
This is the new science of collocation and
colligation that illuminates how texts work.

Future of Texts
Corpus linguists will have to work fast to
keep up with the changing nature of texts. As
texts become shorter, more fragmentary, and
multimodal (using pictures, color, sound, ki-
netics as well as words), so strategies of
interpretation and ways of reading will
change.

A struggle is brewing too between au-
thor and reader, the producer and consumer
of texts, which has many of the dimen-
sions—political, economic, social, techno-
logical—that characterize postmodernity.
On the one hand, multimodal texts need
more attention by designers and editors to
marshal disparate forms of information into
a coherent whole. But against them is a
movement—at times fundamentalist in fer-
vor—that demands free access to “con-
tent,” and argues that publishers, editors,
and designers are part of a capitalist con-
spiracy to add cost and control access to
knowledge. Digital texts may mark the
death of design—which will become a mat-

ter of a reader’s preference setting. But
technology also gives publishers new free-
dom to reversion intellectual property, to
make it look different to different catego-
ries of reader, and to sell text by the para-
graph. The linguistic resources required to
construct and interpret longer, unified
texts—which collectively form institution-
alized genres—may be lost in all but spe-
cialized domains such as the scientific ar-
ticle. Readers will be left to make sense of
fragmentary, often contradictory informa-
tion dispersed across different channels.

Will the Future Understand Us?
When Thomas Sebeok, an American specialist
in semiotics, was asked in the 1980s to advise on
a method of communicating the whereabouts of
dangerous repositories of radioactive waste to
generations 10,000 years hence, he concluded
that there was no secure means of transmitting
such knowledge over 300 generations. Instead,
he recommended putting in place a relay system
which ensured that “as the information begins to
decay, it should be updated” and argued that any
messages written in English should be designed
for only three generations ahead—that is, 100

years (9). This may seem a short horizon—if a
linguist were faced now with a typical text from
the 22nd century, he or she would be unlikely to
conclude that the language has radically changed
in its core vocabulary or grammar. But we might
not be able to make much sense of it.

References
1. D. Graddol, The Future of English? (British Council,

London, 1997).
2. D. Graddol, in English in a Changing World, D. Grad-

dol, U. Meinhof, Eds. AILA, Milton Keynes, 1999), pp.
57–68.

3. United Nations Environment Programme, Press Re-
lease, February 2001. Also at www.unep.org/
Documents/Default.asp?DocumentID�192&ArticleID
�2765.

4. D. Crystal, Cambridge Encyclopedia of the English
Language (Cambridge Univ. Press, Cambridge, ed. 2,
2003).

5. D. Graddol, D. Leith, in English: History, Diversity and
Change, D. Graddol, D. Leith, J. Swann, Eds. (Rout-
ledge, London, 1994), pp. 136–166.

6. European Commission, Standard Eurobarometer 52,
http://europa.eu.int/comm/public_opinion/archives/
eb/eb52/eb52_en.htm (2000).

7. N. Chomsky, Syntactic Structures (Mouton, The
Hague, 1957).

8. E. Sapir, Language (Harcourt, Brace & World, New
York, 1921), p. 39.

9. T. A. Sebeok, in On Signs, M. Blonsky, Ed. (Blackwell,
Oxford, 1985), pp. 448–466.

V I E W P O I N T

Software and the Future of
Programming Languages

Alfred V. Aho

Although software is the key enabler of the global information infrastructure, the
amount and extent of software in use in the world today are not widely understood, nor
are the programming languages and paradigms that have been used to create the
software. The vast size of the embedded base of existing software and the increasing
costs of software maintenance, poor security, and limited functionality are posing
significant challenges for the software R&D community.

We are living in a rapidly evolving information
age. Computers, networks, and information per-
vade modern society. Some of the components
are visible: Virtually every office and home is
equipped with information devices such as per-
sonal computers (PCs), printers, and network
connection devices. An increasing fraction of the
population is using the Internet for tasks as var-
ied as e-mail, messaging, searching for informa-
tion, entertainment, and electronic shopping. The
amount of information on the Internet is mea-
sured in exabytes.

Most of the infrastructure supporting the in-
formation age, however, is not evident. Today’s
information appliances such as TVs, organizers,

and phones contain microprocessors and other
forms of embedded computer systems. Telecom-
munications and Internet access systems are all
controlled by networked computers. Wireless
networks with voice and data capabilities are
found the world over.

