
Warning: Programs that use these syscalls to read from the terminal should not use
memory-mapped I/O (see Section A.8).

sbrk returns a pointer to a block of memory containing n additional bytes.
exit stops the program SPIM is running. exit2 terminates the SPIM pro gram,
and the argument to exit2 becomes the value returned when the SPIM simulator
itself terminates.

print_char and read_char write and read a single character. open, read,
write, and close are the standard UNIX library calls.

 A.10 MIPS R2000 Assembly Language

A MIPS processor consists of an integer processing unit (the CPU) and a collec-
tion of coprocessors that perform ancillary tasks or operate on other types of data,
such as ! oating-point numbers (see Figure A.10.1). SPIM simulates two coproces-
sors. Coprocessor 0 handles exceptions and interrupts. Coprocessor 1 is the
! oating-point unit. SPIM simulates most aspects of this unit.

Addressing Modes

MIPS is a load store architecture, which means that only load and store instruc tions
access memory. Computation instructions operate only on values in regis ters. " e
bare machine provides only one memory-addressing mode: c(rx), which uses
the sum of the immediate c and register rx as the address. " e virtual machine
provides the following addressing modes for load and store instructions:

Format Address computation

(register) contents of register

imm immediate

imm (register) immediate + contents of register

label address of label

label ± imm address of label + or – immediate

label ± imm (register) address of label + or – (immediate + contents of register)

Most load and store instructions operate only on aligned data. A quantity is
aligned if its memory address is a multiple of its size in bytes. " erefore, a half word

 A.10 MIPS R2000 Assembly Language A-45

A-46 Appendix A Assemblers, Linkers, and the SPIM Simulator

object must be stored at even addresses, and a full word object must be stored at
addresses that are a multiple of four. However, MIPS provides some instructions to
manipulate unaligned data (lwl, lwr, swl, and swr).

Elaboration: The MIPS assembler (and SPIM) synthesizes the more complex address-

ing modes by producing one or more instructions before the load or store to compute a

complex address. For example, suppose that the label table referred to memory loca-

tion 0x10000004 and a program contained the instruction

ld $a0, table + 4($a1)

The assembler would translate this instruction into the instructions

FIGURE A.10.1 MIPS R2000 CPU and FPU.

CPU

Registers

$0

$31

Arithmetic
unit

Multiply
divide

Lo Hi

Coprocessor 1 (FPU)

Registers

$0

$31

Arithmetic
unit

Registers

BadVAddr

Coprocessor 0 (traps and memory)

Status

Cause

EPC

Memory

lui $at, 4096
addu $at, $at, $a1
lw $a0, 8($at)

The ! rst instruction loads the upper bits of the label’s address into register $at, which

is the register that the assembler reserves for its own use. The second instruction adds

the contents of register $a1 to the label’s partial address. Finally, the load instruction

uses the hardware address mode to add the sum of the lower bits of the label’s address

and the offset from the original instruction to the value in register $at.

Assembler Syntax

Comments in assembler # les begin with a sharp sign (#). Everything from the
sharp sign to the end of the line is ignored.

Identi# ers are a sequence of alphanumeric characters, underbars (_), and dots
(.) that do not begin with a number. Instruction opcodes are reserved words that
cannot be used as identi# ers. Labels are declared by putting them at the beginning
of a line followed by a colon, for example:

 .data
item: .word 1
 .text
 .globl main # Must be global
main: lw $t0, item

Numbers are base 10 by default. If they are preceded by 0x, they are interpreted
as hexadecimal. Hence, 256 and 0x100 denote the same value.

Strings are enclosed in double quotes (”). Special characters in strings follow the
C convention:

 ■ newline \n

 ■ tab \t

 ■ quote \”

SPIM supports a subset of the MIPS assembler directives:

.align n Align the next datum on a 2n byte boundary. For
 example, .align 2 aligns the next value on a word
boundary. .align 0 turns o$ automatic alignment
of .half, .word, .float, and .double directives
until the next .data or .kdata directive.

.ascii str Store the string str in memory, but do not null-
terminate it.

 A.10 MIPS R2000 Assembly Language A-47

A-48 Appendix A Assemblers, Linkers, and the SPIM Simulator

.asciiz str Store the string str in memory and null- terminate it.

.byte b1,..., bn Store the n values in successive bytes of memory.

.data <addr> Subsequent items are stored in the data segment.
If the optional argument addr is present, subse-
quent items are stored starting at address addr.

.double d1,..., dn Store the n ! oating-point double preci-
sion num-bers in successive memory locations.

.extern sym size Declare that the datum stored at sym is size bytes
large and is a global label. " is directive enables
the assembler to store the datum in a portion of
the data segment that is e% ciently accessed via
register $gp.

.float f1,..., fn Store the n ! oating-point single precision num-
bers in successive memory locations.

.globl sym Declare that label sym is global and can be refer-
enced from other # les.

.half h1,..., hn Store the n 16-bit quantities in successive mem ory
halfwords.

.kdata <addr> Subsequent data items are stored in the kernel
data segment. If the optional argument addr is
present, subsequent items are stored starting at
address addr.

.ktext <addr> Subsequent items are put in the kernel text seg-
ment. In SPIM, these items may only be instruc-
tions or words (see the .word directive below). If
the optional argument addr is present, subse quent
items are stored starting at address addr.

