
• ⋆⋆ •
⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ Supplementary Information ⋆

⋆ ⋆

⋆ MIPS R2000 Assembly Language ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

• ⋆⋆ •

1

.

❉ Acknowledgements ❉

The information in this section on the MIPS processor was compiled by Bob
Rinker. The format is based on the original version of these notes, based on
the M68000, developed by Dr. Dale Grit, Colorado State University. The
information about the MIPS processor and the SPIM simulator was obtained
from the sources listed below.

References

[1] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

[2] James Larus. SPIM S20: A MIPS R2000 Simulator. Manual and code
available via anonymous ftp from ftp.cs.wisc.edu/pub/spim.

[3] D. A. Patterson and J. L. Hennessey. Computer Organization & Design:
the Hardware/Software Interface. Morgan–Kaufmann, 1994.

.

2

CS 350 Intermediate Computer Architecture

Notes

How to Learn an Assembly Language

Each processor has its own architecture and assembly language. If you happen to use assembly
language in the future, chances are you will use something other than the MIPS R2000. Thus it will
be necessary for you to adapt the concepts you learned for the MIPS R2000 to another processor.
The following are the set of steps involved in learning a new assembly language.

1. Study the Programming Model of the processor, consisting of the hardware features of a
processor which are important to the programmer, including:

• Number, size and type of the registers.

• The addressing modes that are available. The MIPS has a relatively small number of
addressing modes, typical of RISC processors.

• Method for doing conditional branches. With MIPS, a comparison between values in
registers is performed in the same instruction that does the branch. Another common
method is to save the results of the last operation in a Condition Code (or Status)
register, and then provide a set of instructions that branch based upon the values of the
condition codes.

• Memory organization, how addressed, little-endian or big-endian, any reserved or re-
stricted areas.

• Any limitations imposed by the processor organization. For example, some addressing
modes can only be used with specific instructions.

2. Know the Programming Conventions used with the assembler. These are rules and guidelines
that have been agreed to by the programming community for this processor. They are not
hardware–enforced (i.e., part of the Programming Model), but they usually must be followed
if your code is to interface and function properly with other code (subroutines written by
others, for example) that you may wish to use. These conventions include:

• The programming style used with the particular assembler code.

• Any guidelines used for assigning, using, or allocating registers.

• The common methods used for passing parameters between subroutines.

• Any programming “tricks” that are commonly used with this particular assembler.

3. Learn the most common instructions thoroughly. Typically, 80% – 90% of an assembly
language program uses only 20% of the instructions available in a processor.

4. Learn the assembler syntax and the most common assembler directives.

5. If possible, start with a working example program and modify it, rather than writing a
program from scratch.

6. Have a reference guide available for the processor, in case you need to look up the syntax or
operation of an uncommon instruction.

3

CS 350 Intermediate Computer Architecture

Notes — MIPS R2000

Programming Model

The programming model of a processor is that information about the resources and organization
within a CPU that is needed by the assembly language programmer. It specifies the number of
registers, the types of data they can hold, their size (width), function, and limitations on their use.
The programming model is a simplification of the actual hardware, and is not intended to show
the implementation details of the processor.

• Computer Block Diagram
ALU - Arithmetic and Logic Unit.

IR - Instruction Register. Holds the instruction text while it is being executed.
PC - Program Counter. Contains the address of the next instruction.

$0 - $31 - General Purpose Registers. Hold 8, 16, or 32-bit data values or addresses.
MAR - Memory Address Register. Holds address of item being read from/written to memory.
MDR - Memory Data Register. Holds value read from/written to memory.

4

• Programmer Accessible Registers

– General Purpose Registers:
Function: temporary, quickly accessible locations for holding data and addresses

Sizes: word (32-bits)
halfword (16-bits)
byte (8-bits)

Number: 32, specified by $0 - $31, $0 always contains the value 0, some of the
other registers are reserved for special purposes by convention,
$8 - $25 are available for unrestricted use

– HI and LO Registers (we will not use these registers directly):
Function: holds the (64 bit) result of a multiply instruction, and

the quotient (LO) and remainder (HI) of a divide instruction
Size: one word (32-bits) each, sometimes treated as a single 64 bit register

– Program Counter:
Function: contains address of next instruction to be executed

Size: one word (32-bits)

• Data Types and Sizes

– Integer

∗ 8-bit byte - usually used for ASCII characters

∗ 16-bit halfword - hold 2’s complement (-32K to +(32K-1)) or unsigned (0 -
(64K-1)) values

∗ 32-bit word - used for addresses or larger 2’s complement values (≈ ± 2 billion)

– Floating Point - 32 bit representation of real values (we will not use this type)

• Storage Organization

When a word or halfword is stored in memory, the bytes can be stored in one of two ways:

Big–endian - the most significant bits are stored at the lowest address

Little–endian - the least significant bits are stored at the lowest address

For example, if we store 0x01234567 (hex) starting at location 1000, bytes 1000 - 1003 will
hold the values shown for each order:

Big – Endian Little – Endian
1000: 01 (hex) 1000: 67 (hex)

1001: 23 (hex) 1001: 45 (hex)

1002: 45 (hex) 1002: 23 (hex)

1003: 67 (hex) 1003: 01 (hex)

The MIPS can store the values in either order, and is determined by system software. The
SPIM simulator stores values in the same order as the host processor. In general, this is of
little concern to the programmer, unless a file is going to be moved from one type of machine
to the other.

5

• MIPS Addressing Modes

The MIPS is a load/store machine - all values must be moved into the CPU from memory and
placed into one of the general purpose registers before it can be used. The location of a value,
as specified by the addressing mode, is called its effective address (EA). The table below
summarizes the addressing modes available in the MIPS processor. The first two modes are
used by those instructions which perform calculations or other data manipulation. The last
three are used to specify memory addresses for the load/store instructions. The next section
shows pictorially how the operand is determined for each addressing mode.

