples
in the supertables will be modified as well.

e If a tuple is deleted from a table which is part of a subtable lattice, all corres-
ponding tuples will be deleted as well.

We finally list some examples of SQL3 queries.

Example 5.6

The following queries refer to the tables declared in the last two examples:

(1) Show the names of all persons living in Boston:

select Name
from Person
where Domicile.City = 'Boston'

Note here the use of dot notation (Domicile.City) to access the components
of an ADT.

(2) Show those employees whose family members include a person named
‘Peter Smith’:

select *
from Employee a
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where 'Peter Smith' in
(select b.Name
from (a.FamilyMembers) b)

This query illustrates access to elements of a set-valued attribute (in this case
FamilyMembers).

As a concluding remark, we mention that tables in SQL3 correspond to classes in a
pure object-oriented model. This is because SQL3 has extensions that make the lan-
guage look object-based. Moreover, SQL3 is intended to become a full program-
ming language and hence will comprise control structures as well.

5.2 OMG standards

The development of SQL as a language standard for relational databases was begun
only 15 years after this model had been initially presented. As a consequence, it
became difficult to push SQL as a standard for commercially available systems in the
late 1980s, even though manufacturers recognized the positive implications of such a
standard. For object-oriented databases the premises for developing standards are basic-
ally different. On the one hand, there are numerous ways to specify an object model
for databases; on the other, the importance of object orientation is not restricted to data-
bases. However, although standardization has begun much earlier than in the case of
relational databases, it has not progressed as fast as would have been desirable.

Today, object-oriented database systems are expected to run on computers
with object-oriented operating systems and to interoperate with object-oriented pro-
gramming languages. Furthermore, in the not too distant future nearly all computing
systems will be distributed systems based on a client-server architecture as
described in Chapter 4 of this book. In view of this growing importance of object-
oriented ‘technology’ in the near future, experts have already begun to draw up plans
for standardization. In particular the Object Management Group (OMG), a huge
industry consortium of more than 650 hardware and software manufacturers, is
working towards establishing standards. A first important goal of the OMG was to
‘define’ or specify an object request broker (ORB), which can be understood as an
interface between the hardware and software components of different manufactur-
ers. The ORB became a central component of a specification called the Common
Object Request Broker Architecture (CORBA), which describes the architecture of
heterogeneous and interoperable systems at the interface and service levels. We take
a closer look at these efforts in this section.

The OMG is mainly active in two areas: object orientation and distributed
systems. Both fields are regarded as essential for the future development of inform-
ation processing. Experts envisage that objects representing encapsulated software
components will be interacting in heterogeneous hard- and software environments,
exchanging and offering services, and passing messages in order to execute pro-
grams, perform calculations, access databases and so on. In order to realize this
vision, two significant goals must be reached:
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e interoperability, that is, the ability of different pieces of software to collabo-
rate in a heterogeneous and distributed hardware environment;

e adequate integration of newly developed and existing legacy systems.

5.2.1 Distributed object management

At present, Distributed Object Management (DOM) is regarded as a highly promis-
ing concept to achieve the twofold goal of interoperability and integration, because
it supports these features in heterogeneous, locally autonomous and distributed
systems in two ways:

e The data structures and the functionality of such systems are represented
as encapsulated objects, which communicate with each other by sending
messages to well-defined interfaces.

o Transparent access to (server) objects is made possible for (client) applica-
tions (that is, without knowing the exact location, the internal representation
or the access language used).

Distributed object management combines concepts of object-oriented and distrib-
uted system models, application integration environments and object-oriented data-
bases, thus presenting all resources available in a network to the user as a collection
of generally accessible objects which can be combined appropriately for specific
applications. Ideally the following features are supported:

o the capability to integrate existing and separately developed collections of
objects or data into a heterogeneous database systemn;

o the capability to integrate different (traditional as well as novel) types of data
(for example, conventionally formatted data, audio data, images, and so on);

o the possibility of applying traditional database techniques (such as query pro-
cessing, query optimization, transaction synchronization and recovery) to the
integrated collection of objects;

o the capability to integrate resources at every desired level of granularity (for
example, objects representing an entire DBMS as opposed to objects repre-
senting squares or employees);

e the capability to launch and control the ‘execution’ of combinations of
objects (at any network location), if necessary by means of moving objects to
a desired location,;

e the capability to support collaboration between intelligent components.

Obviously, the client—server concept can be exploited in this context, in that objects
as encapsulated units with well-defined interfaces can assume the role of both clients
and servers (service providers). A Distributed Object Management System (DOMS)
mainly comprises the following elements:
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Figure 5.1 The principle of distributed object management.

® an arbitrary number of distributed nodes which run application programs,
database systems or simple objects; these are the available resources;

e acollection of clients, which can also be application programs, software tools
or simple objects, and which issue requests that are served by the resources.

Based on a common object model, distributed object managers mediate between
clients and resources. This principle is graphically illustrated in Figure 5.1. Yet, the
complexity of such a system leads experts to abandon the principle that every object
knows what service can be accessed in another object or which type of functionality
is to be expected. Instead, a mediating component (often called a middleware layer)
is added to the ordinary client—server architecture; service providers inform this
component about their available functionality. Clients can turn to this mediator if
they want to learn which object in the system can supply a required service.
Basically, the mediator manages a directory from which service requests can be
answered directly or indirectly (that is, by turning to a second mediator). In prin-
ciple, there are two types of mediators:

® We refer to a mediator as a trader if it is strictly restricted to its function as a
mediator: that is, establishing a connection between a client and a server. This
is illustrated in Figure 5.2, where, following established terminology, the
client is denoted as the importer and the server as the exporter (of a service).

o We refer to a mediator as a broker if it passes on a service request to a server and
later passes back the result to the client. When the broker which has been
addressed cannot provide the requested service, other brokers may be consulted.
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Figure 5.2 The trader principle.

OMG favours the concept of service brokering and we shall therefore consider it in
greater detail in the following subsections.

5.2.2 Object Management Architecture

As outlined above, the OMG can be regarded as a consortium, which was founded
with a view to standardizing DOM architectures and services. The OMG recom-
mendations are based on an object model with the usual properties (which have been
amply discussed in previous chapters). This model is used to support the integration
of distributed applications. In principle, it should be possible to compose such appli-
cations in a modular fashion, with the individual modules or components calling
each other via well-defined interfaces.

The general framework of the OMG activities is set by the Object
Management Architecture (OMA), as summarized in Figure 5.3. This architecture
defines a reference model which identifies and characterizes the components, inter-

Specific Common facilities
application — Classes and objects
objects — General functionality

o o I o

< Object request broker >

Common object services
— Services with object interfaces
— Base functions

Figure 5.3 Object Management Architecture (OMA)
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faces and protocols which together form a distributed object architecture. The OMA
consists of four essential components:

o Application objects: The OMA actually aims at applications which are inter-
operable, portable and reusable. Therefore, application objects are specific to
the individual end-user applications, and represent business objects or appli-
cation programs operating on such objects.

® Object request broker (ORB): This is the central component which mediates
between the distributed objects, passing on method calls to the appropriate
target objects and returning the results back to the caller. The architecture and
function of the broker, which is sometimes also called the CORBA object
bus, are laid down in the CORBA specifications (see next subsection).

o Common object services: These services support communication between
distributed objects, and essentially define the system-level object frameworks
which extend the broker. They include basic functionality such as security,
treatment of events and persistence of objects, discussed in more detail
below.

e Common facilities: These form a collection of objects for general purposes
(for example, error handling or printing) required by many applications. The
common facilities are divided into horizontal and vertical facilities and can
be used directly by business objects.

We now take a closer look at the CORBA object services, which are system-level
services with interfaces specified in the Interface Definition Language (IDL), a
language specifically designed for the description of object interfaces. These
services can be used to create components, name them and introduce them to the
environment; in particular, they allow the handling of objects that would normally
be restricted to appearing in a database and being managed by a DBMS. At the
time of writing (Spring 1997), the OMG has defined the following 13 object
services:

o Life Cycle Service: This service defines operations for creating, copying,
moving, and deleting components on the object bus.

® Persistence Service: This service provides a uniform interface for storing
objects persistently on a variety of storage servers (such as object-oriented
databases, relational database or file systems).

e Naming Service: This service allows objects to locate other objects by name
(instead of by identity); objects can be bound to existing network directories
or naming contexts (such as OSF DCE or Sun NIS).

e Event Service: Objects can register or unregister their interest in specific
events through this service. It defines an object called an event channel,
which collects and distributes events among objects.

e Concurrency Control Service: This service provides a lock manager which
can obtain locks on behalf of transactions or threads.
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® Transaction Service: Recoverable objects which use flat or nested transac-
tions for concurrent operations are provided with a two-phase commit proto-
col through this service and can hence enjoy coordinated termination.

® Relationship Service: This service provides a way to create dynamic associa-
tions or links between objects which otherwise do not know each other. In
addition, it provides mechanisms for traversing such links to group the asso-
ciated objects. One application of this service is the enforcement of referen-
tial integrity.

® Externalization Service: This service provides a standard way of getting data
into an object or out of an object using a stream-like mechanism.

® Query Service: This service provides query operations for objects in a simi-
lar way to object-oriented databases. In particular, it is supposed to be a
superset of both SQL3 (see above) and OQL, the Object Query Language
under standardization by the ODMG (see below).

® Licensing Service: This service provides operations for metering the use of
objects to ensure fair compensation for their usage; it supports various ways
of charging (per session, per node, per site and so on).

® Properties Service: Properties are named values which can be associated with
objects or components through the operations provided by this service. In
particular, properties can be associated dynamically with an object’s state.

o Time Service: This service provides interfaces for time synchronization in a
distributed object environment as well as operations for defining and manag-
ing time-triggered events.

® Security Service: This service provides a framework for distributed object
security, including authentication, access control lists, confidentiality, or the
management of credentials delegation between objects.

A corresponding illustration of the OMA specifications, which includes three more
services that still need to be specified (Trader Service, Change Management Service,
Collections Service), is shown in Figure 5.4.

Figure 5.5 illustrates a possible application of the Object Management
Architecture in a business environment. Among the application objects are features
such as invoicing and acceptance of orders or repair work, which will typically take
the form of encapsulated business objects. These objects may even represent encap-
sulated legacy systems, which only look like objects from outside. The common
facilities could include databases or information systems which are managed and
accessed by company-wide data servers. The object services needed in this scenario
handle, for example, database interactions (queries, transactions, and so on), various
management functions, and general functionalities such as name services or regis-
tration.

In the context of OMA the broker is regarded as a connection bus for the
exchange of messages which may even span several systems. Physically, this can be
realized as one component or as various components cooperating with one another.
The basic idea behind the ORB is mediation between the service user and the
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Figure 5.4 A more detailed view of the OMA.

service provider. The provider of a service informs the ORB about the type of service
offered. As we have seen above, the architecture is based on client-server communi-
cation, but this time according to the model shown in Figure 5.6. A client acting as a
caller of an object service communicates — assisted by a broker — with a server object
which may perform the service. A request consists of an operation, a target object and
(possibly) parameters as well as an optional context for the request. The task of the
ORB is to find the object implementation that corresponds to the indicated target
object, call it, hand over the request for processing, and return the results.