The information age has been thrust upon
society, and everyone is being affected by the
new technology. The information infrastructure
is creating new opportunities for improving all
aspects of life from childhood to old age. But the
technology is also creating new challenges, es-
pecially in areas such as the security and privacy
of information systems.

The Unappreciated Importance of
Software
Few people appreciate the importance of
software— until it breaks! The amount of

software used by governments, companies,
educational institutions, and people
throughout the world is staggering. An in-
dividual system, such as a PC operating
system, can consist of many tens of mil-
lions of lines of code. If we assume that
there are 5 million programmers world-
wide, each producing 5000 lines of new
software a year (the industry average), then
a conservative estimate is that the world is
already using hundreds of billions of lines
of software to conduct its affairs. Assuming
that it costs somewhere between $10 and
$100 to produce a line of working software,
we see that the worldwide investment in
software is in the trillions of dollars. A
software system requiring tens of millions
of lines of code would cost hundreds of
millions of dollars to develop from scratch.
The high cost of new software development
is one of the principal drivers of the cre-
ation of open-source software, whose sys-
tem development is essentially done for
free by volunteer software specialists
throughout the world. But open-source
software has created another market oppor-

Department of Computer Science, Columbia Univer-
sity, New York, NY 10027, USA. E-mail: aho@cs.
columbia.edu

E V O L U T I O N O F L A N G U A G E

www.sciencemag.org SCIENCE VOL 303 27 FEBRUARY 2004 1331

S
P
E
C
IA

L
S
E
C
T
IO

N

tunity: companies that provide maintenance
and customization services for users of
open-source systems.

A more sobering figure lies in the num-
ber of defects in this huge embedded soft-
ware base. Software managers estimate that
the number of defects per million lines of
delivered software ranges between 10 and
10,000. Assuming an embedded base of
500 billion lines of software, this would
mean there are somewhere between 5 mil-
lion and 50 billion defective lines lurking in
the embedded base waiting to be triggered.
It is not known how many of these are
showstopper defects that result in the fail-
ure of a system, but all too often major
critical systems fail because of software
defects. It has been estimated that the Y2K
software problem cost hundreds of billions
of dollars to fix. Because software defects
can result in huge economic losses, or in
some cases the catastrophic failure of a
system, a lot of software research is being
devoted to more effective methods than
testing for making reliable software.

How Programming Languages Have
Evolved
The first programming languages were ma-
chine languages, consisting of commands
expressed as sequences of 0’s and 1’s that
told the computer what operations to exe-
cute. It was difficult and time-consuming to
write programs in machine language, and
once written, the programs were hard to
decipher and modify. The first significant
step toward a more human-friendly pro-
gramming language was the invention of
assembly languages in the 1950s. Assembly
languages are still close to the machine, but
when sequences of 0’s and 1’s were re-
placed by mnemonic commands, such as
“load register X from memory location Y”
or “store the contents of register X into
memory location Y,” programs became
easier for humans to write and modify.

In the latter half of the 1950s, another
major step was made in the design of more
human-friendly languages. The higher-lev-
el languages Fortran, Cobol, and Lisp were
invented: Fortran for scientific computa-
tion, Cobol for business data processing,
and Lisp for symbol processing. After some
initial resistance by hard-core assembly
language programmers who felt that pro-
grams written in these languages would not
run as fast as their assembly language pro-
grams, these languages became immensely
popular in their respective communities.
Fortran became the lingua franca of scien-
tific computing, Cobol was for many years
the world’s most popular programming lan-
guage, and Lisp became the mainstay of the
artificial intelligence community. Their
popularity stemmed from the fact that pro-

grams for the intended application areas
could be written more rapidly, concisely,
and easily in these languages than in as-
sembler language. Indeed, these languages
and their descendants continue to be widely
used even today.

The 1960s saw the development of Algol
60, the first programming language with
block structure. Although Algol 60 was never
widely used, it is notable for the languages it
influenced, including Pascal and Modula. Al-
gol 60 also introduced BNF (for Backus-Naur
Form), now a widely used grammatical nota-
tion for expressing the syntax of a language.
For many years, Pascal was used as the in-
troductory programming language in comput-
er science departments.

John Kemeny, while at Dartmouth Col-
lege, felt that every college student should
know how to program; and in the early 1960s,
he and Thomaz Kurtz created a simple im-
perative language called Basic, which was
easy to learn. Basic spawned many dialects,
the most notable of which is Visual Basic,
arguably the world’s dominant programming
language today.