Mode Syntax Effective Address

Register $n Operand = $n
Immediate number or ASYMB Operand = offset

Relative (or PC relative) RSYMB or RSYMB(PC) EA = [PC] + offset
Register Indirect ($n) EA = [$n]
Base offset($n) EA = [$n] + offset

Notes: The following symbols are used in the table above:

EA - Effective Address
$n - General Purpose Register n

PC - Program counter
[] - “contents of”

ASYMB - absolute symbol - a number (literal), or a symbol whose value is fixed
RSYMB - relocatable symbol - a symbol (such as a label) whose actual value will

be determined during assembly
offset - value contained in the lower 16 bits of the instruction

• MIPS Addressing Modes - Pictorial View

Register

Immediate - used in immediate instructions

6

Relative (or PC–Relative)

Register Indirect

Base

7

• Memory Operations - these sequences are used anytime a memory operation (load or
store) is to be performed:

• Memory Read (or Fetch, or Load)

1. Place address of item to be fetched into MAR

2. Perform a memory read operation. Item fetched is placed into MDR

3. Move contents of MDR to destination

• Memory Write (or Store)

1. Place address where item is to be written into MAR

2. Move value of item into MDR

3. Perform a memory write operation. Item to be stored is placed in memory.

• Register-Transfer Notation

Memory Read Memory Write
MAR← address MAR← address
R/W ← read R/W ← write
MDR←Mem[MAR] MDR← data
dest←MDR Mem[MAR]←MDR

• Instruction Execution Cycle

1. Fetch instruction from memory address (i.e., do a memory read) specified by PC, place
in IR.

2. Decode Instruction

3. Execute instruction:
If instruction is a load/store:

– Compute Effective Address (EA) according to the addressing mode in instruction

– Move EA of item into MAR

– If instruction is a store, move value to MDR

– Do a memory read (load) or write (store)

– If instruction is a load, move value from MDR to register

– Increment PC by 4 to point to next instruction

If instruction is a branch:

– If branch is conditional, perform the comparision specified by instruction

– If branch is unconditional OR if branch condition is met, replace PC with PC +
offset (from instruction).

– If condition is NOT met, increment PC by 4 to point to next instruction.

If instruction is arithmetic/logical:

– Perform the operation between the two source registers

– Place result in destination register

– Increment PC by 4 to point to next instruction

8

• Register-Transfer Notation for the Instruction Execution Cycle (Se-
lected Instructions)

fetch : MAR← PC
MDR←Mem[MAR]
IR←MDR

execute : if instr = Load
MAR← EA
MDR←Mem[MAR]
$rd←MDR
PC ← PC + 4

if instr = Store
MAR← EA
MDR← $rs
Mem[MAR]←MDR
PC ← PC + 4

if instr = b (branch unconditional)
PC ← PC + offset

if instr = bcc (branch conditional)
if $rs cc $rt PC ← PC + offset
else PC ← PC + 4

if instr = arith/logical
ALU1 (temporary ALU register)← $rs
ALU2 ← $rt
ALU3 ← ALU1 op ALU2

$rd← ALU3

PC ← PC + 4
...

(all other instructions follow)

9

CS 350 Intermediate Computer Architecture

Notes — MIPS R2000

Instructions

• MIPS and RISC Architectures
The MIPS R2000 is a good example of a Reduced Instruction Set Computer (RISC). RISC
is a design philosophy characterized by:

– Fixed length, fixed format instructions that are easy to decode

– Load/store architecture, with a relatively small number of addressing modes

– Simple instructions that can be made to execute quickly

An important design maxim with RISC architectures is to “make the common case fast”.
The most commonly executed instructions should be simple so that the hardware necessary
to execute them can operate very quickly. This philosophy manifests itself in many of the
features of the MIPS architecture. It is largely this philosophy that has allowed today’s
processors to achieve incredible performance gains over the more complicated, and much
slower, processors of a few years ago.

• MIPS Machine Language (Binary) Instruction Formats
In keeping with the RISC philosophy, the MIPS has only three types of instructions. Since it
is the assembler’s job to translate assembly instructions to their binary equivalent, it is not es-
sential that the assembly language programmer know the exact instruction format. However,
some knowledge of instruction formats is useful, as it helps the programmer to remember what
combinations of capabilities each instruction can have – if an assembly language instruction
cannot be coded into binary, it is illegal.

All MIPS instructions are 32 bits in length. The R-type instructions are the most common;
they specify an opcode, up to two source and one destination register, and (for the shift
instructions) a shift amount. The I-type format is used for immediate instructions. The
J-type is used for the unconditional jump instructions. The bit encodings for each type is:

The bit fields in the instruction formats are defined as:
opcode - (6 bits), specifies the operation the instruction is to perform

rs - (5 bits), the number of the first source register
rt - (5 bits), the number of the second source register
rd - (5 bits), the number of the destination register

shamt - (5 bits), shift amount (not used in most instructions)
funct - (6 bits), additional opcode bits for R-Type instructions

offset/immediate - (16 bits), the immediate value, or address offset
jump address - (26 bits), shifted left 2 bits, then used as the jump address

10

• Pseudoinstructions

Some of the MIPS assembler mnemonic codes are not translated directly into unique machine
instructions, but rather are pseudoinstructions. These codes are translated into a sequence of
one or more machine instructions which perform an operation equivalent to what the apparent
“machine instruction” does. Pseudoinstructions allow the hardware to remain simple (in
keeping with the “keep the common case fast” philosophy), yet provide the programmer with
a richer and more understandable set of instructions to use. In the descriptions that follow,
pseudoinstructions are marked with a dagger (†).