5.2.3 CORBA

The Common Object Request Broker Architecture (CORBA) acts as the central
DOM architecture of the OMG, putting into concrete terms the synthesis, function-
ality and the interfaces of a broker. Figure 5.7 presents an overview of CORBA. The
emphasis of the specification is on the interfaces which are offered by an ORB and
which can be differentiated as follows:

o call interfaces, allowing client objects to send calls to a server object;

® ORB interface, allowing server and clients to access the infrastructure func-
tions of the ORB.

Call interfaces can be divided into static and dynamic interfaces. Prior to executing
the client program, static interfaces create a so-called stub (a fixed component of the
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program) from the interface description and statically bind it to the program.
Dynamic interfaces allow the dynamic composition and invocation of calls. Both the
static and dynamic client interfaces are defined in IDL (the Interface Definition
Language mentioned earlier). A called object does not recognize which of the inter-
faces has been used to request its service. A call reaches the server object via the

Client
interface

Figure 5.6 ORB mediation.
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specific object adapter and the IDL skeleton. The caller will not know whether the
desired object is placed locally or on a remote node. Again, there are static and
dynamic skeletons: the static or server IDL stubs provide static interfaces to each
service exported by the server, whereas the dynamic skeleton interface provides a
run-time mechanism for servers that need to handle incoming method calls
addressed to objects without compiled IDL stubs.

The Implementation Repository is a database containing information on
implementations of server objects which can be used by an object adapter. It may
include, for example, the name and location of a file storing the code to be executed
for an object. Finally, the Interface Repository contains the IDL descriptions of the
currently known server interfaces which may be used for the definition of new appli-
cations or for the construction of dynamic request (by clients).

The language IDL defines object interfaces which are determined independ-
ently of an object’s implementation (as usual, implementations have to be provided
in a corresponding programming language). The definition of an interface is made
up of a number of method or operation signatures together with a (possibly empty)
set of type declarations which define new types for use within the declaration. A sig-
nature of this kind consists of an operation name, a set of input parameters, a result
and exceptions which can be triggered by the operation.

CORBA has currently reached version 2.0. The original CORBA 1.1 was
concerned only with creating portable object applications, and left the ORB imple-
mentation to vendors. CORBA 2.0 has introduced interoperability, by specifying a
so-called Internet Inter-ORB Protocol (IIOP). In essence, IIOP is the well-known
TCP/IP protocol, enhanced by specific message exchanges which serve as a common

Figure 5.7 Overview of CORBA.
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backbone protocol. Platforms for cooperating objects or CORBA implementations
(more precisely: CORBA-‘compliant’ brokers) are already commercially available;
these include

ObjectBroker by Digital Equipment Corp.,
Distributed System Object Model (DSOM) by IBM,
ORBplus by Hewlett-Packard,

Orbix by Iona Technologies, and

NEO and JOE (Java Objects Everywhere) by Sun.

They all support object-oriented programming: that is, programs may be distributed
over a heterogeneous network. A competing approach is given by the integration of
application objects into so-called compound documents where a ‘document’ is made
up of a set of objects. Two representatives of the latter category are the CORBA-
compatible OpenDoc by Apple, IBM and others, which is now used by the OMG as
the basis of their Compound Documents specification, and OLE (Object Linking and
Embedding) by Microsoft, which is nor CORBA compatible, but which is included
in the Windows 95 and Windows NT 4 operating systems and hence comes essen-
tially for free.

5.2.4 The OMG object model

OMG has decided against a single object model which would have to be supported
by all parties intending to comply with a broker architecture, and instead opted for
a twofold structure:

(D The core model is, in a sense, the smallest common denominator on which
the members of the consortium were able to agree. This model fulfils just the
minimal requirements to justify its classification as ‘object technology’: iden-
tity, typing, operations, inheritance and subtyping.

2) Components are compatible extensions of the core, such as attributes or rela-
tionships, which are needed in some applications, but not in others. (It should
be noted that the use of the term ‘component’ in this context is different from
that used in the context of component software, which refers to the modular-
ization of software programs for easy or flexible configurability.)

A combination of the core model and one or more components is called a profile.
Thus, a profile forms an object model which can be used in a specific area of appli-
cation, for example in the domain of system software (object-oriented database
systems, graphical user interfaces, programming languages, and so on) or concrete
applications. In this sense the ODMG specifications (as described below) represent
a particular profile relating to object-oriented databases and comprising components
which together with the OMG model make up the ODMG model. We shall focus our
attention on this model in the next section. Figure 5.8 illustrates the OMG concept
of creating profiles.
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Figure 5.8 The OMG concept of profiles.

We want to conclude this section by pointing out that OMA, CORBA and the
OMG object model are highly relevant to object-oriented databases, at least in the
following respects:

¢ An object-oriented database system can be attached to a CORBA implemen-
tation so that the underlying ORB is employed to manage accesses to objects
stored in the database. In this way applications get access to the database via
the broker, and in fact they have access to all database systems connected to
the broker. Using the appropriate CORBA services, it is possible to access
multiple databases within a single application. This approach is shown in
Figure 5.9 with one database system attached to the broker.

Application objects

< Object request broker >

OOoDBMS Methods

E

Figure 5.9 Database access via CORBA.
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Figure 5.10 CORBA as a database system.

e The entirety of all objects within a distributed object architecture can itself be
regarded as an object-oriented database, provided that relevant services with
a database-like functionality are available. Since the Common Object
Services of CORBA described earlier in this chapter (in paricular the Naming
Service, the Transaction Service, the Relationship Service and the Query
Service) provide several parts of such a functionality already, this approach
is realistic. From this point of view CORBA is no longer merely a communi-
cation mechanism, but assumes the role of an internal implementation tool as
illustrated in Figure 5.10.

Parts of this latter consideration have already been addressed by the OMG in more
concrete terms: in a 2.0 implementation it is possible to exploit the Persistence
Service of CORBA, also called the Persistent Object Service (POS), to create a
heterogeneous system. Essentially, POS allows objects to persist beyond the lifetime
of the application that creates the objects or beyond the clients that use them. POS
allows the state of an object to be saved in a persistent store and restored from there
when needed. The idea is to support a variety of storage services, including rela-
tional (SQL) database systems, object-oriented database systems, document filing
systems and simple file systems. This approach is illustrated in Figure 5.11. In more
detail, POS is composed of the following components: Client applications access
Persistent Objects (POs), which are objects whose state is stored persistently. An
object can be made persistent by having it inherit the PO class behaviour via a cor-
responding IDL specification. Every persistent object has a unique identifier (called
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Figure 5.11 POS as a uniform storage interface.

a Persistent Identifier or PID for short) which describes the location of that object
within a storage component. Next, the Persistent Object Manager (POM) is an
implementation-independent interface for operations dealing with persistence. It
shields the persistent objects from a particular Persistent Data Service (PDS). The
latter provides an interface to a particular storage-system implementation. The POM
can route PO calls to the appropriate PDS by looking at information in the given
PID. The PDSs perform the task of moving data between an object and a storage
system. They must implement the IDL-specified PDS interface, and may addition-
ally support an implementation-dependent protocol which provides mechanisms for
moving data in and out of an object. At the moment, POS specifies three such
protocols for interfacing objects and stores; these are called Direct Attribute (DA),
Object Database Management Group (ODMG-93) and Dynamic Data Object
(DDO). Finally, datastores are the implementations that store an object’s data per-
sistently and independently of the address space containing the object. POS also
provides IDL-defined interfaces which encapsulate the X/Open Call-Level Interface
(CLD); these are collectively called the Datastore_CLI and provide an interface to
SQL databases. The POS components are illustrated in Figure 5.12.

In conclusion, we may assert that OMA and CORBA can serve as an appro-
priate basis for the future development of object-oriented database systems and of
DOM architectures which incorporate database or, more generally, data storage
systems. As soon as full CORBA implementations are available, corresponding
developments can be launched, and the resulting systems will even be able to com-
prise a large variety of software other than database systems. Thus future informa-
tion systems are likely to look considerably different from the solutions we are used
to today.
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Figure 5.12 POS components.

5.3 The ODMG proposals

As already mentioned, developers and manufacturers of object-oriented database
systems have joined together to form the ODMG (Object Database Management
Group), a ‘subgroup’ of the OMG, and have proposed a standard for object-oriented
database systems. This standard is known as ODMG-93 and roughly includes the

following:

& an object model which originated from the OMG object model; in view of
what has been said earlier, the ODMG model constitutes a special profile;

e an Object Definition Language (ODL) whose syntax is based on the IDL of
the OMG;

e an Object Query Language (OQL.), which is a declarative language oriented
towards SQL, but not based on SQL3;

e bindings to object-oriented programming languages, in particular C++,
Smalltalk and more recently Java.
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In this section we shall briefly introduce the object model as well as fundamental
aspects of the ODL and the OQL.

5.3.1 Foundations of the ODMG-93 object model

The object model according to the ODMG-93 proposal can briefly be characterized
as follows:

e The object constitutes the central modelling construct and carries an object
identity. Furthermore, an object can have one or more user-defined names.

e Types can be attached to objects, with all objects of one type having the same
structure and the same behaviour.

e The behaviour of objects is determined by a set of operations which can be
performed on an object of the respective type. Operations are defined by
signatures. A signature establishes the name of an operation, the name and the
type of the arguments and the return value and eventually of the exceptions.

e The state of an object is defined by the values of a set of properties. These
properties can be either attributes of the object or relationships of the object
to other objects. Atiributes can have only literals as values. Relationships can
only be binary and have a cardinality of 1 : 1, 1 : n or m : n. Each definition
of a relationship can be associated with an inverse relationship.

The following example shows an interface definition for an object type and illus-
trates these basic aspects.

Example 5.7

We look at the definition of object types for persons and vehicles in our run-
ning example. It is important to know that the ODMG model does not pro-
vide object-valued attributes, but requires a relationship in order to express
object references which may even need an inverse. Therefore, adapting our
previous examples we obtain the following:

interface Person

// type properties
( extent Persons
key Name )

// instance properties
{
attribute String Name;
attribute Integer Age;
attribute String Domicile;
relationship Set<Vehicle> Fleet
inverse Vehicle::Driven_by;
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// instance operations:

Every person has the usual attributes; however, Domicile is now assumed to
be a simple type. The attribute Fleet is actually an object-valued attribute
and references a set of objects in class Vehicle (defined next); therefore it
becomes a relationship; the referenced objects need an inverse relationship.
To this end, class vehicle is defined as follows:

interface Vehicle

// type properties:
{ extent Vehicles
key (Model, Manufacturer))

// instance properties:
{
attribute String Model;
attribute String Manufacturer;
attribute String Colour;
relationship Person Driven_by
inverse Person::Fleet;

// instance operations:

In this definition, we again depart from our example in not declaring the
attribute Manufacturer as an object-valued attribute.