.set noat and .set at " e # rst directive prevents SPIM from complain-
ing about subsequent instructions that use regis ter
$at. " e second directive re-enables the warning.
Since pseudoinstructions expand into code that
uses register $at, programmers must be very care-
ful about leaving values in this register.

.space n Allocates n bytes of space in the current segment
(which must be the data segment in SPIM).

.text <addr> Subsequent items are put in the user text seg ment.
In SPIM, these items may only be instruc tions
or words (see the .word directive below). If the
 optional argument addr is present, subse quent
items are stored starting at address addr.

.word w1,..., wn Store the n 32-bit quantities in successive mem ory
words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and
.sdata).

Encoding MIPS Instructions

Figure A.10.2 explains how a MIPS instruction is encoded in a binary number.
Each column contains instruction encodings for a # eld (a contiguous group of
bits) from an instruction. " e numbers at the le& margin are values for a # eld.
For example, the j opcode has a value of 2 in the opcode # eld. " e text at the top
of a column names a # eld and speci# es which bits it occupies in an instruction.
For example, the op # eld is contained in bits 26–31 of an instruction. " is # eld
encodes most instructions. However, some groups of instructions use additional
elds to distinguish related instructions. For example, the di$ erent ! oating-point
instructions are speci# ed by bits 0–5. " e arrows from the # rst column show which
opcodes use these additional # elds.

Instruction Format

" e rest of this appendix describes both the instructions implemented by actual
MIPS hardware and the pseudoinstructions provided by the MIPS assembler. " e
two types of instructions are easily distinguished. Actual instructions depict the
elds in their binary representation. For example, in

Addition (with overfl ow)

add rd, rs, rt

0 rs rt rd 0 0x20

6 5 5 5 5 6

the add instruction consists of six # elds. Each # eld’s size in bits is the small num ber
below the # eld. " is instruction begins with six bits of 0s. Register speci# ers begin
with an r, so the next # eld is a 5-bit register speci# er called rs. " is is the same
register that is the second argument in the symbolic assembly at the le& of this
line. Another common # eld is imm16, which is a 16-bit immediate number.

 A.10 MIPS R2000 Assembly Language A-49

A-50 Appendix A Assemblers, Linkers, and the SPIM Simulator

FIGURE A.10.2 MIPS opcode map. " e values of each # eld are shown to its le& . " e # rst column shows the values in base 10, and the
second shows base 16 for the op # eld (bits 31 to 26) in the third column. " is op # eld completely speci# es the MIPS operation except for six
op values: 0, 1, 16, 17, 18, and 19. " ese operations are determined by other # elds, identi# ed by pointers. " e last # eld (funct) uses “f ” to
mean “s” if rs = 16 and op = 17 or “d” if rs = 17 and op = 17. " e second # eld (rs) uses “z” to mean “0”, “1”, “2”, or “3” if op = 16, 17, 18, or 19,
respectively. If rs = 16, the operation is speci# ed elsewhere: if z = 0, the operations are speci# ed in the fourth # eld (bits 4 to 0); if z = 1, then the
operations are in the last # eld with f = s. If rs = 17 and z = 1, then the operations are in the last # eld with f = d.

10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

16

00
01
02
03
04
05
06
07
08
09
0a
0b
0c
0d
0e
0 f
10
11
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
1 f
20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2 f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3 f

 rs
(25:21)

mfcz

cfcz

mtcz

ctcz

copz
copz

(17:16)

bczf
bczt
bczfl
bcztl

tlbr
tlbwi

tlbwr

tlbp

eret

deret

rt

(20:16)

bltz
bgez
bltzl
bgezl

tgei
tgeiu
tlti
tltiu
tegi

tnei

bltzal
bgezal
bltzall
bgczall

cvt.s.f
cvt.d.f

cvt.w.f

c.f.f
c.un.f
c.eq.f
c.ueq.f
c.olt.f
c.ult.f
c.ole.f
c.ule.f
c.sf.f
c.ngle.f
c.seq.f
c.ngl.f
c.lt.f
c.nge.f
c.le.f
c.ngt.f

funct(5:0)funct(5:0)

sll

srl
sra
sllv

srlv
srav
jr
jalr
movz
movn
syscall
break

sync
mfhi
mthi
mflo
mtlo

mult
multu
div
divu

add
addu
sub
subu
and
or
xor
nor

slt
sltu

tge
tgeu
tlt
tltu
teq

tne

if z = 1,
f = d

if z = 1,
f = s

if z = 0

if z = 1 or z = 2

0
1
2
3

funct

(4:0)

sub.f
add.f

mul.f
div.f
sqrt.f
abs.f
mov.f
neg.f

round.w.f
trunc.w.f
cell.w.f
floor.w.f

movz.f
movn.f

clz
clo

funct(5:0)

madd
maddu
mul

msub
msubu

(16:16)

movf
movt

0
1

(16:16)

movf.f
movt.f

0
1

op(31:26)

j
jal
beq
bne
blez
bgtz
addi
addiu
slti
sltiu
andi
ori
xori
lui
z = 0
z = 1
z = 2

beql
bnel
blezl
bgtzl

lb
lh
lwl
lw
lbu
lhu
lwr

sb
sh
swl
sw

swr
cache
ll
lwc1
lwc2
pref

ldc1
ldc2

sc
swc1
swc2

sdc1
sdc2

Pseudoinstructions follow roughly the same conventions, but omit instruction
encoding information. For example:

Multiply (without overfl ow)

mul rdest, rsrc1, src2 pseudoinstruction

In pseudoinstructions, rdest and rsrc1 are registers and src2 is either a regis-
ter or an immediate value. In general, the assembler and SPIM translate a more
general form of an instruction (e.g., add $v1, $a0, 0x55) to a specialized form
(e.g., addi $v1, $a0, 0x55).

