| Slide 2.3: The Chomsky hierarchy (cont.) Slide 2.5: Context-free grammars Home |   | 
   <number> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
             |  0<number> | 1<number> | 2<number>
             |  3<number> | 4<number> | 5<number>
             |  6<number> | 7<number> | 8<number>
             |  9<number>
A context-free grammar of simple arithmetic expressions could be
<E> ::= <E> + <T> | <E> – <T> | <T> <T> ::= <T> * <F> | <T> / <F> | <F> <F> ::= ( <E> ) | <number>The Chmosky hierarchy shows every regular set is a context-free language.
an | n is an integer ≥ 0} 
     
<A> ::= a <A> | ε
(()(()))()” is
<A> ::= ( <A> ) <A> | ε