In principle a type has an interface or a signature and one (or several) imple-
mentations. A combination of signature and implementation is also called a class.
Types are themselves objects and can have their own properties, which are referred
to as type properties. Two of their three essential properties have already been used
in the last example:

e Supertypes: Object types may be specializations or generalizations of each
other and hence form IsA relationships. All attributes, relationships and oper-
ations of the supertype are inherited by the subtype. Subtypes may add fur-
ther features or redefine inherited ones.

o Extents: The set of all instances of a type is its extent (extension). An extent
may have a name (see Vehicles above).

® Keys: Optionally, attributes of a type may be marked as members of a key of
this type.

Besides type properties, the signature of an object type can also contain instance
properties and instance operations, with the operations being specified only by
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Figure 5.13 Predefined ODMG type hierarchy.

means of a signature. Among the instance properties are the attributes and relation-
ships mentioned above.

The ODMG-93 model provides a variety of predefined types, which are
shown in Figure 5.13. At the root of this (only partially shown) hierarchy of object
types is the type Denotable_Object, which is subdivided into mutable and
immutable. In principle objects are mutable, whereas literals are immutable; in other
words, objects can change their values, but literals (which are values) can be
replaced only by other literals. In particular, the values of the attributes of an object
or of the relationships in which objects participate can be changed; clearly, the iden-
tifier associated with an object cannot be modified. Both subdivisions are further
divided into ‘atomic’ and ‘structured’.

Note that all instances of type Denotable_Object have an identity; the
identity of a literal, however, is identical to its value. Objects do not only have an
identity, but may also have one (or several) user-defined names. Moreover, it is
important to know that the type Object is equipped with the following predefined
properties:
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has_name?: Boolean;
names: Set<String>;
type: Type;

as well as with the following predefined operations

delete();
same_as? (oid: Object_id) — b: Boolean;

Objects are created with the help of the create operation, which allocates storage
space for the newly created object and assigns an identifier.

Among the literals are the usual base types (‘atomic literals’) such as Integer
or Float. Structured objects and structured literals are created using constructors
such as Set or List. The structure of an object of type Structure or of a literal of type
Immutable_Structure is a tuple whose components can be assembied in any fashion.
A literal of a particular kind is Enumeration, which generates an enumeration type.

As far as queries and working with a database in this model are concerned,
the central construct is the collection, which is an object comprising other objects (of
the same type). Queries use collections for iteration purposes: that is, the objects of
a collection can be accessed one after the other. Iteration is achieved by an object of
type Iterator, which in particular maintains a ‘current position’ while passing through
a collection. All the subtypes of the type Collection <T> shown in Figure 5.13 have
various predefined operations (for example, set operations for objects of the type Set
<T>) which are partly inherited from the supertype and then overridden.

By way of conclusion we should like to add that the object model which
emerges from the ODMG-93 proposal defines a number of other details, such as
the possibility of fixing the /ifetime of a (mutable) object or the notion of a transac-
tion.

5.3.2 The Object Definition Language (ODL)

In this section we look at the Object Definition Language (ODL) of the ODMG-93
proposal, but we shall refrain from presenting its entire syntax. ODL is a specifica-
tion language with the aim of defining interfaces or signatures for object types which
conform to the ODMG-93 model. In this respect ODL is intended to support the
portability of database schemas; it is — as stated earlier — based on the Interface
Definition Language (IDL) of OMG.

In the example given in the previous subsection some important language
elements have already been pointed out. A type is defined by the specification of a
signature, generally in accordance with the following syntax:

interface_dcl INTERFACE identifier [ inheritance_ spec ]
type_ property_list

[ : persistence_dcl ]

[ interface_body 1 } ;

PERSISTENT { TRANSIENT

I o~

persistence_dcl
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The characteristics of a type (supertype information, extent naming and key specifi-
cation) are defined according to the following syntax:

inheritance_spec scoped_name_list

type_property_list ::= ([ extent_spec ] [ key_spec 1)
extent-spec ::= EXTENT identifier
key_spec ::= KEY[S] key-list
key ::= property_name_list
property_name ::= scoped_name
scoped_name := identifier

| :: identifier

| scoped_name identifier

interface_body
export

attr_dcl

domain_type

attr_coll_spec

rel_dcl

target_of_path

inverse_path
attr_list

op_dcl

op_type_spec
param_dcl
param_attr
raises_expr

Essentially, an interface_body consists of the declaration of attributes, relationships
and operations; their principal syntax elements are as follows:

export_list
attr_dcl | rel_dcl | op_dcl

[ READONLY ] ATTRIBUTE
domain_type identifier
simple_type_spec

| struct_type

| enum_type

| attr_coll_spec literal

| attr_coll_spec identifier
SET | LIST | BAG | ARRAY

RELATIONSHIP
target_of_path identifier

[ INVERSE inverse_path ]

[ { ORDER_BY attr_list } ]

identifier
| rel_coll_type identifier
identifier identifier

scoped_name_list

[ ONEWAY ] op_type_spec identifier

( [ param_dcl_list ] ) { raises-expr ]
gsimple_type_spec | VOID

param_attr simple_type_spec declarator
IN | ouT | INOUT

RAISES ( scoped_name_list )

We shall not describe the complete syntax for the specification of operations, but
instead conclude this section with an example, which in fact is a continuation of
Example 5.7.
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Example 5.8

Again we turn to the automobile distributor for which we defined the object
types Person and Vehicle in the last example. We shall supply the remain-
ing definitions and again restrict ourselves to structural aspects:

interface Employee: Person
( extent EmplSet )
{
attribute set<String> Qualifications;
attribute Float Salary;
relationship Subsidiary is_Mgr_of
inverse Subsidiary::Manager;
relationship Subsidiary is_Empl_of
inverse Subsidiary::Employees;
relationship Company is_Pres_of
inverse Company: :President;
}:

On the one hand, the type Employee (here defined without family members)
is a subtype of the above-defined type Person; on the other, it has three dif-
ferent relationships with two other types, namely Subsidiary and Comparny.
The remaining type definitions are as follows:

interface Company
( extent Companies )
{
attribute String Name;
attribute String Headoffice;
relationship Employee President
inverse Employee::is_Pres_of;
relationship Set<Subsidiary> Subsidiaries
inverse Subsidiary::is_Subs_of;

hirePres (in Person);
firePres (in Employee) raises (not_existing)

}i

For Ccompany the signatures of two operations, hirePres and firePres, are
indicated; the latter also includes an exception condition.

interface Subsidiary

( extent SubsSet )

}
attribute String Name;
attribute String Office;
relationship Employee Manager

inverse Employee::is_Mgr_of;

relationship Set<Employee> Employees
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Figure 5.14 Running example written in the ODMG ODL (extract).

inverse Employee::is_Empl_of;
relationship Company is_Subs_of
inverse Company::Subsidiaries;

}i

The types defined in the last example and in Example 5.7, and their relationships, are
graphically summarized in Figure 5.14.

5.3.3

The Object Query Language (OQL)

We now want to turn our attention to the Object Query Language (OQL) proposed
by the ODMG. This language is based on the following principles and assumptions:

It uses the ODMG-93 object model described earlier as a foundation.

OQL is a declarative and optimizable language, but not Turing-complete.
Therefore, OQL is a ‘classical’ database query language, and in contrast to
SQL3, it is not designed as a full programming language.

The syntax of OQL is similar to that of SQL, which means the basic query
syntax is the Select-From-Where construct. The syntax of OQL is still
subject to refinements and enhancements; in particular, the integration into
programming languages (including Smalltalk, C++, and Java) needs to be
finalized.

Unlike SQL, OQL does not favour the set as its primary query medium, but
treats tuple structures or lists in the same way as sets.

OQL has no explicit update commands or operations, but appropriate meth-
ods are supplied for the purpose of updating (that is, inserting, deleting or
modifying) objects.

With respect to the third point it should be noted that the syntax of OQL is neither
stable nor has it been implemented yet. In its current state (in early 1997) Version
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1.2 of OQL is closely related to and based on O.SQL, the query language of O; we
discussed in the previous chapter. We shall thus refrain from describing the syntax
of OQL, and restrict ourselves to giving a few examples.

OQL is a strictly typed language permitting queries which deliver atomic or
structured objects or literals as answers. Among its design goals were orthogonality,
that is, every mechanism of the language can be applied to every construct, and arbi-
trary nesting of queries; in other words, OQL is a functional language.

Example 5.9

The following query yields the age of persons with the name ‘John Smith’:

select distinct x.Age
from Persons x
where x.Name = "John Smith"

Note that this query addresses the extension Persons of type Person which
was defined in Example 5.7. The result of this query is a literal of type
set<Integer>.

Example 5.10

The next query yields the names of all employees who work in a subsidiary
branch of a company whose president earns more than 100000; it also sup-
plies the name of that company:

select distinct struct(EName: x.Name, CName: y.Name)
from EmplSet x, Companies y
where x in (select z.Employees
from SubsSet =z
where z in y.Subsidiaries)
and y.President.Salary > 100000

Here the result is supplied as a tuple structure with two attributes.

OQL does not need Select-expressions for every query. If, for example, HenryFord
is the name of an object of type Person, then

HenryFord

constitutes a valid query. Furthermore, the properties of this object can be directly
accessed; as, for instance, in the expression

HenryFord.Age

Thus, queries may supply answers in the form of individual objects, sets of objects,
individual literals or sets of literals.
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Example 5.11

Following the relational SQL, the current version 1.2 of OQL provides capa-
bilities for querying relational structures. A selection which just returns object
identities would be written as

select X
from Persons x
where x.Name = "John Smith"

A projection of Vehicle objects onto the attributes Model and Manufacturer
is expressed as follows:

select Model, Manufacturer
from Vehicle

We should like to conclude this section by emphasizing once again that our descrip-
tion of the activities of the ODMG reflects the current state of affairs, since the task
of this group is not yet completed. The introduction of the standard in commercial
products was scheduled for early 1995. However, it had to be postponed several
times, and now it remains to be seen when it will actually be put into practice. Yet,
the development of the ODMG standard is of great importance to the field of object-
oriented databases.

Finally, we should also mention that efforts are under way to create a merger
between SQL3 and ODMG’s OQL. Since OQL is already based on the Select-From-
Where construct, such a merger appears reasonable, in order to widen the applica-
bility of both languages. Clearly, a number of details have to be taken care of, such
as matching the strong typing of OQL in SQL, or extending SQL queries from tables
to collections of objects and allowing queries to return such collections.

5.4 Bibliographical notes

General introductions to standardization activities as described in this chapter can be
found in Kim (1995) or Simon (1995); in particular, we should like to refer the
reader to Manola (1994) and Moss (1994). Specifications of CORBA and OMA can
be found in the documents of the Object Management Group (1991, 1992, 1995); in-
depth descriptions are also given by Orfali et al. (1996a) or by Siegel (1996). A
detailed discussion of the ODMG-93 model is provided by Cattell (1994, 1996); for
a short overview, the reader may also consult Bancilhon and Ferran (1995). Orfali et
al. (1996b) give an introduction to client—server systems in general and to CORBA
in particular. A detailed introduction to the Persistent Object Service of CORBA is
given by Sessions (1996). A critical evaluation of CORBA can be found in
Kleindienst et al. (1996) or in Wallace and Wallnau (1996). Vossen (1997) surveys
CORBA and points to several projects that are based on it or use it. A typical appli-
cation of CORBA can be expected in the area of multi-database systems; for an
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introduction to this subject, see Bukhres and Elmagarmid (1996). We finally men-
tion that Figure 5.5 is an adaptation of a figure in Brodie and Stonebraker’s book
(1995).