Most of the time, the programmer does not need to worry about whether a particular
mnemonic code is a pseudoinstruction or not. However, the following should be kept in
mind when using pseudoinstructions:

– Many pseudoinstructions translate into more than one machine instruction; when de-
bugging or using a simulator, remember that there is not a one-to-one correspondence
between the assembly instruction and the generated machine instructions. (For example,
“single stepping” through a program with the simulator will only execute the first ma-
chine instruction generated for a pseudoinstruction, NOT the entire pseudoinstruction.

– By convention, register 1 ($1) is used by the assembler to expand pseudoinstructions
into a sequence of machine instructions. Therefore, you must be careful when using $1
– it is best to avoid using it.

– It is sometimes possible to re-code pseudoinstructions into the same number of “real”
instructions; the resulting sequence will execute faster, since fewer machine instructions
will be generated. This is generally only necessary when speed is the most critical factor.

• Assembler Syntax

Each instruction is placed on a separate line in the following format:

label: mnemonic operands #comment

label: - (Optional) Must start with a letter, be the first thing on a line, followed by
a colon (:). The colon is NOT part of the label. Must be unique within
the assembly language file. Cannot be an opcode.

mnemonic - Opcode for a MIPS instruction or pseudoinstruction
operands - Other information (registers, memory addresses, values, etc.) needed by the

instruction
comment - Anything after the # on a line is ignored by the assembler

The following sections categorize and describe the most commonly-used MIPS instructions
(and pseudoinstructions). In the following descriptions:

rs and rt - specify source registers
rd - specifies the destination register

mem - specifies a memory address
imm - is a constant (an immediate operand)
sa - is a constant (a shift amount)

label -is a memory address, usually a label on an instruction.

11

• Load/Store, Data Movement Instructions
Assembler Syntax:

Loads Stores Data Movement Immediate
lw rd, mem sw rs, mem move rd, rs† la rd, mem†
lh rd, mem sh rs, mem li rd, imm†
lhu rd, mem sb rs, mem lui rd, imm

lb rd, mem

lbu rd, mem

Instruction format: I-type

These instructions move a value (w - word, 32 bits, h - halfword, 16 bits, b - byte, 8 bits),
between a register and a memory location. The load instructions move the value from memory
into a register, while the store instructions move the value from the register to memory. The
Effective Address of the memory location (i.e., the mem field) is specified by any of the three
memory addressing modes. The lh and lb are signed loads, meaning that the sign is extended
(i.e., replicated) to fill the upper bits of the 32 bit register. lhu and lbu are unsigned - the
upper bits of the register are filled with zeroes.

The la, li, lui, and move instructions are NOT really load instructions – that is, they do
not access memory. The la instruction computes the Effective Address in the instruction
and places the address (NOT the contents of the memory location) in the register. The li

places the (16 bit) immediate value into the lower half of the register, while lui places the
immediate value into the upper half of the register. The move instruction copies a value from
one register to another.

Examples:

lw $8, val1 # load value of memory location val1 into register 8

sw $10, 100($9) # store contents of R10 into location [R9] + 100

la $15, num # place ADDRESS of num into register 15

li $12, 4 # put constant value 4 into R12

move $8, $4 # copy contents of $4 into $8

• Arithmetic and Logical Instructions
Assembler Syntax:

Signed Arithmetic Instructions
add rd, rs, rt sub rd, rs, rt

mul rd, rs, rt† div rd, rs, rt†
rem rd, rs, rt† (remainder)
neg rd, rs†

Unsigned Arithmetic Instructions
addu rd, rs, rt subu rd, rs, rt

mulu rd, rs, rt† divu rd, rs, rt†
remu rd, rs, rt†

Logical Instructions
and rd, rs, rt or rd, rs, rt

nor rd, rs, rt xor rd, rs, rt (exclusive or)
not rd, rs†

Instruction format: R-type

The arithmetic instructions compute the 2’s complement operation between the two source
registers (rs and rt), and place the result in the destination register rd. The unsigned in-
structions (addu, subu, etc.) treat the values as unsigned, rather than 2’s complement –

12

these instructions are usually used to compute addresses. The logical instructions compute
the bitwise operation between the source registers, placing the result in the destination reg-
ister. The two unary operations, neg (“take the 2’s complement”) and not (“take the 1’s
complement”) perform their function on the value in the source register and place the result
in the destination.

Examples:

add $10, $8, $9 # compute R10 = R8 + R9

or $16, $20, $9 # compute bitwise inclusive-OR R16 = R9 OR R20

neg $12, $13 # Take negative of value in R13, put into R12

add $14, $0, $0 # TRICK 1: clears R14. REMEMBER: R0 is always zero

addu $12, $13, $0 # TRICK 2: same as mov $12, $13

• Arithmetic/Logical Immediate Instructions
Assembler Syntax:

addi rd, rs, imm addiu rd, rs, imm

andi rd, rs, imm ori rd, rs, imm

xori rd, rs, imm

Instruction format: I-type

Several of the arithmetic/logical instructions also have an immediate form. (Note that only
the symmetric operations, those that compute the same value regardless of the operand order,
have immediate forms).

Example:

addi $10, $8, 9 # compute R10 = R8 + 9 Note the value 9, NOT R9

• Shift and Rotate Instructions
Assembler Syntax:

ror rd, rs, rt† rol rd, rs, rt†

srl rd, rs, sa srlv rd, rs, sa

sll rd, rs, rt sllv rd, rs, rt

sra rd, rs, sa srav rd, rs, rt

Instruction format: R-type

The ror and rol instructions rotate the bits within rs right (ror) or left (rol) by the number
of positions specified in rt, and place the result in rd. The logical shift instructions shift
the bits in rs the number of positions in either the constant sa (for srl and sll), or by a
variable amount specified in register rt (for srlv and sllv). With the arithmetic shifts (sra
and srav), the sign (MSB) is copied into the shifted bit positions. These instructions are
often used for manipulating individual bits; the shift instructions are used to multiply and
divide by powers of 2.