Arithmetic and Logical Instructions

Absolute value

abs rdest, rsrc pseudoinstruction

Put the absolute value of register rsrc in register rdest.

Addition (with overfl ow)

add rd, rs, rt
0 rs rt rd 0 0x20

6 5 5 5 5 6

Addition (without overfl ow)

addu rd, rs, rt
0 rs rt rd 0 0x21

6 5 5 5 5 6

Put the sum of registers rs and rt into register rd.

Addition immediate (with overfl ow)

addi rt, rs, imm
8 rs rt imm

6 5 5 16

Addition immediate (without overfl ow)

addiu rt, rs, imm
9 rs rt imm

6 5 5 16

Put the sum of register rs and the sign-extended immediate into register rt.

 A.10 MIPS R2000 Assembly Language A-51

A-52 Appendix A Assemblers, Linkers, and the SPIM Simulator

AND

and rd, rs, rt
0 rs rt rd 0 0x24

6 5 5 5 5 6

Put the logical AND of registers rs and rt into register rd.

AND immediate

andi rt, rs, imm
0xc rs rt imm

6 5 5 16

Put the logical AND of register rs and the zero-extended immediate into reg-
ister rt.

Count leading ones

clo rd, rs
0x1c rs 0 rd 0 0x21

6 5 5 5 5 6

Count leading zeros

clz rd, rs
0x1c rs 0 rd 0 0x20

6 5 5 5 5 6

Count the number of leading ones (zeros) in the word in register rs and put
the result into register rd. If a word is all ones (zeros), the result is 32.

Divide (with overfl ow)

div rs, rt
0 rs rt 0 0x1a

6 5 5 10 6

Divide (without overfl ow)

divu rs, rt
0 rs rt 0 0x1b

6 5 5 10 6

Divide register rs by register rt. Leave the quotient in register lo and the remain-
der in register hi. Note that if an operand is negative, the remainder is unspeci# ed
by the MIPS architecture and depends on the convention of the machine on which
SPIM is run.

Divide (with overfl ow)

div rdest, rsrc1, src2 pseudoinstruction

Divide (without overfl ow)

divu rdest, rsrc1, src2 pseudoinstruction

Put the quotient of register rsrc1 and src2 into register rdest.

Multiply

mult rs, rt
0 rs rt 0 0x18

6 5 5 10 6

Unsigned multiply

multu rs, rt
0 rs rt 0 0x19

6 5 5 10 6

Multiply registers rs and rt. Leave the low-order word of the product in register
lo and the high-order word in register hi.

Multiply (without overfl ow)

mul rd, rs, rt
0x1c rs rt rd 0 2

6 5 5 5 5 6

Put the low-order 32 bits of the product of rs and rt into register rd.

Multiply (with overfl ow)

mulo rdest, rsrc1, src2 pseudoinstruction

Unsigned multiply (with overfl ow)

mulou rdest, rsrc1, src2 pseudoinstruction

Put the low-order 32 bits of the product of register rsrc1 and src2 into register
rdest.

 A.10 MIPS R2000 Assembly Language A-53

A-54 Appendix A Assemblers, Linkers, and the SPIM Simulator

Multiply add

madd rs, rt
0x1c rs rt 0 0

6 5 5 10 6

Unsigned multiply add

maddu rs, rt
0x1c rs rt 0 1

6 5 5 10 6

Multiply registers rs and rt and add the resulting 64-bit product to the 64-bit
value in the concatenated registers lo and hi.

Multiply subtract

msub rs, rt
0x1c rs rt 0 4

6 5 5 10 6

Unsigned multiply subtract

msub rs, rt
0x1c rs rt 0 5

6 5 5 10 6

Multiply registers rs and rt and subtract the resulting 64-bit product from the 64-
bit value in the concatenated registers lo and hi.

Negate value (with overfl ow)

neg rdest, rsrc pseudoinstruction

Negate value (without overfl ow)

negu rdest, rsrc pseudoinstruction

Put the negative of register rsrc into register rdest.

NOR

nor rd, rs, rt
0 rs rt rd 0 0x27

6 5 5 5 5 6

Put the logical NOR of registers rs and rt into register rd.

NOT

not rdest, rsrc pseudoinstruction

Put the bitwise logical negation of register rsrc into register rdest.

OR

or rd, rs, rt
0 rs rt rd 0 0x25

6 5 5 5 5 6

Put the logical OR of registers rs and rt into register rd.

OR immediate

ori rt, rs, imm
0xd rs rt imm

6 5 5 16

Put the logical OR of register rs and the zero-extended immediate into register rt.

Remainder

rem rdest, rsrc1, rsrc2 pseudoinstruction

Unsigned remainder

remu rdest, rsrc1, rsrc2 pseudoinstruction

Put the remainder of register rsrc1 divided by register rsrc2 into register rdest.
Note that if an operand is negative, the remainder is unspeci# ed by the MIPS
architecture and depends on the convention of the machine on which SPIM is run.