We emphasize again that for activities like standardization, in which multi-
ple parties sometimes all over the world are involved, it is becoming more and more
common to exchange information through the World Wide Web, and to make docu-
ments and other information available on the Web. We therefore encourage the
reader to monitor the corresponding Web pages for up-to-date information on the
topics discussed in this chapter. The relevant locations include:

For SQL3 http://www.jcc.com/sql_stnd.html
For the OMG http://www.omg.org
For the ODMG http://www.odmg.org
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In this chapter, we offer some fundamental considerations about algebraic
operations on object-oriented databases. In relational databases, algebraic
operations have proved themselves not only as the basis for the semantics
of query languages, but also as the basis for the optimization of queries.
Moreover, algebraic languages are equivalent, for example, to calculus-
based ones; they can thus be considered both as a ‘robust’ concept and as

a measure of the expressive power of a language. The question arises as to
whether similarly interesting properties of algebraic operations or languages
occur in object-oriented databases; this chapter briefly introduces this issue.
It is our objective to show the main analogies between classical relational
algebra and so-called object algebras as well as to demonstrate the new
problems to be solved when defining algebraic operations on complex
structures. We do not discuss specific object algebras, but refer the reader
to the references given at the end of the chapter.
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6.1 Algebraic operations on relations

First, we compile several important aspects of the classical database algebra, the
relational algebra, and then investigate these with regard to object orientation.

6.1.1 Relational algebra and its properties

We first remind the reader of the explanations in Section 1.3.2, where we briefly dis-
cussed the connection between SQL and relational algebra. As was demonstrated
there, the fundamental operations of this algebra, that is, projection (1), selection
(0), the set operations union (U) and difference (=) and the natural join (IxI) can all
be expressed in SQL. By means of these operations (and possibly the option of
renaming attributes) numerous others can be defined; however, no fundamentally
new possibilities arise to express queries to a relational database.

Relational algebra has several important properties which make it suitable as
the basis of a semantics for relational query languages:

o Relational algebra is complete, which means that (given) relations are always
transformed into (most frequently different) relations by means of the alge-
bra’s expressions. The result of the evaluation of an individual operation or
of an expression can thus serve as input for the evaluation of another opera-
tion or a further expression.

This observation can be formalized by perceiving queries to a relational data-
base as mappings of (given) relations to (derived or newly constructed) rela-
tions; the queries which can be expressed in relational algebra are particular
mappings enjoying specific properties.

e Relational algebra is safe in the sense that each result delivered by one of its
expressions is finite: that is, contains a finite number of tuples.

e The language of relational algebra offers a tool for the definition of external
views. In other words, the external layer according to the ANSI/SPARC three-
layer architecture model can essentially be defined in terms of algebraic
expressions which describe derived relations.

e All expressions of relational algebra can be efficiently evaluated, because the
underlying operations all have polynomial time complexity. More precisely,
the time needed to evaluate one of the operations is polynomial in the ‘size’
of the respective input, independent of how this input is stored.

It can even be shown that the task of evaluating expressions of relational
algebra is of low polynomial time complexity, which has both a positive and
a negative consequence. On the one hand, an algebraic expression offers pos-
sibilities for optimization (see the following subsection) and in this context
even possibilities of parallel evaluation. On the other hand, the expressive
power of relational algebra is limited, which is generally considered the price
to be paid for high efficiency.
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The last-mentioned aspect is of fundamental importance for database languages. If
it is to be guaranteed that each query which is expressible in a given language can
be efficiently evaluated, limitations have to be imposed on the expressive power of
that language. In relational algebra there is, for example, no recursion and no itera-
tion, both constructs with which inefficient or even non-terminating programs can be
written in high-level programming languages.

In the course of this section we will discuss two aspects of the algebra in more
detail: the possibility of optimizing queries and the role of the algebra as a ‘reference
point’ for other relational languages.

6.1.2 Algebraic optimization

One of the particularly important aspects of relational algebra is that a series of
manipulation rules applies to its operations; these rules state, for example, when two
operations commute or whether an operation is associative. An important application
of such rules is the provision of methods to optimize queries: that is, to transform a
given query into an ‘equivalent’ one which supplies the same result (if applied to the
same underlying database), but which can be evaluated more efficiently (relative to
a given cost measure such as the number of block accesses on disk). A few simple
examples will illustrate this point:

o If a projection and a selection are to be applied to a given relation, these oper-
ations can be exchanged (commuted) if the selection attributes are amongst
those onto which the projection is made.

o If a selection is applied to a join expression and if the selection attributes
only occur in one of the join operands, then the selection can be applied to that
operand before the join is computed; that is, it is distributed into the join expres-
sion.

The significance of such manipulation rules with respect to query optimization
becomes clear if you visualize the role an algebra usually assumes in database sys-
tems: in real systems, algebraic operations are not used at the user interface, but
internally in the system for implementation and especially for optimization, as indi-
cated in Figure 6.1. There are several reasons why this role of an algebraic language
is justified:

e Syntactically, relational algebra, when compared with SQL, can be charac-
terized as a kind of ‘assembly language’, because a user can work only with
a fixed set of basic operations in this algebra. Therefore, a system developer
would only want to make it directly accessible to the ordinary database user
in exceptional cases.

e From an internal point of view, a ‘logical’ algebra like the one discussed here
is typically complemented with a ‘physical’ algebra in which operators are
implemented as, and are directly executable as, system processes.
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Declarative language: SQL, calculus

Calculus optimization
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Algebraic optimization

Access or evaluation plan creation

Figure 6.1 The role of algebraic languages.

Reasons like these justify attempts to imitate the algebraic language approach in
other data models as well, especially in object-oriented ones. Problems that might
arise from this will be discussed below.

6.1.3 Relational algebra as a language yardstick

Apart from relational algebra, the relational data model knows the tuple calculus as
well as the domain calculus as declarative counterparts. These calculi are based on
the perception that a relational schema R with » attributes (in databases) and a rela-
tion name R of arity n (in mathematical logic) are strongly related concepts. A set
{R\, ..., Ri} of relational schemata of a database schema can thus be regarded as a
vocabulary of relation names. Additionally, variables are needed for a logical
language. If these variables represent tuples from relations, they are called ruple
variables; if they represent individual domain elements, they are called domain
variables. Formulas in the tuple calculus (with tuple variables) or in the domain
calculus (with domain variables) are equipped with a semantics by interpreting them
appropriately as formulas over a given database.

In principle, both calculi are not safe in the sense of the previous subsection
and thus more powerful than the algebra, because they allow queries with infinite
results to be posed. This additional expressive power is, however, largely insignifi-
cant for practical applications, so that the calculi are usually restricted (to ‘safe for-
mulas’) in such a way that infinite results are no longer possible. It can then be
shown that the safe calculi are both equivalent to relational algebra: that is, for each
expression in one of the calculi there is an expression in the algebra yielding
the same result if applied to the same database and vice versa. This means that the
two approaches to language design (the algebraic one and the calculus one) are
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equivalent. One important consequence of this is a notion of completeness for rela-
tional query languages, the so-called Codd-completeness: a relational (query) lan-
guage is called Codd-complete if its expressive power equals that of the relational
algebra.

On closer examination the notion of Codd-completeness does not seem very
far-reaching even in ordinary relational databases, since it can be shown that import-
ant queries (such as the transitive closure of a binary relation) are not expressibie in
the algebra nor in either of the calculi. Therefore, other forms of characterizing the
expressive power of relational query languages have been developed in the past (see
the bibliographic notes for references); these adapt concepts of theoretical computer
science to relational databases in an appropriate manner.

The concept of a computable query is of particular significance in this con-
text: in analogy to a computable function, a computable query is basically a partially
recursive function, which (i) yields as output, for a database given as input, a rela-
tion over the database domain, and (ii) satisfies a consistency criterion which essen-
tially requires that the query result is independent of the internal representation of
the database. This criterion, also called C-genericity, captures the intuition that a
query only ‘uses’ information that is available at the conceptual level of the database
in question. In particular, distinct values can be treated differently only if they are
distinguishable by means of conceptual information or appear explicitly in the query.
More formally, this can be expressed as follows:

If C is a finite set of values from a universe U, and if ¢ is a query which
takes as input a set d of relations and maps this to an output relation, g is called
C-generic if for each permutation p on U such that p(x) = x for each x € C the
condition

pg(d)) = q(p(d))

holds; that is, the following diagram commutes:

d - q(d)
pl Lp
pd) — q(p(d)) = p(g(d))

If C = &, then q is called generic. Genericity thus requires that a query is not sensi-
tive to a renaming of the constants (by means of permutation p) occurring in the
database. Such a set C specifies ‘special’ constants, which are explicitly mentioned
in the query, especially in selection conditions. However, each C-generic query can
be understood as a generic query by incorporating the constants from C into the
input. Thus studying generic queries (instead of C-generic ones) suffices.

As a result of these considerations, a (database) query is defined as a
computable and generic (database) mapping. A language is called complete if it
can express all queries. It is then easily seen that all queries expressible in rela-
tional algebra are also queries in this sense (that is, computable and generic);
they are even C-generic, with C being the active domain of the given database. On
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the other hand, the algebra queries form a strict subset of the set of all queries,
because, for example, the transitive closure is also a (computable) query but, as
already mentioned, not expressible in relational algebra. The same statements are
also true for calculus queries, which means that neither the algebra nor the calculi
are complete.

Numerous proposals have been put forward for the design of a language in
which all computable and generic queries can be expressed, the two most important
of which we shall mention here. The first generalizes relational algebra into an
imperative programming language by introducing variables which take relations as
values, assignment statements, and a while-loop as a control structure. The second
allows an iteration of a program or of part of a program as long as a condition (stated
in first-order logic) is satisfied. Queries in the second type of proposal are con-
structed by using a calculus together with a fixpoint operator which binds a predi-
cate name R occurring in the formula in question freely and positively only (that is,
under an even number of negations). That formula is iterated until a fixpoint is
reached and hence the result does not change anymore. Both approaches are impor-
tant milestones towards complete languages; for further details refer to the literature
given in Section 6.5.

6.2 Algebraic operations on nested relations

‘We now expand our study to include objects which are structured in a particular way
but do not yet have an identity, the so-called nested relations. They are different from
the previously studied flat relations in that individual attributes can have entire rela-
tions as values (compare Section 1.2).