Examples:

ror $10, $8, $9 # R10 = R8 rotated right by amount specified in R9

sll $16, $20, 9 # R16 = R20 shifted left 9 bits (multiply by 2^9)

sllv $16, $20, $9 # R16 = R20 shifted left by amount specified in R9

sra $14, $10, 1 # R14 = R10 shifted right 1 bit (signed divide by 2)

srl $14, $10, 1 # Unsigned divide by two

13

• Comparison Instructions

Assembler Syntax:

seq rd, rs, rt† sne rd, rs, rt†
slt rd, rs, rt sle rd, rs, rt†
sgt rd, rs, rt† sge rd, rs, rt†
sltu rd, rs, rt sleu rd, rs, rt†
sgtu rd, rs, rt† sgeu rd, rs, rt†
slti rd, rs, imm sltiu rd, rs, imm

Instruction format: R-type, (slti, sltiu are I-type)

These instructions perform a comparison rs op rt, where op is the comparison contained in
the op-code of the instruction (eq - equal, ne - not equal, lt - less than, etc.), and sets the
value of rd to 1 if the comparison is TRUE, and to 0 if false. Most commonly, these are used
in conjunction with the conditional branch instructions (described below) to make decisions.

• Branch/Jump Instructions

Assembler Syntax:

j label

b label†

beq rs, rt, label bne rs, rt, label

blt rs, rt, label† ble rs, rt, label†
bgt rs, rt, label† bge rs, rt, label†
bltu rs, rt, label† bleu rs, rt, label†
bgtu rs, rt, label† bgeu rs, rt, label†

beqz rs, label† bnez rs, label†
bltz rs, label blez rs, label

bgtz rs, label bgez rs, label

Instruction format: jump – J-type; branch – I-type

The unconditional instructions (j and b) transfer control to the instruction at label when
executed. The conditional branches first perform the indicated comparison, then branch if
the result of the comparison is true. For the instructions with two registers, the comparison
is performed between the contents of the two registers. The rt register can be replaced
with a constant instead of a register designation; this produces a “branch immediate” type
of pseudoinstruction. For the “z” instructions (beqz, bltz, etc.), the register contents are
compared with 0. Most of the conditional branches are pseudoinstructions, composed of a
“set” (comparison) instruction, followed by a beq or bne instruction.

Examples:

ex1: b down # skip instructions to label "down"

. .

. .

down: add # next instruction to execute after branch

ex2: slt $1, $8, $9 # Is R8 < R9? If so, set R10 = 1 and ...

bnez $1, less # ... branch to label "less" if true

ex3: blt $8, $9, less # The pseudoinstruction equivalent of ex2

14

• Miscellaneous Instructions

Assembler Syntax:

nop†
syscall code

Instruction format: R-type

nop (“no-operation”) is the instruction that does nothing! It is sometimes used to hold a place
for an instruction that may be inserted later, or is sometimes used in debugging when an extra
instruction has been found that needs to be “taken out.” There are several machine codes
that correspond to a no-operation; the “official” binary code for nop is zero (i.e., 0x00000000),
which makes it easy to remember.

syscall is used to invoke system subroutines. It is used instead of the jal instruction,
because it provides a mechanism that does not require the programmer to know the exact
address of the subroutine being invoked – the primary advantage of this is that the system
software (and thus, the addresses of system routines) can be changed without requiring all
programs that call system subroutines to change. The syscall instruction is used within the
SPIM simulator to invoke I/O routines, and to exit from a program.

• Subroutine Instructions

Assembler Syntax:

jal label

jr rs

Instruction format: jal - J-type; jr - R-type

The jal (“jump and link”) instruction is similar to a jump, in that control is passed to
the label specified in the instruction. Additionally, however, the address of the instruction
following the jump instruction is automatically placed into register $31.

The jr instruction transfers control to the address contained in rs. Thus, if a jr $31 in-
struction is executed at the end of a subroutine which was invoked by a jal, control will
return to the instruction following the jal.

Example:

jal sub # jump to subroutine sub, R31 = return addr

ret: ... # instruction that will be executed following the sub

.

.

sub: ... # first instruction of subroutine

.

.

jr $31 # last instruction of subroutine -- performs return

15

Subroutines in Assembly Language
The high level language (C or FORTRAN) programmer expects several “features” or charac-
teristics of subroutines:

1. A mechanism for returning back to the calling point after a subroutine is called.

2. Some means for passing arguments (values) to and from the routine.

3. Variables that are declared within the subroutine are accessible only by that routine
(i.e., local variables).

With the MIPS, only the first feature is supported by hardware – the others are implemented
“by convention” – that is, an agreement among programmers that certain groups of registers
will be used in certain ways. These conventions must be followed by anyone wishing to
write subroutines that will be used with other code (including code produced by compilers)
– however, there is nothing inherent within the MIPS architecture that requires or enforces
the use of these conventions.

The following table shows the 32 MIPS registers, their alternate names (conventional usage
names), and a brief description of the register usage. Either the number or the alternate
name can be used to specify registers in assembly language.

MIPS Register Usage Conventions
Name Register Description/Usage

$0 Hardwired constant 0

$at $1 Reserved for expanding pseudoinstructions by assembler

$v0-$v1 $2-$3 Return results from functions

$a0-$a3 $4-$7 Used for arguments 1-4 of subroutine. Any additional arguments
are placed on the stack

$t0-$t7 $8-$15 “Temporary” - unrestricted use - BUT not saved during a call

$s0-$s7 $16-$23 “Saved” - will be saved across a call, BUT must be saved
(usually on stack) before being used, restored before return

$t8-$t9 $24-$25 More temporary

$k0-$k1 $26-$27 “Kernel” - reserved for OS use

$gp $28 Pointer to global data area

$sp $29 Stack Pointer - contains address of top of stack

$fp $30 Frame pointer - contains address of local variable space

$ra $31 Return address of subroutine

The following are the guidelines for using the temporary and saved registers, according to the
convention:

1. If your routine DOES NOT call any other routines, then you can use the temporary
registers ($t0-$t9 or $8-$15, $24-$25) without any restrictions.