Shift left logical

sll rd, rt, shamt
0 rs rt rd shamt 0

6 5 5 5 5 6

Shift left logical variable

sllv rd, rt, rs
0 rs rt rd 0 4

6 5 5 5 5 6

 A.10 MIPS R2000 Assembly Language A-55

A-56 Appendix A Assemblers, Linkers, and the SPIM Simulator

Shift right arithmetic

sra rd, rt, shamt
0 rs rt rd shamt 3

6 5 5 5 5 6

Shift right arithmetic variable

srav rd, rt, rs
0 rs rt rd 0 7

6 5 5 5 5 6

Shift right logical

srl rd, rt, shamt
0 rs rt rd shamt 2

6 5 5 5 5 6

Shift right logical variable

srlv rd, rt, rs
0 rs rt rd 0 6

6 5 5 5 5 6

Shi& register rt le& (right) by the distance indicated by immediate shamt or the
register rs and put the result in register rd. Note that argument rs is ignored for
sll, sra, and srl.

Rotate left

rol rdest, rsrc1, rsrc2 pseudoinstruction

Rotate right

ror rdest, rsrc1, rsrc2 pseudoinstruction

Rotate register rsrc1 le& (right) by the distance indicated by rsrc2 and put the
result in register rdest.

Subtract (with overfl ow)

sub rd, rs, rt
0 rs rt rd 0 0x22

6 5 5 5 5 6

Subtract (without overfl ow)

subu rd, rs, rt
0 rs rt rd 0 0x23

6 5 5 5 5 6

Put the di$ erence of registers rs and rt into register rd.

Exclusive OR

xor rd, rs, rt
0 rs rt rd 0 0x26

6 5 5 5 5 6

Put the logical XOR of registers rs and rt into register rd.

XOR immediate

xori rt, rs, imm
0xe rs rt Imm

6 5 5 16

Put the logical XOR of register rs and the zero-extended immediate into reg-
ister rt.

Constant-Manipulating Instructions

Load upper immediate

lui rt, imm
0xf O rt imm

6 5 5 16

Load the lower halfword of the immediate imm into the upper halfword of reg-
ister rt. " e lower bits of the register are set to 0.

Load immediate

li rdest, imm pseudoinstruction

Move the immediate imm into register rdest.

Comparison Instructions

Set less than

slt rd, rs, rt
0 rs rt rd 0 0x2a

6 5 5 5 5 6

 A.10 MIPS R2000 Assembly Language A-57

A-58 Appendix A Assemblers, Linkers, and the SPIM Simulator

Set less than unsigned

sltu rd, rs, rt
0 rs rt rd 0 0x2b

6 5 5 5 5 6

Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

Set less than immediate

slti rt, rs, imm
0xa rs rt imm

6 5 5 16

Set less than unsigned immediate

sltiu rt, rs, imm
0xb rs rt imm

6 5 5 16

Set register rt to 1 if register rs is less than the sign-extended immediate, and to
0 otherwise.

Set equal

seq rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 equals rsrc2, and to 0 otherwise.

Set greater than equal

sge rdest, rsrc1, rsrc2 pseudoinstruction

Set greater than equal unsigned

sgeu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than or equal to rsrc2, and to
0 otherwise.

Set greater than

sgt rdest, rsrc1, rsrc2 pseudoinstruction

Set greater than unsigned

sgtu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is greater than rsrc2, and to 0 otherwise.

Set less than equal

sle rdest, rsrc1, rsrc2 pseudoinstruction

Set less than equal unsigned

sleu rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is less than or equal to rsrc2, and to 0
otherwise.

Set not equal

sne rdest, rsrc1, rsrc2 pseudoinstruction

Set register rdest to 1 if register rsrc1 is not equal to rsrc2, and to 0 otherwise.

Branch Instructions

Branch instructions use a signed 16-bit instruction o! set # eld; hence, they can
jump 215 − 1 instructions (not bytes) forward or 215 instructions backward. " e
jump instruction contains a 26-bit address # eld. In actual MIPS processors, branch
instructions are delayed branches, which do not transfer control until the instruction
following the branch (its “delay slot”) has executed (see Chapter 4). Delayed branches
a$ ect the o$ set calculation, since it must be computed relative to the address of the
delay slot instruction (PC + 4), which is when the branch occurs. SPIM does not
simulate this delay slot, unless the -bare or -delayed_branch ! ags are speci# ed.

In assembly code, o$ sets are not usually speci# ed as numbers. Instead, an
instructions branch to a label, and the assembler computes the distance between
the branch and the target instructions.

In MIPS-32, all actual (not pseudo) conditional branch instructions have a
“likely” variant (for example, beq’s likely variant is beql), which does not execute
the instruction in the branch’s delay slot if the branch is not taken. Do not use

 A.10 MIPS R2000 Assembly Language A-59

A-60 Appendix A Assemblers, Linkers, and the SPIM Simulator

these instructions; they may be removed in subsequent versions of the architec ture.
SPIM implements these instructions, but they are not described further.

Branch instruction

b label pseudoinstruction

Unconditionally branch to the instruction at the label.

Branch coprocessor false

bclf cc label
0x11 8 cc 0 Offset

6 5 3 2 16

Branch coprocessor true

bclt cc label
0x11 8 cc 1 Offset

6 5 3 2 16

Conditionally branch the number of instructions speci# ed by the o$ set if the
! oating-point coprocessor’s condition ! ag numbered cc is false (true). If cc is
omitted from the instruction, condition code ! ag 0 is assumed.

Branch on equal

beq rs, rt, label
4 rs rt Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs equals rt.