Example 6.1

In our running example (see Figure 1.8), information on automobiles could
be represented without object identities in a nested relation as follows:

Automobile Model ... Car body Drive
Gearing Engine
HP cC
Sierra 5 door MT75 120 1998
Mondeo 4 door MT75 115 1795

In this case, the attribute Drive is even nested twice; however, the respective
‘subrelations’ are single-valued only. Nesting is often more appropriate if
multiple values are associated with attributes, as for example with compa-
nies:
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Company Name Head office Subsidiaries
Location Street
Ford Cologne Cologne Fordstrasse
Ghent Brusselweg
Saarlouis Autoallee
\'A Wolfsburg Kassel Hauptstrasse
Pamplona Av. Carlos

Algebraic operations can also be defined for the nested relational model; these fol-
low in part as a direct generalization of the operations known from flat relations. We
mention selection and projection as examples which generally work as on normal
relations, but with the following differences:

o A selection operation may now, due to attributes having a relation as value
and thus a set value, contain other forms of selection conditions, for example
the creation of subsets.

® A projection can be applied to complex attributes (with a relation as value) as
well as to flat ones; but generally, they cannot be directly applied to a com-
ponent of a complex attribute.

Example 6.2

We again examine the two relations of the previous example and the follow-
ing operations:

(1) A selection in relation Company according to the condition

“{ Cologne, Ghent } C Subsidiaries.Location”

yields:
Company Name Head office Subsidiaries
Location Street
Ford Cologne Cologne Fordstrasse
Ghent Brusselweg
Saarlouis Autoallee

(2) A projection of Automobile onto the flat attribute Model as well as the
complex attribute Drive yields:
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Automobile Model Drive

Gearing | Engine

HP cC
Sierra MT75 120 1998
Mondeo | MT75 115 1795

While the algebraic operations, which can be defined as generalizations of those of
the ordinary relational model, work in the well-known fashion, which means they
deliver result relations whose schemas have not been manipulated according to a
possibly given hierarchical structure, there are new operations for nested relations
which can transform complex attributes into flat ones and vice versa. These opera-
tions are called nesting and unnesting, respectively; their effect is demonstrated here
with an example.

Example 6.3

An unnesting can be applied to relation Company of Example 6.1 regarding
the attribute Subsidiaries; by unnesting, this attribute is replaced by its com-
ponents and thus further tuples are created, whose values for the remaining
attributes are replicated from the given values. In our example we obtain the
following result:

Company Name Head office Location Street
Ford Cologne Cologne Fordstrasse
Ford Cologne Ghent Brusselweg
Ford Cologne Saarlouis Autoallee
\'A Wolfsburg Kassel Hauptstrasse
VW Wolfsburg Pamplona Av. Carlos

In this example nesting allows the unnesting which has just been demon-
strated to be undone; for the subrelation to be created, an attribute name like
Subsidiaries would have to be reintroduced.

Compared with the flat relational model, the nested relational model thus uses new
operations, which have an effect on existing complex structures. It is obvious that
such operations can be defined even if, apart from the tuple and set constructors, fur-
ther constructors are admitted and their strictly alternating application is given up. In
this way, algebraic operations become relevant or applicable to complexly structured
objects, so that an attempt can be made to realize the attractive properties of an alge-
braic language approach known from the relational model even in such a context.
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Concluding this section, we should like to add that, in the absence of object
identity, it is indeed possible to generalize many algebra properties known from the
relational model to complex structures. However, certain complications may occur.
For example, in the nested relational model the operations of nesting and unnesting
are generally not inverse to each other. While nesting can always be undone with a
subsequent unnesting, the converse applies only under certain additional conditions.

6.3 Algebraic operations on object bases

Let us now return to object-oriented databases. According to the extensive prelimi-
nary considerations above, one might expect that a generalization of algebraic oper-
ations to object-oriented databases could be done in a similar way. However, it will
turn out that such a venture creates substantial new problems.

6.3.1 Introductory considerations

It is apparent that an algebraic language for object bases must provide operations
which are applicable to complex values and adequately support object identity.
Operations on complex values or on sets of such values can result, as discussed
above, from a generalization of the operations on nested relations. For operations on
(sets of) objects at least the following distinctions must be made:

¢ Methods written for particular objects or classes, that is, the dedicated behav-
iour with which objects and classes are equipped, are object-specific or
explicit operations. It should be noted that in some systems (for example, in
GemStone) only this type of operation can be found. The fact that optimiz-
ability of such operations is not given and that type safety is difficult to guar-
antee could then prove problematic.

e Query operations that — in the style of relational algebra — are considered to
be part of the data model and do not require an explicit definition relative to
a particular class are implicit operations.

Following this classification, we shall look only at implicit operations here — we shall
even disregard update operations. Implicit algebraic operations can, in principle, either
manipulate existing class instances, that is, sets of objects, or deduce new object sets
from existing ones. In this context, an answer to the question of what kind of result a
query should deliver has significant influence. Basically there are two possibilities:

® A query always delivers a set of values, which means that values are always
extracted from the objects accessed, but object identities are disregarded.

® A query delivers (always, or depending on the formulation) a set of objects.

It should be clear that the first option represents a severe limitation and, for example
— according to our explanations in Section 2.1 — violates the criterion of closure:
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when an operation is applied to an object set and supplies only values, another oper-
ation of the same kind cannot be directly applied. Analogous arguments show that
the formation of views is impossible. Moreover, by proceeding in this way, object
identities are lost; thus, objects cannot be compared with regard to their identities,
and their associated methods are no longer applicable.

Therefore, it seems advisable that algebraic operations should be introduced
in such a way that they are able to handle object sets and, in particular, to yield object
sets as results. We shall examine this in more detail, first under the assumption that
algebraic operations preserve the identities of existing objects; they are then also
referred to as object-preserving operations. They are confronted with the new task
of classifying or typifying a query result; this will be discussed in Section 6.3.2 by
means of examples. One solution to this classification problem is to make the oper-
ations object-creating; this will be discussed in Section 6.3.3. Note that here we take
up ideas again which were previously discussed in connection with Example 2.19.

6.3.2 Object-preserving operations

Object-preserving operations, as their name suggests, maintain the identity of the
objects processed by the operations. If the result of such an operation is to be placed
in a given class or type hierarchy, for example in order to apply existing methods to
the obtained objects, certain difficulties arise, as shown in the following examples.

Example 6.4
Consider the following instance of the class Automobile (compare Figure
1.9):
Automobile
Drive Car body
#10 #20 Sedan
#11 #21 Hatchback
#12 #22 Sedan

A selection of all automobile objects that have a sedan car body results in the
following object set:

Drive Car body
#10 #20 Sedan
#12 #22 Sedan

Apparently, the type has not changed with regard to the operand Automobile;
but a subset of the original object set has been generated and consequently a
subclass of the class Automobile.
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The situation described in the last example, namely that an (object-preserving) selec-
tion delivers a subclass of the given operand with the same type, may lead to problems
if the operand already has subclasses. If Automobile had, for example, the subclass
Fourdoor, we should have to clarify the way the above selection result is related to this
class. Whether the two subclasses are disjoint or incomparable with respect to set
inclusion depends on their current state and cannot be determined a priori.

Example 6.5

Again consider the instance of class Automobile given in the last example.
Now we are interested in a projection onto the attribute Drive. The result is

as follows:
Drive
#10 #20
#11 #21

#12 #22

The set of objects has not changed in this case, but the type has: the type of
the result is a supertype of the type of the operand, because the operand type
has (as a tuple type) more attributes!

In analogy to the question raised above for selections it might, in the case of a pro-
Jection, be appropriate to clarify how the type of a projection result is related to other
supertypes of the operand type: in our running example, for instance, to the type of
class Vehicle.

Considerations analogous to those for selection apply to the set operations
difference and intersection:

Example 6.6

It is reasonable that an (object-preserving) difference operation is applied
only to object sets that have a non-empty intersection, thus for example to
classes which are subclasses of each other. In our running example the
expression

Person — Employee

yields all persons (more precisely: all person objects) that are not employees.
This means that a subclass of persons with the same type as class Person is
formed.

Whereas in the previous examples either the type of the result was different from
that of the operand or a subclass was formed, both aspects change with a union, as
is shown in the following example.
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Example 6.7

Consider the modification of our running example shown in Figure 2.1, espe-
cially the subclasses Shareholder and Employee of the class Person. A union
of the form

Shareholder U Employee

yields a heterogeneous object set whose type is a subtype of both Shareholder
and Employee and which is a superset of both operands.

Concluding this section, we should like to remark that these considerations can also
be applied to join-like operations, which in general lead to type extensions and con-
sequently to the formation of subtypes.

Example 6.8

If a join of classes Person and Address is formed in our example via the
attribute Domicile, this can be regarded as an unnesting which, for each
object of class Person, replaces the identity of an address, which is stored as
the value of attribute Domicile, by a value tuple with the associated values for
Street and Location.

In principle, the problems of classification and typification in object-preserving
operations that are discussed here can be remedied in at least two different ways:

o Allow the existence of several classes for one type. This is the view typically
underlying a programming language, where one data type can have several
variables of this type, which are distinguished by their names. In addition,
this is also the view of ODMG, which considers only a combination of type
signature and type implementation as a class (see Section 5.3.1).

o Use object-creating operations instead of object-preserving ones.

The latter option will be discussed in more detail next.

6.3.3 Object-creating operations

Object-creating operations assemble new sets of objects from the given class
instances, which means that a new result class is created whose objects are charac-
terized by new identities.

Example 6.9

Consider again the instance of class Automobile which was used earlier:
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Automobile

Drive Car body

#10 #20 Sedan
#11 #21 Hatchback
#12 #22 Sedan

An object-creating projection onto attribute Drive can then produce the fol-
lowing result:

Drive
#110 #20
#111 #21

#112 #22

The result class contains new objects; its type is a supertype of the type of the
operand.

The result class of an object-creating operation exists parallel to all other classes in
the given class hierarchy and thus cannot inherit any methods defined on the operand
classes. The most general class Object, if such a class exists, is the only exception.
Object creation can be performed in different ways: for example, implicitly, which
means it cannot be influenced from outside; freely, which means it is controlled from
outside by the user in more or less any manner; or functionally, which means it is
controlled from outside in a predefined and controlled manner.

If we assume that an object-creating operation, such as the projection shown
in the last example, obtains the values of new objects by copying the values of exist-
ing objects, the use of object references might become problematic. In the last exam-
ple the newly created objects reference the same drive objects as the original
automobile objects. One of the decisions in the design of an object algebra with
object-creating operations is how tolerable this is.

Concluding this section, we should like to remark that virtually all object
algebras proposed in the literature possess object-preserving operations, but only
a few have object-creating ones. Selection, projection, various join operations and
set operations are included in virtually every object algebra; differences exist,
for example, regarding the application of functions in selection predicates, the exist-
ence of restructuring operations or the availability of an explicit object-creation
operation.

6.4 On the completeness of object-oriented languages

In this section we outline some essential features of the theory of languages for
object-oriented databases and try to indicate to what extent formal investigations in
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this area are based on previous investigations done in terms of the relational model
or its extensions, or how they extend these.