2. If your routine DOES call another routine, then you cannot assume that values in the
temporary registers will be left intact across the call (i.e., by convention, the called
routine has a right to use these registers). Therefore, for any value stored in a temporary
register that needs to be preserved across a call, you must either save the register before
the call and restore the value afterwards (caller–saved register), or assign any such values
to a saved register instead (but see below).

16

3. If you use any of the saved registers ($s0-$s7 or $16-$23), you must save their contents
before you use them (callee–saved registers), and restore the values before returning.

Register values are usually saved on the system stack (i.e., the memory pointed to by $sp).
Since saving and restoring a register is a relatively expensive operation, it is a goal of the
assembly language programmer to design a register allocation scheme that minimizes the
number of save/restore operations.

17

CS 350 Intermediate Computer Architecture

Notes

Programming in Assembly Language

Both the advantage and the disadvantage of assembly language is the amount of flexibility
the programmer has in coding a program. Any assembly language programmer can exploit this
flexibility to write very fast, efficient code. However, the successful programmer will recognize the
value of the structured programming techniques that are built into high level languages, and will
use discipline in choosing coding practices in assembly language which still adhere to the principles
of these structured techniques.

Structured programming is a programming philosophy, not a language feature!

• Assembly Programming Standards

– Program Header: Include your name, the assignment number, a brief statement of pur-
pose and a list of all registers used in the main program and how they are used. Enclose
the header box in stars.

– Subprogram Header: Include the name of the subprogram, its purpose, the input to and
output from the subprogram, and a list of registers used and how used. Enclose the
header box in stars.

– Columns: The first executable statement of your program must have a label of main,
which also must be declared global (with .globl). All mnemonics, operands, and com-
ments are to be aligned. Tab characters are often used to perform this alignment. (See
example programs.)

– Comments: Inline comments (comments on each source line) are more frequently used
than in high level languages like C++ or Fortran. Inline comments should be included
as the program is typed in, NOT as an afterthought.

– Program Blocks: Assembly language does not have block–structuring statements like
high level languages, and the use of indenting to emphasize program blocks is not com-
monly used, so the use of comments and blank lines between program blocks are even
more important than in high-level languages. The philosophy of programming and com-
menting is still the same – use comments to help emphasize the block–structure of the
program.

18

• Program Development

Writing a program in assembly language is not much different than writing in a high level
language – only the final expression of the design (in assembly language rather than a high
level language) is different. The following are the steps involved in the process:

1. Develop the algorithm, or the sequence of steps, for the program. This is the “intellec-
tual” part of the process. This algorithm may be expressed in some sort of pseudocode,
or as a word description, or you can even use a high level language. Regardless of nota-
tion, the purpose is to form a clear description of exactly what steps will be required for
the program to fulfill its purpose. You should use descriptive names for values, variables
and labels that you use.

2. Divide your program description into small partitions, each of which will become a
subprogram. Carefully determine what each subprogram requires as input, and what
will be returned as a result. It takes more statements in assembly language to perform
an equivalent amount of work compared with a high level language; this means that
smaller program units will be necessary to make the program understandable.

3. Translate your algorithm into assembly language. Part of this process involves translat-
ing the program structures (data initializations, calculations, branches/decisions, loops,
subprograms, etc.) in your algorithm into assembly language. The following pages show
examples of the most common program control structures, written in C, along with the
assembly language equivalents. Simply find the proper C sequence, then “plug in” the
equivalent assembly code sequence.

4. A more difficult part of the translation process involves “playing compiler” – performing
the steps usually done by the compiler in a high level language. You must decide how
to assign values and variables to registers and/or memory locations, how to use the
primitive data types to implement more complex structures, how to pass arguments
between subroutines, etc. Be sure to follow the programming conventions for register
usage – while in a “stand-alone” program the proper conventional register usage doesn’t
matter, any program that performs a useful function eventually will become a part of a
larger program, where the register conventions WILL make a difference.

Be careful that the registers and memory locations are correctly initialized in each sub-
program.

5. Even though there is no formal concept of “local” and “global” variables in assembly
(everything is actually global!), it is still an excellent idea to enforce the idea in your
programs. Identify the values which should be locally accessible in each routine, and only
allow that routine to access them. Make any necessarily global data obvious – identify
them as global, using comments. Consider setting up an argument passing mechanism
for those values which must be shared among routines.

Remember: the most difficult bugs in a program are usually data corruption
errors, where one routine changes a value that another routine wasn’t expecting
to be changed.

6. You can now create a file containing your program and either assemble it or use the
simulator to execute it. You will probably have some syntax errors to correct before it
will execute correctly.

19

Assembly Language Patterns

The following examples show a variety of translations from short C code sequences into MIPS
assembly language. Assume all variables are ints, represented as 32-bit words, unless otherwise
noted.

• Storage Allocation and Assignment

C Statements

int x, a = 27, b = 0x35, y;

void main()

{

x = 0;

y = a;

x += b;

MIPS Assembly Code

.data # variables go in data seg

x: .space 4 # allocate 4 bytes for x

a: .word 27 # initialize a to 27

bee: .word 0x35 # note, ’b’ is NOT legal ...

y: .space 4 # ... since it’s an opcode!