Branch on greater than equal zero

bgez rs, label
1 rs 1 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is greater than or equal to 0.

Branch on greater than equal zero and link

bgezal rs, label
1 rs 0x11 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is greater than or equal to 0. Save the address of the next instruction in reg-
ister 31.

Branch on greater than zero

bgtz rs, label
7 rs 0 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is greater than 0.

Branch on less than equal zero

blez rs, label
6 rs 0 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is less than or equal to 0.

Branch on less than and link

bltzal rs, label
1 rs 0x10 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is less than 0. Save the address of the next instruction in register 31.

Branch on less than zero

bltz rs, label
1 rs 0 Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is less than 0.

 A.10 MIPS R2000 Assembly Language A-61

A-62 Appendix A Assemblers, Linkers, and the SPIM Simulator

Branch on not equal

bne rs, rt, label
5 rs rt Offset

6 5 5 16

Conditionally branch the number of instructions speci# ed by the o$ set if register
rs is not equal to rt.

Branch on equal zero

beqz rsrc, label pseudoinstruction

Conditionally branch to the instruction at the label if rsrc equals 0.

Branch on greater than equal

bge rsrc1, rsrc2, label pseudoinstruction

Branch on greater than equal unsigned

bgeu rsrc1, rsrc2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than
or equal to rsrc2.

Branch on greater than

bgt rsrc1, src2, label pseudoinstruction

Branch on greater than unsigned

bgtu rsrc1, src2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is greater than
src2.

Branch on less than equal

ble rsrc1, src2, label pseudoinstruction

Branch on less than equal unsigned

bleu rsrc1, src2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than or
equal to src2.

Branch on less than

blt rsrc1, rsrc2, label pseudoinstruction

Branch on less than unsigned

bltu rsrc1, rsrc2, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc1 is less than
rsrc2.

Branch on not equal zero

bnez rsrc, label pseudoinstruction

Conditionally branch to the instruction at the label if register rsrc is not equal to 0.

Jump Instructions

Jump

j target
2 target

6 26

Unconditionally jump to the instruction at target.

Jump and link

jal target
3 target

6 26

Unconditionally jump to the instruction at target. Save the address of the next
instruction in register $ra.

 A.10 MIPS R2000 Assembly Language A-63

A-64 Appendix A Assemblers, Linkers, and the SPIM Simulator

Jump and link register

jalr rs, rd
0 rs 0 rd 0 9

6 5 5 5 5 6

Unconditionally jump to the instruction whose address is in register rs. Save the
address of the next instruction in register rd (which defaults to 31).

Jump register

jr rs
0 rs 0 8

6 5 15 6

Unconditionally jump to the instruction whose address is in register rs.

Trap Instructions

Trap if equal

teq rs, rt
0 rs rt 0 0x34

6 5 5 10 6

If register rs is equal to register rt, raise a Trap exception.

Trap if equal immediate

teqi rs, imm
1 rs 0xc imm

6 5 5 16

If register rs is equal to the sign-extended value imm, raise a Trap exception.

Trap if not equal

teq rs, rt
0 rs rt 0 0x36

6 5 5 10 6

If register rs is not equal to register rt, raise a Trap exception.

Trap if not equal immediate

teqi rs, imm
1 rs 0xe imm

6 5 5 16

If register rs is not equal to the sign-extended value imm, raise a Trap exception.

Trap if greater equal

tge rs, rt
0 rs rt 0 0x30

6 5 5 10 6

Unsigned trap if greater equal

tgeu rs, rt
0 rs rt 0 0x31

6 5 5 10 6

If register rs is greater than or equal to register rt, raise a Trap exception.

Trap if greater equal immediate

tgei rs, imm
1 rs 8 imm

6 5 5 16

Unsigned trap if greater equal immediate

tgeiu rs, imm
1 rs 9 imm

6 5 5 16

If register rs is greater than or equal to the sign-extended value imm, raise a Trap
exception.

Trap if less than

tlt rs, rt
0 rs rt 0 0x32

6 5 5 10 6

Unsigned trap if less than

tltu rs, rt
0 rs rt 0 0x33

6 5 5 10 6

If register rs is less than register rt, raise a Trap exception.

Trap if less than immediate

tlti rs, imm
1 rs a imm

6 5 5 16

 A.10 MIPS R2000 Assembly Language A-65

A-66 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unsigned trap if less than immediate

tltiu rs, imm
1 rs b imm

6 5 5 16

If register rs is less than the sign-extended value imm, raise a Trap exception.

Load Instructions

Load address

la rdest, address pseudoinstruction

Load computed address—not the contents of the location—into register rdest.

Load byte

lb rt, address
0x20 rs rt Offset

6 5 5 16

Load unsigned byte

lbu rt, address
0x24 rs rt Offset

6 5 5 16

Load the byte at address into register rt. " e byte is sign-extended by lb, but not
by lbu.

Load halfword

lh rt, address
0x21 rs rt Offset

6 5 5 16

Load unsigned halfword

lhu rt, address
0x25 rs rt Offset

6 5 5 16

Load the 16-bit quantity (halfword) at address into register rt. " e halfword is
sign-extended by lh, but not by lhu.

Load word

lw rt, address
0x23 rs rt Offset

6 5 5 16

Load the 32-bit quantity (word) at address into register rt.

Load word coprocessor 1

lwcl ft, address
0x31 rs rt Offset

6 5 5 16

Load the word at address into register ft in the ! oating-point unit.