Another major development during the
1960s was the introduction of object orienta-
tion into programming through the creation
of Simula 67 (1). Like Algol 60, Simula 67
itself was not widely used, but its influence
was profound. Nearly every modern general-
purpose programming language today sup-
ports object-oriented programming. Object
orientation allows a programmer to focus on
the design of the data (objects) and the inter-
faces to the data. It facilitates “plug and play”
among software modules.

In the early 1970s, Dennis Ritchie at Bell
Labs created the systems programming lan-
guage C to implement the third version of the
Unix operating system that he was codevel-
oping with Ken Thompson. In the 1980s,
Bjarne Stroustrup, also at Bell Labs, created
C��, an extension of C with object orienta-
tion. Because of their efficiency and early
association with Unix, C and C�� became
the most widely used systems program-
ming languages.

Another genre of popular programming
languages is the scripting languages: typeless
languages with high-level primitives for ma-
nipulating data (2). Some of the most popular
languages of today, such as awk, javascript,
perl, php, python, sh, and tcl, are scripting
languages. With these languages it is possible
to specify programming tasks in a few lines
of code that would otherwise take hundreds
of lines in a lower-level language such as C
or C��.

Trends in Modern Language Design
The newest major programming languages,
Java and C#, build on the legacy of C and
C�� but incorporate features that support

the notion that the information infrastruc-
ture must be a robust distributed system.
Many of the features in these languages are
based on strong theoretical underpinnings,
such as strong type systems and monitors,
and on software design techniques that
have been extensively explored by the com-
puter science research community. Here are
some of the design principles that the cre-
ators of these new languages have espoused
(3).

Simplicity. Programmers want languages
that are easy to learn, use, and understand.
The newer languages tend to have support
for features that make programming easier,
such as automatic garbage collection; yet
have a syntax that is familiar to C and
C�� programmers.

Robustness. Because security and safety
are of paramount importance in modern soft-
ware systems, the new languages have strong
type systems that allow more errors to be
caught at compile time, and they restrict the
use of pointers, which account for many of
the vulnerabilities that hackers tend to exploit
in C and C�� programs.

Portability. Programmers would like their
programs to run on as wide a variety of
machine architectures as possible, producing
the same results. The newer languages have
introduced mechanisms such as run-time
bytecode interpreters, which allow the same
program to be run, producing the same re-
sults, on different machine architectures.

Internet compatibility. Everyone would
like to access software applications from any-
where on the Internet. The new languages either
have class libraries or access to class libraries
that facilitate the connection of programs with
Internet protocols and applications.

Concurrency. Modern applications need
to interact with many systems at the same
time. The newer languages have multithread-
ing and concurrency primitives that support
the building of applications requiring simul-
taneous multiple threads of execution.

Languages of the Future
Software can be used in virtually any field of
human endeavor. Just as there are different
notations for dealing with chemistry, dance,
law, mathematics, music, and so on, there
will never be a single language for creating
all forms of software. There are already thou-
sands, perhaps tens of thousands, of program-
ming languages in use today. Each field has
at least one language that is used primarily by
the practitioners of that field. Most college
students today are familiar with languages for
editing documents, formatting papers, creat-
ing presentations, and performing calcula-
tions. Each language is universal in the sense
that it is capable of expressing any computa-
tion, but each language has been designed so
it is easy to use for the applications it was

E V O L U T I O N O F L A N G U A G E

27 FEBRUARY 2004 VOL 303 SCIENCE www.sciencemag.org1332

S
P
E
C
IA

L
S
E
C
T
IO

N

designed for, be it hardware design or music
synthesis. Naturalness and ease of use will
most likely continue to be dominant influenc-
es in language design.

Some researchers are currently exploring
more exotic forms of languages involving
speech, gestures, pictures, and templates. It is
not clear at this point whether multimedia
will become a dominant feature in program-
ming languages of the future, but it is quite
clear that in certain application areas, these
new forms of communication with computers
are compelling.

Making Software Systems More
Reliable
A fundamental question for the field of soft-
ware development is whether there is a sci-
entific basis for making reliable software. In
1956, von Neumann showed how more reli-
able hardware could be made from unreliable
components by using redundancy (4), and
earlier Shannon showed that unreliable com-
munication over a noisy channel could be
made more reliable by using error-detecting
and -correcting codes (5). Today, redundancy

and error-detecting and -correcting codes are
routinely used.

No analogous technique is known for
making reliable software. Although the pro-
duction of software involves people as well
as process and technology, the human com-
ponent in the production of software has not
been adequately understood or modeled.
Some software researchers have advocated
N-version programming, a technique where
two or more people independently write a
program from the same specification, but
subsequently researchers have discovered
that programmers tend to make the same
kinds of mistakes even if they don’t commu-
nicate with one another (6).