.text # switch to text segment

.globl main # make main a global symbol

main: sw $0, x # Register $0 = 0

lw $8, a # Get ’a’ from memory and ...

sw $8, y # ... put it into y

lw $8, bee # Get b ...

lw $9, x # ... and x from memory

add $9, $9, $8 # Compute x + b

sw $9, x # Put x back into memory

The above was a direct translation of C code into assembly, where the values of variables were
kept in memory. With a Load/Store machine like the MIPS, it is much easier and efficient to
keep variables mostly in registers. In the following sequence, the variables r, s, t and total

are allocated to registers $10 - $13 instead of to memory.

int r=3, s=4, t=5, total;

total = r + s - t;

total += 10;

li $10, 3 # Load values for r, ...

li $11, 4 # ... s, and ...

li $12, 5 # ... t using load immediate

add $13,$10,$11 # compute total

sub $13,$13,$12

addi $13,$13, 10

• Decision Statements

The if-then Statement

There are no “program blocks” (i.e., the equivalent to C statements enclosed in { }) in
assembly language – we must use branch statements to jump around code blocks we don’t
want to execute. Below are two versions of the if-then statement, and the assembly language
implementations – the first version is the direct translation from C, while the second is a
better implementation in assembly language (Note that we check for the opposite condition
in the second case.) Assume that the variables f, g, h, i, and j are in registers $16 - $20,
respectively.

20

C Statements

/* Version 1 */

if (i == j)

{

g += 5;

f = g + h;

}

f = f - i;

MIPS Assembly Code

Version 1

beq $19,$20,L1 # go to L1 if i equals j

b L2 # skip program block if not

L1: addi $17,$17,5 # add 5 to g

add $16,$17,$18 # f = g + h

L2: sub $16,$16,$19 # Both paths get here

/* Version 2 */

if (i != j) goto L2

g += 5;

f = g + h;

L2: f = f - i;

Version 2

bne $19,$20,L2 # go to L1 if i equals j

addi $17,$17,5 # add 5 to g

add $16,$17,$18 # f = g + h

L2: sub $16,$16,$19 # Both paths get here

The if-then-else Statement

The if-then-else is implemented either (1) with the else portion immediately following the
conditional branch, or (2) by checking for the opposite condition in the branch:

C Statements

if (i == j)

f = g + h;

else

f = g - h;

Ex. 1) else follows branch

beq $19,$20,then

else: sub $16,$17,$18

b endif

then: add $16,$17,$18

endif: ...

Ex. 2) then follows branch

bne $19,$20,else

then: add $16,$17,$18

b endif

else: sub $16,$17,$18

endif: ...

The switch-case Statement

The switch-case statement is efficiently implemented by using a jump table. In the .data

section, a table containing the addresses of each case label is created. Then, the case variable
is used to select the proper address in the table. In the following code, assume that variables
f - k are allocated to registers $16 - $21 respectively.

switch (k)

{

case 0: f = i + j;

break;

case 1: f = g + h;

break;

case 2: f = g - h;

break;

case 3: f = i - j;

}

li $10,4 # put 4 into R10

mul $9,$10,$21 # R9 = k * 4, Convert

k to jump table offset

lw $8,Jmptbl($9) # Get address from table

jr $8 # Jump to proper place

k0: add $16,$19,$20 # case 0:

j endsw

k1: add $16,$17,$18 # case 1:

j endsw

k2: sub $16,$17,$18 # case 2:

j endsw

k3: sub $16,$19,$20 # case 3:

endsw: ... # done with case stmt

.data

Jmptbl: .word k0 # Jump table. Each word ...

.word k1 # ... contains the address ...

.word k2 # ... of one of the case ...

.word k3 # ... labels

21

• Loop Structures

Pre-Test Loop

The following code sequences calculate the value res = basectr by using successive multiplica-
tion. The loop condition is checked before executing the loop each time through. The variable
base is in $10, ctr is in $9, and res is computed in $8.

C Statements

res = 1;

ctr = exp;

while (ctr > 0) {

res = res * base;

ctr = ctr -1;

}

MIPS Assembly Code

li $8,1

lw $9,exp

loop: blez $9,done

mul $8,$8,$10

addi $9,$9,-1

b loop

done: ...

Post-Test Loop

The following code inputs one character at a time and echos it, until a capital ’Z’ is input. The
assembly version uses the SPIM simulator system routines to input and output characters.

char ch;

do {

read(ch);

write(ch);

} while (ch != ’Z’);

.data

ch: .byte 0,0 # first position will hold ...

... char, second is null byte

.text

loop: li $5,2 # Tell read_str to read 1 char

la $4,ch # Address of character buffer

li $2,8 # Call code for read_str

syscall # call read_str

li $2,4 # Call code for print_str

syscall # call print_str

lb $8,ch # get character from memory

bne $8,’Z’,loop # Is it ’Z’? No, loop

done: ... # Yes? Done.

Counting Loop

The following code counts and then outputs the number of bits in a word of memory. A loop
which executes 32 times is used for the counting.

int i, count;

unsigned val = 0x2a49b175;

count = 0;

for(i = 0; i < 32; i++)

{

if(val & 0x1 == 1)

count++;

val = val >> 1;

}

.data

val: .word 0x2a49b175

.text

li $8,val # get value

li $9,0 # count = 0

li $10,0 # i = 0

loop: bge $10,32,fin # Done? If so, leave

andi $11,$8,1 # isolate LSB

beqz $11,skip # if LSB = 0, skip count

addi $9,$9,1 # count++

skip: srl $8,$8,1 # shift word right

addi $10,$10,1 # i++

b loop

fin: ...