Load word left

lwl rt, address
0x22 rs rt Offset

6 5 5 16

Load word right

lwr rt, address
0x26 rs rt Offset

6 5 5 16

Load the le& (right) bytes from the word at the possibly unaligned address into
register rt.

Load doubleword

ld rdest, address pseudoinstruction

Load the 64-bit quantity at address into registers rdest and rdest + 1.

Unaligned load halfword

ulh rdest, address pseudoinstruction

 A.10 MIPS R2000 Assembly Language A-67

A-68 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned load halfword unsigned

ulhu rdest, address pseudoinstruction

Load the 16-bit quantity (halfword) at the possibly unaligned address into register
rdest. " e halfword is sign-extended by ulh, but not ulhu.

Unaligned load word

ulw rdest, address pseudoinstruction

Load the 32-bit quantity (word) at the possibly unaligned address into register
rdest.

Load linked

ll rt, address
0x30 rs rt Offset

6 5 5 16

Load the 32-bit quantity (word) at address into register rt and start an atomic
read-modify-write operation. " is operation is completed by a store conditional
(sc) instruction, which will fail if another processor writes into the block contain-
ing the loaded word. Since SPIM does not simulate multiple processors, the store
conditional operation always succeeds.

Store Instructions

Store byte

sb rt, address
0x28 rs rt Offset

6 5 5 16

Store the low byte from register rt at address.

Store halfword

sh rt, address
0x29 rs rt Offset

6 5 5 16

Store the low halfword from register rt at address.

Store word

sw rt, address
0x2b rs rt Offset

6 5 5 16

Store the word from register rt at address.

Store word coprocessor 1

swcl ft, address
0x31 rs ft Offset

6 5 5 16

Store the ! oating-point value in register ft of ! oating-point coprocessor at address.

Store double coprocessor 1

sdcl ft, address
0x3d rs ft Offset

6 5 5 16

Store the doubleword ! oating-point value in registers ft and ft + l of ! oating-
point coprocessor at address. Register ft must be even numbered.

Store word left

swl rt, address
0x2a rs rt Offset

6 5 5 16

Store word right

swr rt, address
0x2e rs rt Offset

6 5 5 16

Store the le& (right) bytes from register rt at the possibly unaligned address.

Store doubleword

sd rsrc, address pseudoinstruction

Store the 64-bit quantity in registers rsrc and rsrc + 1 at address.

 A.10 MIPS R2000 Assembly Language A-69

A-70 Appendix A Assemblers, Linkers, and the SPIM Simulator

Unaligned store halfword

ush rsrc, address pseudoinstruction

Store the low halfword from register rsrc at the possibly unaligned address.

Unaligned store word

usw rsrc, address pseudoinstruction

Store the word from register rsrc at the possibly unaligned address.

Store conditional

sc rt, address
0x38 rs rt Offset

6 5 5 16

Store the 32-bit quantity (word) in register rt into memory at address and com plete
an atomic read-modify-write operation. If this atomic operation is success ful, the
memory word is modi# ed and register rt is set to 1. If the atomic operation fails
because another processor wrote to a location in the block contain ing the addressed
word, this instruction does not modify memory and writes 0 into register rt. Since
SPIM does not simulate multiple processors, the instruc tion always succeeds.

Data Movement Instructions

Move

move rdest, rsrc pseudoinstruction

Move register rsrc to rdest.

Move from hi

mfhi rd
0 0 rd 0 0x10

6 10 5 5 6

Move from lo

mflo rd
0 0 rd 0 0x12

6 10 5 5 6

" e multiply and divide unit produces its result in two additional registers, hi
and lo. " ese instructions move values to and from these registers. " e multiply,
divide, and remainder pseudoinstructions that make this unit appear to operate on
the general registers move the result a& er the computation # nishes.

Move the hi (lo) register to register rd.

Move to hi

mthi rs
0 rs 0 0x11

6 5 15 6

Move to lo

mtlo rs
0 rs 0 0x13

6 5 15 6

Move register rs to the hi (lo) register.

Move from coprocessor 0

mfc0 rt, rd
0x10 0 rt rd 0

6 5 5 5 11

Move from coprocessor 1

mfcl rt, fs
0x11 0 rt fs 0

6 5 5 5 11

Coprocessors have their own register sets. " ese instructions move values between
these registers and the CPU’s registers.

Move register rd in a coprocessor (register fs in the FPU) to CPU register rt. " e
! oating-point unit is coprocessor 1.

 A.10 MIPS R2000 Assembly Language A-71

A-72 Appendix A Assemblers, Linkers, and the SPIM Simulator

Move double from coprocessor 1

mfc1.d rdest, frsrc1 pseudoinstruction

Move ! oating-point registers frsrc1 and frsrc1 + 1 to CPU registers rdest
and rdest + 1.

Move to coprocessor 0

mtc0 rd, rt
0x10 4 rt rd 0

6 5 5 5 11

Move to coprocessor 1

mtc1 rd, fs
0x11 4 rt fs 0

6 5 5 5 11

Move CPU register rt to register rd in a coprocessor (register fs in the FPU).

Move conditional not zero

movn rd, rs, rt
0 rs rt rd 0xb

6 5 5 5 11

Move register rs to register rd if register rt is not 0.

Move conditional zero

movz rd, rs, rt
0 rs rt rd 0xa

6 5 5 5 11

Move register rs to register rd if register rt is 0.