It is unlikely that humans will ever write
software with zero defects. Researchers are
actively exploring many techniques to
make more reliable software systems,
keeping the frailties of human program-
mers in mind. Static type checking and
model checking provide promising avenues
for detecting errors earlier in the software
life cycle. A more ambitious approach is to
see whether software systems can be de-

signed to be resilient to errors. An even
more ambitious approach is to design sys-
tems that automatically correct errors when
they are detected. The goals of this research
are laudable, but most likely it will be some
time before we will see self-correcting soft-
ware systems widely deployed in practice.
What we can be certain about is that the
embedded base of software will continue to
grow in size, diversity, and functionality.

References and Notes
1. K. Nygaard, O. Dahl, in Proceedings of the ACM

SIGPLAN History of Programming Languages Confer-
ence, R. L. Wexelblat, Ed. (ACM Monograph Series,
New York, 1981), pp. 439–493.

2. J. Osterhout, Higher Level Programming Languages for
the 21st Century (IEEE Computer, IEEE, New York,
1998), pp. 23–30.

3. For an overview of these principles, see http://
java.sun.com/docs/overviews/java/java-overview-1.
html.

4. J. von Neumann, in Automata Studies, C. E. Shannon,
J. McCarthy, Eds. (Princeton Univ. Press, Princeton, NJ,
1956), pp. 43–98.

5. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
6. S. Brilliant, J. Knight, N. Leveson, IEEE Trans. Software

Eng. 16, 238 (1990).

V I E W P O I N T

Of Towers, Walls, and Fields:
Perspectives on Language in Science

Scott Montgomery

Language in science is in the midst of change and appears dominated by two
contradictory trends. Globalization of scientific English seems to promise greater
international unity, while growth of field-specific jargon suggests communicational
diaspora. Real in part, each trend is complex and multileveled, and includes elements
of convergence and divergence, along with important implications for the present
and future of technical knowledge.

Science, it appears, has come to a historical
crossroads. On the one hand, it would seem to
have completed the Tower of Babel, its
knowledge now reaching far beyond the
heavens and, through the global spread of
English, recovering the ancient dream of a
single language for the wisdom of the na-
tions. Yet, from another vantage, the very
opposite is suggested: this great tower of
unanimity broken and rebuilt into a thousand
walls by the power of jargon, dividing the
disciplines by the arcanity of specialist
speech.

Two great trends of opposing force, two
linguistic movements that annul each oth-
er’s action. Is such a state of affairs real,
and is it prevalent? What do the facts say,

as far as we can discern them, and what are
their implications?

These are not mere academic questions.
Scientific knowledge exists because scien-
tists are writers and speakers, users and
sharers of language that, like all language,
is constantly evolving. Words are the pri-
mary medium by which technical work is
embodied, added to the corpus of profes-
sional understanding, and passed on. What-
ever directly affects the speech of science
and its development affects scientific en-
deavor near its core—its ability to express
and render available its nuclear substance.

Take the case of English, then. How true
is the claim that it constitutes an interna-
tional language for science, an ever-
expanding one? The answer is “very true,”
indeed, but with certain limits and
qualifications.

The Role of English
Dominant use of English in science must be
understood within a larger frame. First, there is
the advent of this tongue as a global language
generally. British colonialism sowed the seeds
early on, in North America, India, Australia,
Hong Kong, and other centers of influence. Si-
multaneously, the Industrial Revolution gave
English prominence in technological matters
crucial to modernization. However, it has really
been since World War II, which so greatly ad-
vanced U.S. military, economic, technological,
and political sway (and thereby, cultural impact),
that English has become linguistic capital for
the larger world. Today, this tongue serves as
lingua franca for a wide range of domains in
daily experience: entertainment, advertising,
travel and tourism, international business, tele-
communications, the news media, computer
technology. English is now the most popular,
and most required, foreign language to be
studied anywhere (1). Its uptake in technical
circles, meanwhile, has been aided by the rise
of “big science” in the United States and the
resulting vast increase in scientific output. En-
glish, in a sense, has ridden a great wave of
cultural and intellectual affluence.

1511 18th Avenue East, Seattle, WA 98112, USA.
E-mail: scott.montgomery@prodigy.net

E V O L U T I O N O F L A N G U A G E

www.sciencemag.org SCIENCE VOL 303 27 FEBRUARY 2004 1333

S
P
E
C
IA

L
S
E
C
T
IO

N