22

• Array Operations - Example using Subscripts
The following is a complete program which computes and outputs the sum of an array. This
first version uses subscripts to access the array elements.

int array[10] =

{10, 5, 30, 8, 7,

14, 22, 31, 3, 6};

int i, sum;

void main() {

i = 0;

sum = 0;

while (i < 10)

{

sum += array[i];

i++;

}

print("The sum is ");

print(sum);

}

.data

array: .word 10, 5, 30, 8, 7, 14, 22, 31, 3, 6

bye: .asciiz "The sum is "

.text

.globl main

main:

li $8, 0 # i = 0

li $9, 0 # sum = 0

loop: bge $8,10,done

sll $11,$8,2 #compute i*4

lw $12,array($11) # get a[i]

add $9,$9,$12 # add element to sum

addi $8,$8,1 # i++

b loop

done: li $2,4 # Call code for print_str

la $4,bye # Addr of output string

syscall # call print_str

li $2,1 # Call code for print_int

move $4,$9 # move ans to $4 to print

syscall # call print_int

jr $31 # return

• Array Operations - Example using Pointers
The following program performs the same array operation as the previous example, except
that it uses pointers (instead of subscripts) to access the array elements.

int array[10] =

{10, 5, 30, 8, 7,

14, 22, 31, 3, 6};

int *p, sum;

void main() {

sum = 0;

p = array;

while (p < array+10)

{

sum += *p;

p++;

}

print("The sum is ");

print(sum);

}

.data

array: .word 10, 5, 30, 8, 7, 14, 22, 31, 3, 6

arrend:

bye: .asciiz "The sum is "

.text

.globl main

main:

li $9,0 # sum = 0

la $8,array # p = array

la $10,arrend # addr of end of array

loop: bgeu $8,$10,done # compare ptr w/ end addr

lw $12,($8) # get a[i]

add $9,$9,$12 # add element to sum

addi $8,$8,4 # p++ (increments by 4)

b loop

done: li $2,4 # Call code for print_str

la $4,bye # Addr of output string

syscall # call print_str

li $2,1 # Call code for print_int

move $4,$9 # move ans to $4 to print

syscall # call print_int

jr $31 # return

23

• Subroutine Call Example

.text

#

This routine returns (via the standard calling convention, using $2) the

larger of the two values passed as arguments (in $4 and $5)

#

.globl max

max: bge $4, $5, xisit

yisit: move $2, $5

b return

xisit: move $2, $4

return: jr $31

#

The main program prompts the user for first one number, than a second,

and prints out the larger of the two. It calls a routine called max, and

both uses and expects standard register calling conventions.

#

.globl main

main:

Save away our return address so that $31 can be used as return

address for subroutine call

sw $31, retaddr # save away our return address

Prompt for first number, input it, and put it into $5

li $2, 4 # print_str

la $4, str1

syscall

li $2, 5 # read_int x

syscall

move $5, $2 # put input value into $5 (NOTE: 2nd

argument position is used to avoid

conflict with $4 !!)

Get second number, put it into $4

li $2, 4 # print_str

la $4, str2

syscall

li $2, 5 # read_int y

syscall

move $4, $2 # put value into 1st arg position

Call the subroutine: $8 = max(y,x)

jal max # call max function

move $8, $2 # put answer in a safe place

Print results

li $2, 4 # print_str

la $4, str3

syscall

move $4, $8 # print_int

li $2, 1

syscall

li $2, 4 # print_str

la $4, str4

syscall

24

lw $31, retaddr # restore return address

jr $31 # return

.data

retaddr:.space 4

str1: .asciiz "Enter a value for x: "

str2: .asciiz "Now enter a y value: "

str3: .asciiz "The larger number is "

str4: .asciiz "\n"

.end

• The “Hello, World” Program

#

Printing the message "Hello, World" is usually everybody’s

first program in a new language!

(This program is used as the example in the SPIM handout)

#

.data

msg: .ascii "Hello, World"

.byte ’\n’,0

#

The above can more easily done with:

.asciiz "Hello, World\n"

.text

.globl main

main: li $2, 4 # system call code for "print string"

la $4, msg # addr of string into $a0

syscall

use the "exit" syscall to terminate this time

li $2, 10 # call code for exit

syscall

25

CS 350 Intermediate Computer Architecture

Notes — MIPS R2000

Assembly Directives

An assembly directive is an assembly language statement that does not directly generate a machine
operation, but does tell the assembler to perform some action. Most of the directives tell the assembler how
to set up data values in memory.

.text

Specifies that the code that follows it is to be treated as machine instructions (placed into the text program
segment). If there is more than one text segment in a program, they are all appended together into a single
contiguous segment.

NOTE: The word “text” might imply something that is readable by humans. In fact, text here
means the binary code for the machine program, which is definitely NOT readable!

.data

Specifies that the code that follows is to be treated as data (placed into the data program segment. This
is conventionally placed at the end of the assembly language program, but does not need to be. If there is
more than one data segment in a program, they are all appended together into a single contiguous segment.

.globl name

Specifies that the specified name should be global, and therefore can be referenced from other files. In
particular, the symbol main should be the label on the start of any stand-alone program, and should be
made global.
Example - Typical program structure:

.text

.globl main

main: # program code starts here

.

.

.data

a: .word 0 # variables (data) for the program

b: .word 1

c: .word 10

26

.space n

Reserves an area of bytes of (uninitialized) memory. Must be in the data segment. Used to allocate
uninitialized variable and array space.
Example:

arr: .space 400 # Allocate 400 bytes (100 words) of memory, at the

address known symbolically as "arr"

.word val1, val2, ...

.half val1, val2, ...

.byte val1, val2, ...

Reserves a word (32 bits), halfword (16 bits), or byte (8 bits) of storage for each value listed.
Example:

wvals: .word 10, 20, 30 # Allocate three words of memory with...