One of the principal objectives also pursued by object-oriented databases is
to come up with a formally precise notion of a query, in analogy to the above-
discussed notion for relational databases. The notion of a query (as a function) is
extendible to the notion of a database transformation which also encompasses
updates. A language for writing (deterministic) transformations generally has the
novel capability of inventing values: that is, it can introduce and use new domain
elements (at least in the intermediate results of a computation). In the context of rela-
tional languages this represents a possibility of making a language complete. In
terms of object-oriented databases, value invention, applied to identities, now means
object creation, and, as already mentioned for algebras, the ability to generate
objects in final results is important for object-oriented databases. For that reason, we
shall discuss in more detail the concept of database transformation in connection
with the type of databases examined here.

Let us assume that D is a set of constants and O is a set of object identities.
A DO isomorphism is an isomorphism on D U O, which maps D onto D and O onto
O. Analogously, an O isomorphism is a DO isomorphism & with A(x) = x for each x
e D. DO isomorphisms on object base instances can now be understood as binary
relations, so that it is possible also to consider non-deterministic queries; in the pres-
ence of object creation this is necessary, since creation cannot normally be con-
trolled from outside. More precisely, a binary relation y on instances is referred to as
a database transformation if it satisfies the following conditions:

(1) (@38, 8)7C insi(S) x inst(S"), which means that y is well typed;

(2)  vyisrecursively enumerable (which means it is effectively computable);

(3) {,J) e yimplies (h(]), h(J)) € 7y for each DO isomorphism &, which means
v is generic;

4 {d,Ju), d,J2) e yimplies that an O isomorphism A4’ exists such that 2'(/1) =
J2 holds, which means that the output may contain new object identifiers.

Property (4) makes a transformation to what is referred to as determined in the
literature, and represents a possible limitation of the allowed non-determinism: even
though such a transformation is non-deterministic, the possible results of the trans-
formation coincide up to a renaming of the new domain elements, if it is applied to
a given input. In other words, object creation happens ‘almost deterministically’ in
a determined transformation: the O isomorphism 4’ is to be the identity on /. Thus
the non-determinism is limited to the newly created objects.

The notion of a determined query hence represents a possible answer to the
question of how the notion of a query, according to the above discussion, can be
transferred to object-oriented databases. A ‘complete’ language must then be able to
express all determined queries. The language IQL (see the bibliographical notes) is
complete in this sense, but only up to an elimination of copies; its incompleteness is
due to the fact that the notion of determination does not take into consideration how
IQL creates new objects. An extension of IQL to a complete language therefore
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requires the introduction of a (complex) mechanism for the elimination of copies. A
proposal to solve the copy elimination problem is the constructive queries.
Compared with determined queries, constructive queries represent a restricted con-
cept, which nevertheless seems more adequate in this context. Moreover, IQL is
complete with respect to constructive queries, and the same applies to a series of
languages equivalent to IQL.

One generalization of determination is semi-determinism, where the O iso-
morphism must leave the (entire) input invariant, which means it must be a DO auto-
morphism. Certain strictly non-deterministic queries or transformations are now
admitted; many of these involve choices based on the symmetries (automorphisms)
present in the input.

6.5 Bibliographical notes

Foundations of relational algebra are discussed, for example, in Abiteboul et al.
(1995), Elmasri and Navathe (1994), Kanellakis (1990), Paredaens et al. (1989),
Silberschatz et al. (1997), Ullman (1988) and Vossen (1994). An overview of com-
pleteness notions for relational languages with numerous bibliographical references
can be found in Vossen (1996); see also Abiteboul et al. (1995) as well as Abiteboul
and Vianu (1992). Algebraic concepts for nested relations were introduced by
Jdaschke and Schek (1982); also refer to Schek and Scholl (1986), Thomas and
Fischer (1986), Paredaens et al. (1989), or Gyssens and Van Gucht (1991). Our dis-
cussion of algebraic operations on object bases is based on, for example, Beeri
(1994), Freytag et al. (1994) and Kim (1990); more on this topic can be found in
Abiteboul et al. (1995) or Hull and Su (1993). Of the concrete algebras which have
been proposed in the literature we would like to mention the following:

Algebra Source

Cool Schek and Scholl (1990)
Encore Shaw and Zdonik (1990)
Excess Vandenberg and DeWitt (1991)
Reloop Cluet et al. (1990)

Straube-Algebra  Straube (1990)

Numerous other algebraic operations are proposed or discussed in these publica-
tions, for example multiset operations (in Excess), function application, a ‘map’
operator (in Straube) or join-like operations which have an object-preserving effect
(in Cool). A more recent proposal which aims to achieve optimizability and is under
discussion as an implementation vehicle for the language OQL of ODMG can be
found in Cluet and Moerkotte (1995). Refer to Abiteboul et al. (1995) for a discus-
sion of completeness notions for object-oriented languages; see also Van den
Bussche and Van Gucht (1997) as well as Van den Bussche (1993) on this issue.
Database transformations go back to the work of Abiteboul and Vianu (1990, 1991).
The language IQL is introduced by Abiteboul and Kanellakis (1989).
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7.1 Rules 7.3 Bibliographical notes
7.2 Object orientation

Relational database languages allow a set-oriented processing of relations at a
high level of abstraction. They lack, however, the expressive power of common
imperative programming languages. One approach to increase the power of
relational database languages while still allowing processing at a high level of
abstraction is to add deductive rules to the data manipulation language.
Deductive rules are first-order predicate logic formulas in an intuitive syntactical
form, which allow recursion to be expressed and increase the expressive power.
Languages with a high level of abstraction are attractive because by
using them the programmer can concentrate on the whar of the problem, del-
egating the actual (algorithmic) Aow of its implementation to the machine. In
particular, the machine is provided with a facility to optimize the resulting
programs automatically. Languages with a high level of
abstraction free the programming process from many cumbersome details
which are not only secondary to finding solutions but also obscure the actual
structural nature of the problems and consequently contribute to the creation
of inscrutable and error-prone programs. Moreover, in comparison with
imperative languages, they allow more compact programs to be formulated.
Therefore, it is desirable to try to combine the advantages of rule-
based programming with those of object orientation. In the following
sections we first explain what we understand by rules and then how rules
can be used for computation. We initially confine our discussion to the
relational context and do not deal with aspects pertaining to object
orientation. Subsequently, we look at a particular approach to the
integration of object orientation and rules in more detail.
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7.1 Rules
In Section 1.4 we discussed the following SQL expression:

SELECT EmplNo
FROM Company, Subsidiary, SubsEmpl, Employee

WHERE Company.Name = 'Ford'
AND Company.CompanyID = Subsidiary.CompanyID
AND Subsidiary.Location = 'Ghent’

AND Subsidiary.CompanyID = SubsEmpl.CompanyID
AND Subsidiary.NameSubs = SubsgEmpl.NameSubs
AND Subs.Empl = Employee.EmplNo

AND Employee.Name = 'Lacroix’';

This expression determines whether an employee with name ‘Lacroix’ is employed
in Ford’s subsidiary in Ghent.

To give an intuitive understanding of the nature of a rule, we shall rewrite the
above SQL expression. In essence, a rule is made up of a conclusion, the so-called
head of the rule, and a condition, the so-called body of the rule; both are separated
by an implication symbol («—). By a rule we define the content of a relation, which
is the set of those tuples for which the conditions of the body are fulfilled. Intuitively,
a rule is an if~then instruction: if the statement in the body can be fulfilled, that is,
its conditions are said to be true, then the statement in the head is also to apply.
Accordingly, we obtain the following rule in our example:

Result (Z) <« Company (X, 'Ford',_,_,_),

Subsidiary(X,Y,_, 'Ghent' ,_),
SubsEmpl (X,Y,2),
Employee(Z, 'Lacroix',...)

Relation Result contains exactly one tuple for employee ‘Lacroix’, provided he meets
the stipulated requirements in the body of the rule. The employee ‘Lacroix’ is said to
meet the requirements, if there are tuples in the relations Company, Subsidiary,
SubsEmpl and Employee, for which the following holds. The tuples must be equal in
their first component with respect to Company, Subsidiary and SubsEmpl; the second
component of the Company tuple has the value ‘Ford’ and so on. Note that the body
of the rule consists of a series of expressions — so-called atoms — in the form R(ay, ...,
a,) with R being the name of the relation in question and a;, ..., g, being constants or
variables. Each occurrence of ‘_’ denotes a new variable, which is distinct from all
variables occuring anywhere else. In order to test whether relation R contains a
desired tuple, we bind each variable by a constant. If the body is made up of several
atoms, testing must be conducted simultaneously for every atom in order to consider
the same variables with regard to the same binding in all atoms.

Rules express if-then instructions: if there are tuples which hold true for the
condition on the right-hand side of the rule, then the components of these tuples can
be used to generate new tuples whose structure takes on the form on the left-hand
side; for these tuples the head of the rule is said to hold true, as well.
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We shall now examine these issues in greater detail. First, we shall deal with
the syntax of rules. Let us suppose that R is a set of relational names R = {R, ...,
R,} with each such R having assigned a fixed number of arguments &k > 1.

A rule can be written as a formula as follows:

VX, .. VXH < (G, A ... AG,)),

where H and G, ..., G,, are atoms, m > 0, and X, ..., X, are all the variables appear-
ing in the rule. A set of rules is called a rule program P.

We prefer the use of relational names over predicate names, because we con-
sider rules as a means to increase the power of relational database languages. ‘¢’
denotes logical implication and A denotes conjunction. H is also referred to as the
head of the rule and (G, A ... A G,;) as the body of the rule. Since every variable of
a rule is always V-quantified, we shall omit the quantifier prefix as well as the outer
parentheses. Furthermore, we substitute a comma for the conjunctions in the body
and omit the parentheses of the body. Rules therefore can be written as follows:

H« Gy, .., G,

A special case of interest is a rule with an empty body, that is, m = 0 applies, for
which the head H does not contain a variable. Instead of (R(ay, ..., ¢,) < ) we write
shorter R(a,, ..., a;) and refer to it as a fact. An expression is called ground if it is
variable-free.

Rules which are defined in this way are also called Horn-rules. It is charac-
teristic of Horn-rules that neither in the body nor in the head of the rule is a nega-
tion symbol allowed to appear. For the following discussions it is sufficient to restrict
ourselves to Horn-rules. Let us suppose that P is a given rule program; a relational
name R is said to be an input name of P, if in no rule of P does the name R appear
in its head.

Rules define the contents of relations. If all variables can be bound by con-
stants in such a way that all atoms of a body are true, then, correspondingly, the head
of the rule holds true as well. We shall now look at the semantics of a rule program.
For this purpose we consider a mapping / which assigns to every relational name R
a corresponding relation r; [ is called an interpretation of R.

Let a substitution be defined as a set 0 of variable bindings [X, /a,, ..., X, /a,]
with X; denoting the various variables and g, constants, 1 <i <r. If G is an atom and
0 a substitution of the variables in G, then 0 applied to G, expressed as G0, denotes
a ground atom generated from G by substituting a constant for every variable X in G
according to 9.