Move conditional on FP false

movf rd, rs, cc
0 rs cc 0 rd 0 1

6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code ! ag number cc is 0. If
cc is omitted from the instruction, condition code ! ag 0 is assumed.

Move conditional on FP true

movt rd, rs, cc
0 rs cc 1 rd 0 1

6 5 3 2 5 5 6

Move CPU register rs to register rd if FPU condition code ! ag number cc is 1. If
cc is omitted from the instruction, condition code bit 0 is assumed.

Floating-Point Instructions

" e MIPS has a ! oating-point coprocessor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) ! oating-point numbers. " is
coprocessor has its own registers, which are numbered $f0–$f31. Because these
registers are only 32 bits wide, two of them are required to hold doubles, so only
! oating-point registers with even numbers can hold double precision values. " e
! oating-point coprocessor also has eight condition code (cc) ! ags, numbered 0–7,
which are set by compare instructions and tested by branch (bclf or bclt) and
conditional move instructions.

Values are moved in or out of these registers one word (32 bits) at a time by
lwc1, swc1, mtc1, and mfc1 instructions or one double (64 bits) at a time by ldcl
and sdcl, described above, or by the l.s, l.d, s.s, and s.d pseudoinstructions
described below.

In the actual instructions below, bits 21–26 are 0 for single precision and 1
for double precision. In the pseudoinstructions below, fdest is a ! oating-point
register (e.g., $f2).

Floating-point absolute value double

abs.d fd, fs
0x11 1 0 fs fd 5

6 5 5 5 5 6

Floating-point absolute value single

abs.s fd, fs
0x11 0 0 fs fd 5

Compute the absolute value of the ! oating-point double (single) in register fs and
put it in register fd.

Floating-point addition double

add.d fd, fs, ft
0x11 0x11 ft fs fd 0

6 5 5 5 5 6

 A.10 MIPS R2000 Assembly Language A-73

A-74 Appendix A Assemblers, Linkers, and the SPIM Simulator

Floating-point addition single

add.s fd, fs, ft
0x11 0x10 ft fs fd 0

6 5 5 5 5 6

Compute the sum of the ! oating-point doubles (singles) in registers fs and ft and
put it in register fd.

Floating-point ceiling to word

ceil.w.d fd, fs
0x11 0x11 0 fs fd 0xe

6 5 5 5 5 6

ceil.w.s fd, fs
0x11 0x10 0 fs fd 0xe

Compute the ceiling of the ! oating-point double (single) in register fs, convert to
a 32-bit # xed-point value, and put the resulting word in register fd.

Compare equal double

c.eq.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 2

6 5 5 5 3 2 2 4

Compare equal single

c.eq.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 2

6 5 5 5 3 2 2 4

Compare the ! oating-point double (single) in register fs against the one in ft
and set the ! oating-point condition ! ag cc to 1 if they are equal. If cc is omitted,
condition code ! ag 0 is assumed.

Compare less than equal double

c.le.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xe

6 5 5 5 3 2 2 4

Compare less than equal single

c.le.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xe

6 5 5 5 3 2 2 4

Compare the ! oating-point double (single) in register fs against the one in ft and
set the ! oating-point condition ! ag cc to 1 if the # rst is less than or equal to the
second. If cc is omitted, condition code ! ag 0 is assumed.

Compare less than double

c.lt.d cc fs, ft
0x11 0x11 ft fs cc 0 FC 0xc

6 5 5 5 3 2 2 4

Compare less than single

c.lt.s cc fs, ft
0x11 0x10 ft fs cc 0 FC 0xc

6 5 5 5 3 2 2 4

Compare the ! oating-point double (single) in register fs against the one in ft
and set the condition ! ag cc to 1 if the # rst is less than the second. If cc is omitted,
condition code ! ag 0 is assumed.

Convert single to double

cvt.d.s fd, fs
0x11 0x10 0 fs fd 0x21

6 5 5 5 5 6

Convert integer to double

cvt.d.w fd, fs
0x11 0x14 0 fs fd 0x21

6 5 5 5 5 6

Convert the single precision ! oating-point number or integer in register fs to a
double (single) precision number and put it in register fd.

Convert double to single

cvt.s.d fd, fs
0x11 0x11 0 fs fd 0x20

6 5 5 5 5 6

Convert integer to single

cvt.s.w fd, fs
0x11 0x14 0 fs fd 0x20

6 5 5 5 5 6

Convert the double precision ! oating-point number or integer in register fs to a
single precision number and put it in register fd.

 A.10 MIPS R2000 Assembly Language A-75

A-76 Appendix A Assemblers, Linkers, and the SPIM Simulator

Convert double to integer

cvt.w.d fd, fs
0x11 0x11 0 fs fd 0x24

6 5 5 5 5 6

Convert single to integer

cvt.w.s fd, fs
0x11 0x10 0 fs fd 0x24

6 5 5 5 5 6

Convert the double or single precision ! oating-point number in register fs to an
integer and put it in register fd.

Floating-point divide double

div.d fd, fs, ft
0x11 0x11 ft fs fd 3

6 5 5 5 5 6

Floating-point divide single

div.s fd, fs, ft
0x11 0x10 ft fs fd 3

6 5 5 5 5 6

Compute the quotient of the ! oating-point doubles (singles) in registers fs and ft
and put it in register fd.