...the values 10, 20, and 30 in them

hvals: .half 0x10, 0x20 # Allocate two halfwords, values specified in hex

arr: .word 1,2,3,4,5,6,7,8,9,10 # Ten element array, initialized with values

str: .byte 65, 66, 67,0 # Allocates space for the string "ABC"

(for a better way, see below)

.ascii "string"
.asciiz "string"

Allocates storage for the ASCII string, enclosed in double quotes, that follows the directive. .asciiz specifies
that the string is to be terminated with a zero byte, as in C. Special characters can be specified C-style (’\n’
- newline, ’\t’ - tab, ’\0’ - NULL byte, etc.)
Example:

str1: .ascii "this is a string" # non NULL terminated string

.byte 0 # NULL byte added explicitly

str2: .asciiz "this is a string" # does the same as the two previous lines

.align n

Tells the assembler to start the next field on a 2n byte boundary. Value of n should be 1, 2, or 3. Used
to insure that values are lined up in memory properly. This is especially useful to insure proper alignmemt
after character data – MIPS requires that values start on a multiple of the size of the data item.
Example:

str: .asciiz "Odd string" # allocates 11 bytes (incl. NULL), an odd number

.align 2 # insure next value is on a word boundary

val: .word 27 # allocate one word on word boundary

27

CS 350 Intermediate Computer Architecture

Notes — MIPS R2000

Floating Point Instructions

The MIPS processor implements floating point operations using a coprocessor called the FPU. It operates
independently from, but in synergy with, the CPU. The FPU (in some places referred to as “Coprocessor 1”)
has its own set of registers. Instructions which specify floating point operations are passed by the CPU to
the coprocessor for execution. The instructions use the same binary formats as “regular” MIPS instructions
(the J-type format is not used.)

• MIPS Floating Point Processor - Programmer’s Model

The FPU contains 16 registers, each of which is 64 bits (double) wide. They are numbered as if they
were organized as 32 registers of 32 bits each – in fact only the even numbered registers can be specified
in most instructions. They are specified as $f0, $f2, etc.

Like the CPU, the FPU is a load/store architecture. One difference is the presence of a Control/Status
register – the result of a compare instruction is kept in this register instead of in a general purpose
register. To perform a “branch on condition” operation, you first do a compare instruction, then use
either a BC1T or BC1F (Branch on Coprocessor 1 True/False) instruction.

• Assembler/Instruction Syntax
The FPU instructions follow the same form as other MIPS instructions. The following additional
abbreviations are used in the instruction descriptions below:

fs, ft, fd - represents FPU source/destination registers
fmt - specifies the data format:

s - single precision Floating pt
d - double precision Floating pt
w - integer (convert instructions only)

28

• Load/Store, Data Movement Instructions

Assembler Syntax:

Loads Stores Data Movement
lwc1 fd, mem swc1 fs, mem mov.fmt fd, fs

ldc1 fd, mem sdc1 fs, mem mtc1 rd, fs

l.fmt fd, mem† s.fmt fs, mem† mfc1 rt, fd

Instruction format: Load/stores: I-type, Moves: R-type

These instructions move floating point values from memory to/from FPU registers, and between
registers. The l.fmt and s.fmt are pseudoinstructions which provide a syntax for load/store similar
to other FPU instructions. The mov.fmt instruction moves data between FPU registers, while mtc1

and mfc1 move values between the CPU and FPU registers. Note that when a memory location is
specified using base addressing (of the form offset(reg)), a CPU register (NOT an FPU register)
is used in the address operation.

Examples:

lwc1 $f8, val1 # load value of memory location val1 into FPU register 8

l.s $f8, val1 # pseudoinstruction version of above

s.s $f10, 100($9) # store single precision fp value at [R9] + 100

mov.s $f8, $f4 # copy between two FPU registers

mtci $8, $f6 # copy from CPU reg 8 to FPU reg 6

• Arithmetic and Conversion Instructions

Assembler Syntax:

add.fmt fd, fs, ft sub.fmt fd, fs, ft

mul.fmt fd, fs, ft div.fmt fd, fs, ft

neg.fmt fd, fs

cvt.fmt.fmt fd, fs

Instruction format: R-type

The arithmetic instructions perform the indicated operation between floating point values. Note that
there is no problem with mul and div with operand sizes, as there is with integers – the result is simply
re-normalized (exponent adjusted) to accommodate any change in magnitude. The cvt instructions
perform a conversion to the first fmt from the second fmt. Note that either fmt can be w, indicating
a conversion to/from integer (word).

Examples:

add.s $f10, $f8, $f6 # compute F10 = F8 + F6 (single precision)

neg.d $f12, $f10 # F12 = - F10 (double precision)

cvt.d.s $f18, $f16 # F18 = (double precision) F16

cvt.s.w $f20, $f24 # convert INTEGER in F24 to single...

... precision floating pt in F20

29

• Comparison and Branch Instructions

Assembler Syntax:

c.eq.fmt fs, ft

c.lt.fmt fs, ft

c.le.fmt fs, ft

bc1t label

bc1f label

Instruction format: Compares: R-type, Branches: I-type

The compare instructions set the Condition bit in the FPU Control/Status Register, based on the
results of the specified comparison. The branch instructions perform a branch depending if the result
of the last floating point comparison was TRUE (for bc1t) or FALSE (for bc1f).

Examples:

c.eq.s $f8, $f10 # Is F8 == F10? If so, set Condition bit = 1

bc1t equl # if so, then branch to label equl

c.le.s $f12, $f14 # This sequence implements a "branch if ...

bc1f greater # ... greater than" operation

• Additional Assembler Directives

Assembler Syntax:

.float val1, val2, ...

.double val1, val2, ...

These assembler directives allocate 4 and 8 bytes, respectively, for each value in the list.

• FPU Register Conventions

As with the CPU registers, a set of conventions has been established for using the FPU registers. The
table below summarizes these conventions.

MIPS FPU Register Usage Conventions
Register Description/Usage

$f0-$f2 Return results from functions
$f4-$f10 “Temporary” - unrestricted use - not saved during a call
$f12-$f14 Used to pass the first two floating point arguments to a function
$f16-$f18 More temporary
$f20-$f30 “Saved” - will be saved across a call, BUT must be saved

(usually on stack) before being used, restored before return

30