Let I be an interpretation.

e A ground atom G = R(a,, ..., ;) is true under / if (a,, ..., q,) € I(R).

e Amnle H « G, ..., G,, 1s true under [ if for every substitution 0 of the vari-
ables such that the ground atoms G,8, ..., G, are true under /, HO also holds
true under /.
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Let /, be an interpretation which assigns a relation to the input names for P and
the empty set to all other relational names. /, is called the inpuz. An interpretation M
is a called model for a rule program P with respect to input /,, if for every
R € R M(R) 2 I(R) applies and each rule of P is true under M. M is called a mini-
mal model of P with respect to the input /,, if for every other model M* with respect
to I, for all relational names R € R, M(R) C M*(R) holds.

It is well known in the literature that there exists a unique minimal model for
Horn-rule programs. The meaning of a Horn-rule program is given by its minimal
model.

Example 7.1

Let us assume that the schema of a relation Employee is defined as follows:

CREATE TABLE Employee
(EmplNo INT NOT NULL,

Name VARCHAR NOT NULL,

Boss INT NOT NULL,

PRIMARY KEY (EmplNo),
FOREIGN KEY (Boss)
REFERENCES Employee (EmplNo)
)i

Let us consider a relation for this schema:

Employee

EmplNo Name Boss

100 abc 200
101 def 200
200 ghi 300
201 jkl 300
300 mno 400
400 par 400

If we want to determine for each employee the direct and indirect superiors,
we can define a corresponding relation Superior by means of the two follow-
ing rules:

Superior (X,Y) ¢« Employee(X,_,Y)
Superior (X,Y) ¢ Employee(X,_,Z), Superior(z,Y)

The first rule defines every direct superior as a superior; the second rule
defines the indirect superiors. Note that the second rule is recursive, because
the relation Superior occurs in both the head and the body of the rule.

Let us now assume that the above-stated relation is an input to the rule
program. The meaning of the program is given by its minimal model:
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Superior
EmpiNo Boss
100 200
101 200
100 300
101 300
100 400
101 400
200 300
201 300
200 400
201 400
300 400
400 400

We now want to demonstrate how we can compute the minimal model of a given
rule program. First we need to clarify what we understand by applying a rule to the
relations which are mentioned in its body. Let us, therefore, consider the first rule of
the above example:

Superior(X,Y) ¢ Employee(X,_,Y)

Since all variables of this rule are implicitly V-quantified, the rule states that for each
substitution of the variables X, ,Y, with the property of the resulting (X,_,Y)-tuple
being a tuple of the relation Employee, there has to be a tuple (X,Y) in the relation
Superior as well. The rule is applied in such a manner that first all (X,_,Y)-tuples are
determined and subsequently, using the X- and Y-components of all these tuples,
corresponding tuples of the relation Superior are generated.

We can apply this simple process to the second rule as well:

Superior(X,Y) ¢ Employee(X,_,Z), Superior(Zz,Y)

Since all variables of the rule are again V-quantified, the rule here states that for
every substitution of the variables X, ,Z,Y, with the property of the resulting
(X,_,Z)-tuple being a tuple of the relation Employee and on the other hand the
corresponding resulting tuple (Z,Y) being a tuple of the relation Superior, there must
also be a tuple (X,Y) in the relation Superior. The rule is now applied in such a
manner that first all (X,_,Z,Y)-tuples are generated by way of calculating the natural
join between the relations Employee and Superior. In order to compute the join, the
variables are treated as attributes of the relations. Subsequently, the respective tuples
of the relation Superior are generated using the X- and Y-components of the tuples
of the relation which has been computed by means of the join.

Applying the rules as described, we can derive the relations defined in the
head of the rules. The content of such a relation always depends on the contents of
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the relations in the body of the rule under consideration. Since these relations may
themselves be defined by rules, for example in the case of recursive rules, an itera-
tive approach is used in which the rules are applied until the relations defined by the
rules do not change any further. New tuples can only be generated by using the con-
stants in the tuples of the relations of the body; therefore, as relations are assumed
to be finite, the termination of this iteration process and thus the computation of the
minimal model for the rule program under consideration is guaranteed.

Example 7.2

The iteration process needed to compute the relations defined by the rules is
best illustrated by looking at the rounds of the iteration of the applications of
the rules. In each round all rules are simultancously applied to the relations
which exist at the beginning of a round. Since the relation to Superior is
empty at the beginning, the following round protocol emerges. We list only
the changes to relation Superior: that is, we restrict ourselves to the tuples
which are newly derived in the respective round:

Round protocol
Round  Superior
0 %}
1 (100, 200), (101, 200), (200, 300),
(201, 300), (300, 400), (400, 400)
2 (100, 300), (101, 300), (200, 400), (201, 400)
3 (100, 400y, (101, 400)

The technique described in the previous example is applicable to any rule program.
It is also known as forward chaining or bottom-up calculation. For a more in-depth
discussion of this method we refer the reader to the literature, particularly regarding
the rules which are not Horn-rules. What we have explained in this section will be
sufficient for the comprehension of what is to follow.

7.2 Object orientation

In this section we should like to study the way in which complex object structures
can be processed by the rules. For this purpose let us return to our running example,
but now using an object-oriented setting (cf. Section 1.4). We have the following
class definitions:

Company: [
Name: String,
Headoffice: [Street: String, Location: String],
Subsidiaries: {Subsidiary},
President: Employee]



Object orientation 199

Subsidiary: [
Name: String,
Office: [ Street: String, Location: String ],
Manager: Employee,
Employees: { Employee }]

Emplovee: [
Name: String,

]

To define rules on such complex object structures is difficult for various reasons. The
obvious approach would be to use class names instead of relational names. An atom
then would be an expression K(a,, ..., @,) with K being a class name and a, ..., a,
being constants or variables. The question now is what kind of domain would be
appropriate, because we should like on the one hand to allow the processing of com-
plex values, such as tuple values for addresses or set values, and on the other hand
to have access to, for example, the location in an address or an element of a set.
Moreover, such a domain must also include object identities.

7.2.1 Complex objects

Let D be the set of all atomic values: that is, values of type integer, float, boolean or
string. D is the domain of our object-oriented rule language. In addition to repre-
senting the properties of objects, we shall assume that elements of D can also be used
in the role of object identities. If a string is used for this purpose, it may also be
termed an object name if this appears to be more appropriate. Object identities are
indicated by the ‘#’-symbol, as we have already done earlier. It should be noted that
complex values are not included in D. Our framework will allow a formally simple
treatment of complex objects, avoiding semantic problems that may occur if, for
example, complex values were contained in the domain as well (cf. the literature
cited in Section 7.3).

Complex objects are called molecules. A molecule is an expression in the
form O[method-calls] where O is an ID-term and method-calls is a sequence of
scalar and set-valued expressions separated by ‘;” of the form:

ScalarMethod@Q,, ..., O, —» T
SetMethod@Q,, ..., Q, > {5}, ..., S}

where k, m 2 0. For the time being, an ID-term is either a constant or a variable; later
we shall need a more general form. ID-terms serve to identify objects. Therefore,
constants at the position of O have the role of object identities. For representing vari-
ables we choose capital letters from the end of the alphabet or class names spelled
in lower-case letters — as we have done in the preceding chapters. Variables of the
latter kind can be bound only by object identities which occur in the extensions of
the respective classes; these variables are referred to as class variables.
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Within a method call ScalarMethod and SetMethod represent names of meth-
ods and @, ..., O, Tand S|, ..., S,, represent ID-terms. The Q; are the parameters of
the method calls and T and S, respectively are the results. If constants are used in
these positions, they may take the role of an object identity or of a ‘normal’ value,
depending on the signatures of the methods. We do not make a distinction between
attributes and methods; attributes are treated as methods without parameters. The
symbol @ is omitted if there are no parameters.

Example 7.3

To give an example for a molecule let us look at object #41 of class Company
(see also Section 1.4):

#41[ Name — 'VW';
Headoffice — #80;
Subsidiaries — { #50,#51 };
President — #60 ]

Note that, unlike in the above-mentioned example, the addresses of the head
offices are represented by object identities and not listed directly as complex
values. This is a consequence of our formal framework in which complex
values are not contained in the domain.

The following molecule is a query asking for certain subsidiaries of a
company:

X[ Name — 'South';
Office — #83;
Manager — U;
Employees — { Z2 } 1]

This query asks for the identity, the manager and the set of employees work-
ing in a subsidiary with name 'South'. Note that in terms of syntax we
are not searching for the set of employees working in the subsidiary
but merely for an element. We obtain the set of all employees as the set of all
possible elements of this set. We shall discuss sets in more detail in section
7.2.4.

7.2.2 Rules

As before, rules are expressions in the form
HeGy,...,G,

where H and G, ..., G,, are molecules, m = 0.
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Example 7.4

With the following rule we are looking for our well-known employee
'"Lacroix'. Result is a predicate:

Result (Y) ¢— company|[ Name — 'Ford'; Subsidiaries — {X} ],

X[ Office > _ [Location — 'Ghent' ]; Employees — {Y}1],
Y [ Name — 'Lacroix' 1}
Again, variables can be represented by ‘_’, if their binding is of no interest;

moreover, we can confine ourselves to those method calls in a molecule
which are of interest to define the properties of the object referenced in the
head of the rule. In situations where we have a rule with the structure

v = ., O > X, ..., X[method-calls],...

we can more compactly write:

o & .., OL... & X[method-calls]],...

Thus the above rule can be written in a more compact form:

Result (Y) ¢ company[ Name — 'Ford';
Subsidiaries — { X[Office > _ [Location — 'Ghent'];
Employees — {Y[Name — 'Lacroix’]1}]11}}

In this example the resulting body of the rule consists of only one molecule.
Such a body resembles a path expression.

Next we shall turn our attention to semantics. For this purpose we need to transform
molecules into their atomic components. An M-atom is an expression of one of the
following forms:

OlScalarMethod@Q,, ..., O, — T]
O[SetMethod@Q,, ..., O, = {S}]
OfSetMethod@Q,, ..., O, — {}]

where O, Q,, ..., @;, S, T are ID-terms. Note that with respect to an M-atom, a set-
valued method accepts only sets consisting of one element or the empty set.

The set of M-atoms for a molecule G is obtained as follows: Let G be of the
form O[method-call, ...; method-call] with method-call being a scalar or a set-valued
expression of the form:

ScalarMethod@Q,, ..., 0, > T
SetMethod@Q,, ..., O, — {S; .-, S}
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Each scalar method-call ScalarMethod@Q,, ..., @, — T implies an M-atom:
O[ScalarMethod@Q,, ...,Q, = T

Each set-valued method-call SetMethod@Q,, ..., @y = {S,, ..., S} implies the
following M-atoms:

O[SetMethod@Q,, ..., O, — {}]
O[SetMethod@Q,, ..., O, — {511, ...
O[SetMethod@Q,, ..., @, = {S.}1.

An interpretation / is now a set of ground M-atoms and, correspondingly, /, is a set
of ground M-atoms called the input. The definition of a substitution remains largely
the same; we also require that class variables must be bound only by object identi-
ties of the respective class extension. Thus we define as follows:

o A ground M-atom G is true under I if G e [ applies.
o A ground molecule G is frue under [ if each of its M-atoms is true under /.

e Arule H « Gy, ..., G, is true under I if for each substitution 0 of the vari-
ables, for which the M-atoms of the ground molecules G,6, ..., G, 9 are true
under I, HO also is true under /.