Floating-point fl oor to word

floor.w.d fd, fs
0x11 0x11 0 fs fd 0xf

6 5 5 5 5 6

floor.w.s fd, fs
0x11 0x10 0 fs fd 0xf

Compute the ! oor of the ! oating-point double (single) in register fs and put the
resulting word in register fd.

Load fl oating-point double

l.d fdest, address pseudoinstruction

Load fl oating-point single

l.s fdest, address pseudoinstruction

Load the ! oating-point double (single) at address into register fdest.

Move fl oating-point double

mov.d fd, fs
0x11 0x11 0 fs fd 6

6 5 5 5 5 6

Move fl oating-point single

mov.s fd, fs
0x11 0x10 0 fs fd 6

6 5 5 5 5 6

Move the ! oating-point double (single) from register fs to register fd.

Move conditional fl oating-point double false

movf.d fd, fs, cc
0x11 0x11 cc 0 fs fd 0x11

6 5 3 2 5 5 6

Move conditional fl oating-point single false

movf.s fd, fs, cc
0x11 0x10 cc 0 fs fd 0x11

6 5 3 2 5 5 6

Move the ! oating-point double (single) from register fs to register fd if condi tion
code ! ag cc is 0. If cc is omitted, condition code ! ag 0 is assumed.

Move conditional fl oating-point double true

movt.d fd, fs, cc
0x11 0x11 cc 1 fs fd 0x11

6 5 3 2 5 5 6

Move conditional fl oating-point single true

movt.s fd, fs, cc
0x11 0x10 cc 1 fs fd 0x11

6 5 3 2 5 5 6

 A.10 MIPS R2000 Assembly Language A-77

A-78 Appendix A Assemblers, Linkers, and the SPIM Simulator

Move the ! oating-point double (single) from register fs to register fd if condi tion
code ! ag cc is 1. If cc is omitted, condition code ! ag 0 is assumed.

Move conditional fl oating-point double not zero

movn.d fd, fs, rt
0x11 0x11 rt fs fd 0x13

6 5 5 5 5 6

Move conditional fl oating-point single not zero

movn.s fd, fs, rt
0x11 0x10 rt fs fd 0x13

6 5 5 5 5 6

Move the ! oating-point double (single) from register fs to register fd if proces sor
register rt is not 0.

Move conditional fl oating-point double zero

movz.d fd, fs, rt
0x11 0x11 rt fs fd 0x12

6 5 5 5 5 6

Move conditional fl oating-point single zero

movz.s fd, fs, rt
0x11 0x10 rt fs fd 0x12

6 5 5 5 5 6

Move the ! oating-point double (single) from register fs to register fd if proces sor
register rt is 0.

Floating-point multiply double

mul.d fd, fs, ft
0x11 0x11 ft fs fd 2

6 5 5 5 5 6

Floating-point multiply single

mul.s fd, fs, ft
0x11 0x10 ft fs fd 2

6 5 5 5 5 6

Compute the product of the ! oating-point doubles (singles) in registers fs and ft
and put it in register fd.

Negate double

neg.d fd, fs
0x11 0x11 0 fs fd 7

6 5 5 5 5 6

Negate single

neg.s fd, fs
0x11 0x10 0 fs fd 7

6 5 5 5 5 6

Negate the ! oating-point double (single) in register fs and put it in register fd.

Floating-point round to word

round.w.d fd, fs
0x11 0x11 0 fs fd 0xc

6 5 5 5 5 6

round.w.s fd, fs 0x11 0x10 0 fs fd 0xc

Round the ! oating-point double (single) value in register fs, convert to a 32-bit
xed-point value, and put the resulting word in register fd.

Square root double

sqrt.d fd, fs
0x11 0x11 0 fs fd 4

6 5 5 5 5 6

Square root single

sqrt.s fd, fs
0x11 0x10 0 fs fd 4

6 5 5 5 5 6

Compute the square root of the ! oating-point double (single) in register fs and
put it in register fd.

Store fl oating-point double

s.d fdest, address pseudoinstruction

Store fl oating-point single

s.s fdest, address pseudoinstruction

Store the ! oating-point double (single) in register fdest at address.

Floating-point subtract double

sub.d fd, fs, ft
0x11 0x11 ft fs fd 1

6 5 5 5 5 6

 A.10 MIPS R2000 Assembly Language A-79

A-80 Appendix A Assemblers, Linkers, and the SPIM Simulator

Floating-point subtract single

sub.s fd, fs, ft
0x11 0x10 ft fs fd 1

6 5 5 5 5 6

Compute the di$ erence of the ! oating-point doubles (singles) in registers fs and
ft and put it in register fd.

Floating-point truncate to word

trunc.w.d fd, fs
0x11 0x11 0 fs fd 0xd

6 5 5 5 5 6

trunc.w.s fd, fs 0x11 0x10 0 fs fd 0xd

Truncate the ! oating-point double (single) value in register fs, convert to a 32-bit
xed-point value, and put the resulting word in register fd.

Exception and Interrupt Instructions

Exception return

eret
0x10 1 0 0x18

6 1 19 6

Set the EXL bit in coprocessor 0’s Status register to 0 and return to the instruction
pointed to by coprocessor 0’s EPC register.

System call

syscall
0 0 0xc

6 20 6

Register $v0 contains the number of the system call (see Figure A.9.1) provided
by SPIM.

Break

break code
0 code 0xd

6 20 6

Cause exception code. Exception 1 is reserved for the debugger.

No operation

nop
0 0 0 0 0 0

6 5 5 5 5 6

Do nothing.