Models are defined in the same way as before. The meaning of a rule program with
respect to a given input /, is the unique minimal model which contains the input. A
minimal model of this kind can be derived by means of a bottom-up process. However,
when we permit more general ID-terms later, termination is not always guaranteed.

Example 7.5

The following rules define the superiors for certain employees.

Result [ Superiors @ employee = { X} ] ¢ employee [ Superior = X1
Result [ Superiors @ employee = { X } ] ¢ Result [ Superiors @ employvee
—>{Y}], Y[ Superior =5 X1

It should be noted that in this example employee is a class variable which is
bound only by object identities of class Employee. To derive object Result
a bottom-up evaluation may be carried out in the same manner as in Example
7.1. After three rounds we get the following:

Result [ Superiors @ 100 — { 200, 300, 400 } 1
Result [ Superiors @ 101 — {200, 300, 400 } ]
Result [ Superiors @ 200 — { 300, 400 } 1]
Result [ Superiors @ 201 — { 300, 400 } ]
Result [ Superiors @ 300 — { 400 } 1

Result [ Superiors @ 400 — { 400 } 1
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7.2.3 Object identities

Thus far we have only used rules in order to define the truth value of predicates (cf.
Example 7.4) or to define results of methods with regard to a given object (cf.
Example 7.5). But often one wishes to define new objects without knowing in
advance how many and what kind of objects there will be.

Example 7.6

For each pair Company-Name and Employee-Name we want to define an object
for which two methods, one for each of the respective names, are defined. This
is difficult inasmuch as we do not know how many objects need to be defined,
and consequently, it is also not clear which object identities are required:

? [Company-Name — X, Employee-Name —» Y ]
company [ Name — X; Subsidiaries — {
X[Employees — { _[Name — Y] }]}1]

In the previous example one object is required for each pair of names; therefore for
each such object an identity is needed. In order to achieve this we have to use
ID-terms in a more general way. Let F be a set of names which we shall call object
constructors. Object constructors give us the required flexibility to define ID-terms.
We proceed as follows:

e Every constant and every variable is an ID-term.

e lett, .. t, 1 21 be ID-terms and f € F an object constructor. Then
fit, ..., 1) is also an ID-term.

Let O(F) be the set of all ground ID-terms; every element of this set is a potential
object identity. As a consequence, we extend our previous domain D by the elements
of O(F).

In order to complete our last example, we shall use the object constructor
Comp-Empl to derive the needed object identities. We can write the head of the rule
as follows:

Comp-Empl (X,Y) [Company-Name — X, Employee-Name — Y ]

Since rules are implicitly V-quantified, a new object is defined for each substitution
that makes the body true. Observe that it is ensured that exactly one object identity
will be defined for each distinct pair of names.

Example 7.7

The following two rules define objects describing company locations; the first
rule defines one such object, even if several companies have their head offices
in that location, whereas the second rule defines an object for each company
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notwithstanding that another company may have its head office in the same
location.

Co-Location(X) [Location — X] ¢ company [Headoffice —_ [Location = X1]
Location-Co{company) [Location — X] ¢« company [Headoffice >
_[Location = X]1]

Co-Location and Location-Co are object constructors. Note that accord-
ing to the choice of variables the second rule may distinguish between objects
which have the same values with respect to their methods. This means that
we can handle duplicates in the sense of objects with equal values.

7.2.4 Processing of sets

The approach we have chosen does not allow variables to be quantified over sets.
This follows from the fact that our underlying domain D does not contain sets. The
obvious question which now immediately arises is whether in such a framework the
processing of sets can still be done in a reasonable way. In order to answer this ques-
tion we shall examine several examples.

Example 7.8

A typical operation for the definition of sets is grouping, respectively nesting.
Grouping means that elements that fulfil a certain condition are to be part of
a set. With the help of the following rule we group into a set all employees
who have the same superior:

Nested { Group @ X — { employee } ] ¢~ employee [ Superior =5 X ]

A nested structure can be unnested as follows:

employee [ Superior > X ] ¢~ Nested [ Group @ X = { employee } ]

Since our framework allows sets to be defined by elements only, we have to show
that a set as a whole is defined as well. The following serves to clarify this point. Let
us consider the two M-atoms a[m — {1}] and a[m — {2}] with m being a set-
valued method. Let us further assume that / is an interpretation for which both M-
atoms are true. Since a ground molecule is true under an interpretation when all its
ground M-atoms are true, a[m (— {1,2}] is true under / as well.

Another interesting question is how equality of sets can be tested, since sets
cannot be compared in their entirety by equating variables, for example. Here, we
can distinguish two aspects.

Let us assume that we want to regard every set as an object. For example, let
a, b be the identities of such set objects: a[m — {...}] and b[m — {...}]. If a = b holds
true, then a and b represent the same set. Testing the equality of two sets is then
reduced to testing the equality of two object identities.
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Now let us consider set-valued methods. We need rules to determine whether
two set-valued methods define the same sets. The required rules for this purpose,
however, contain negations in the body and are therefore beyond the scope of our
formal framework. For the sake of completeness we shall look at the needed rules
briefly. Consider the two M-atoms a[m — {...}] and b[m — {...}]. The rules listed
below test whether m defines the same set with regard to a and ». The third rule can
be applied after the truth-value of unequal has been determined.

unequal < alm — {X}], ~blm — {X}]
unequal < b[m — {X}], ~alm = {X}]
equal < ~unequal

The usual set operations can be expressed in a similar way. We consider, for
instance, U, N and \:

union(a,b)[m = {X}] « alm = {X}]
union(a,b)[m — {X}] <« blm — {X}]

intersect(a,b)[m — {X}] « alm — {X}], blm —{X}]
minus(a,b) [m = {X}] « alm — {X}], -b[m —{X}]

The above rules define new objects which are identified by union(a,b), intersect(a,b)
and minus(a,b), depending on the objects a, b to be compared. The names union,
intersect and minus are used as object constructors here.

7.2.5 Classes

Let us now look at objects in connection with classes. We assume that K is a set of
classes. Objects are associated with classes, that is, defined to be members of the
class extension, by means of ISA-terms of the form O : K, with O being an ID-term
and K a class of K. Classes are arranged in a hierarchy denoted IsA.

IsA-terms and molecules referring to the same objects can be integrated to
form one expression. If O[ScalarMethod@Q,, ...., O, — T is a molecule, then

O : K [ScalarMethod@Q, : K, ...., @, : K, > T : K]

integrates the additional information O : K, @, : K, ..., O, : K,and T : K. For exam-
ple, in

X: Company [ Name — Y; Subsidiaries — { Y:Subsidiary {Employees — {
Z:Employee }1}]

it is established that X must be bound only by ID-terms of class Company, Y only by
ID-terms of class Subsidiary and Z only by ID-terms of class Employee.
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IsA-terms may occur in both the head and the body of a rule. Let us look at the
semantics. An interpretation now is a set of ground M-atoms and ground IsA-terms.

e A ground M-atom or a ground IsA-term G is true under [ if G € I applies.

e A ground molecule G is true under [ if each of its M-atoms and IsA-terms is
true under /.

e Arule H« G, ...., G, is true under [ if for each substitution 0 of the vari-
ables, for which the ground M-atoms or ground IsA-terms G0, ...., G,0 are
true under /, HO is also true under /.

Class extensions can be defined by rules, as demonstrated in the next example.

Example 7.9

For class subsidiary we have so far looked at the method Manager which
delivers the manager to a subsidiary. The following rules define the inverse
relationship by indicating for each manager the branches where he or she is
manager. The first rule defines a set-valued method, but the second rule
defines a scalar method. Since different subsidiaries having the same manager
should not be ruled out, the latter rule defines an individual object for each
relationship between manager and subsidiary. Result is a class to collect the
objects defined by the respective rule.

Subs-Man (X) : Result [Man-Name — X; Subs-Name — { Y }] «
_:Subsidiary [Name — Y, Manager — _:Employee [ Name — X 1]

Subs-Man (X, Y) :Result [Man-Name — X; Subs-Name — Y]
_:Subsidiary [Name — Y, Manager —_:Employee [ Name — X ]]

Whenever class extensions are defined by rules, this mechanism can be regarded as
analogous to the definition of views in relational databases.

Example 7.10

The following rule defines that each employee who is the manager of a sub-
sidiary is also an instance of the class Man-Cla. Note that, compared with the
previous example, no new objects are created here; however, the object is
defined to become an instance of an additional class.

X : Man-Cla ¢ _:Subsidiary [Manager — X:Employee]

7.3 Bibliographical notes

There are a number of approaches incorporating object orientation and rules; how-
ever, they are mainly different in the way in which they treat sets and, if applicable,
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object identities. In LDL (Beeri et al. 1987) sets are permitted as elements of the
domain, and the semantic implications are discussed in detail. Abiteboul and
Grumbach (1991) examine the rule language COL, which introduces set-valued data
functions for the treatment of sets. Kuper (1990) presents the rule language ELPS in
which V-quantifiers in the body of rules are permitted for the treatment of sets. In
IQL (Abiteboul and Kanellakis, 1989) rules and object identities and in particular the
problem of elimination of copies is discussed.

The rule language underlying our discussion is Frame-Logic (Kifer et al.,
1995), which itself is based on O-logic as regards the treatment of sets and object
identities (Kifer and Wu, 1993). Other important concepts of Frame-Logic not
discussed here are data-dependent class hierarchies, (monotonic) inheritance of
signatures and (non-monotonic) inheritance of values. Moreover, Frame-Logic has a
higher-order syntax with a first-order semantics, which allows an integrated
processing of data and metadata.

There are several prototypes for object-oriented rule languages; we shall
mention only some of them. ConceptBase (Jarke et al. 1995) is a rule-based object
manager, which is primarily intended for the management of metadata. Chimera
(Ceri et al., 1996) integrates object orientation, deductive rules and active rules,
whereas in Rock&Roll (Barja et al., 1994) and Coral++ (Srivastava et al., 1993) the
integration of a rule language is achieved with an object-oriented imperative
language. In QUIXOTE (Yasukawa et al., 1992), the object-oriented representation
of knowledge is emphasized and, finally, FLORID (Frohn et al. 1997) implements
almost all features of Frame-Logic.

For more information about the prototypes contact the following Web pages:

For ConceptBase:
http://www-iS.informatik.rwth-aachen.de/CBdoc/cbflyer.html

For Chimera:
http://www.elet.polimi.it/section/compeng/db/active/idea/chimera

For Coral++:
http://www.cs.wisc.edu/coral/

For FLORID:
http://www.informatik.uni-freiburg.de/~dbis/flsys/

For QUIXOTE:
http://www.icot.or.jp/ICOT/IFS/IFS-abst/011.html

For Rock&Roll:
http://www.cee.hw.ac.uk/Databases/rnr.html
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