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Preface

This is a working draft of a book on the foundations of programming lan-
guages. The central organizing principle of the book is that programming
language features may be seen as manifestations of an underlying type
structure that governs its syntax and semantics. The emphasis, therefore,
is on the concept of type, which codifies and organizes the computational
universe in much the same way that the concept of set may be seen as an
organizing principle for the mathematical universe. The purpose of this
book is to explain this remark.

This is very much a work in progress, with major revisions made nearly
every day. This means that there may be internal inconsistencies as revi-
sions to one part of the book invalidate material at another part. Please
bear this in mind!

Corrections, comments, and suggestions are most welcome, and should
be sent to the author at rwh@cs.cmu.edu.
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Part I

Judgements and Rules





Chapter 1

Inductive Definitions

Inductive definitions are an indispensable tool in the study of program-
ming languages. In this chapter we will develop the basic framework of
inductive definitions, and give some examples of their use.

1.1 Objects and Judgements

We start with the notion of a judgement, or assertion, about an object of study.
We shall make use of many forms of judgement, including examples such
as these:

n nat n is a natural number
n = n1 + n2 n is the sum of n1 and n2
a ast a is an abstract syntax tree
τ type τ is a type
e : τ expression e has type τ
e ⇓ v expression e has value v

A judgement states that one or more objects have a property or stand in
some relation to one another. The property or relation itself is called a judge-
ment form, and the judgement that an object or objects have that property
or stand in that relation is said to be an instance of that judgement form.
A judgement form is also called a predicate, and the objects constituting an
instance are its subjects.

We use the meta-variable C to stand for an unspecified judgement form,
and the meta-variables a, b, and c to stand for unspecified objects. We write
a C for the judgement asserting that C holds of a. When it is not important
to stress the subject of the judgement, we write J to stand for an unspecified



4 1.2. INFERENCE RULES

judgement. For particular judgement forms, we freely use prefix, infix, or
mixfix notation, as illustrated by the above examples, in order to enhance
readability.

We are being deliberately vague about the universe of objects that may
be involved in an inductive definition. The rough-and-ready rule is that
any sort of finite construction of objects from other objects is permissible.
For example, we shall assume that the universe of objects is closed under
the formation of finite n-tuples of objects, written (a1, . . . , an), where the
ai’s are objects. More generally we permit the formation of trees in which
nodes are operators that construct a tree from finitely many other trees con-
structed by a similar process. It will not be necessary to be more exacting
than this, but please see Section 1.8 on page 13 for further discussion of
foundational issues.

1.2 Inference Rules

An inductive definition consists of a collection of rules of the form

J1 . . . Jk
J

, (1.1)

where J and the Ji’s are judgements. The assertions above the horizontal
line are called the premises of the rule, and the judgement below the line is
called its conclusion. If a rule has no premises (that is, when k is zero), the
rule is an axiom; otherwise it is a proper rule.

An inference rule may be read as an implication stating that the premises
are sufficient for the conclusion: to show J, it is enough to show J1, . . . , Jk.
When k is zero, a rule states that its conclusion holds unconditionally. Bear
in mind that there may be, in general, many rules with the same conclusion,
each specifying sufficient conditions for the conclusion. Consequently, if
the conclusion of a rule holds, then it is not necessary that the premises
hold, for it might have been derived by another rule.

For example, the following rules constitute an inductive definition of
the judgement a nat:

zero nat (1.2a)
a nat

succ(a) nat
(1.2b)

These rules specify that a nat holds whenever either a is zero, or a is
succ(b) where b nat. Taking these rules to be exhaustive, it follows that
a nat iff a is a natural number.

11:12PM DRAFT JULY 8, 2008



1.3. DERIVATIONS 5

Similarly, the following rules constitute an inductive definition of the
judgement a tree:

empty tree (1.3a)

a1 tree a2 tree

node(a1; a2) tree
(1.3b)

These rules specify that a tree holds if either a is empty, or a is node(a1; a2),
where a1 tree and a2 tree. Taking these to be exhaustive, these rules state
that a is a binary tree, which is to say it is either empty, or a node consisting
of two children, each of which is also a binary tree.

The judgement a = b nat defining equality of a nat and b nat is induc-
tively defined by the following rules:

zero = zero nat (1.4a)

a = b nat
succ(a) = succ(b) nat

(1.4b)

Strictly speaking, each of the preceding examples consists of infinitely
many rules, one for each choice of object appearing in the rules. We specify
an infinite family of rules using a rule scheme involving one or more param-
eters that range over objects. An instance of a rule scheme is a rule obtained
by systematically replacing the parameters by objects. A rule scheme al-
ways stands for the collection of its instances.

When we say that a collection of rules constitutes an inductive defi-
nition of a judgement, we mean that the judgement holds if and only if it
can be shown to do so by an application of these rules. In other words,
the rules are necessary and sufficient for the judgement to hold. The natural
“top down” reading of a rule corresponds to its sufficiency: if the premises
hold, then the conclusion holds. Necessity is expressed by the implicit ex-
tremal clause stating that no other rule applies, or, in other words, if J holds,
then it is only by virtue of the given rules. Sufficiency allows us to “work
forward” to show that J holds by deriving it according to the rules. Neces-
sity allows us to “work backwards” from the fact that J holds to show some
property P of it by induction.

1.3 Derivations

To show that an inductively defined judgement holds, it is enough to ex-
hibit a derivation of it. A derivation of a judgement is a composition of rules,
starting with axioms and ending with that judgement. It may be thought of
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6 1.3. DERIVATIONS

as a tree in which each node is a rule whose children are derivations of its
premises. A derivation of J constitutes evidence for an inductively defined
judgement J.

We usually depict derivations as trees with the conclusion at the bot-
tom, and with the children of a node corresponding to a rule appearing
above it as evidence for the premises of that rule. Thus, if

J1 . . . Jk
J

is an inference rule and ∇1, . . . ,∇k are derivations of its premises, then

∇1 . . . ∇k
J (1.5)

is a derivation of its conclusion. In particular, if k = 0, then the node has no
children.

For example, here is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat

succ(succ(zero)) nat
succ(succ(succ(zero))) nat

.
(1.6)

Similarly, here is a derivation of node(node(empty; empty); empty) tree:

empty tree empty tree

node(empty; empty) tree empty tree

node(node(empty; empty); empty) tree
.

(1.7)

To show that an inductively defined judgement is derivable we need
only find a derivation for it. There are two main methods for finding
derivations, called forward chaining, or bottom-up construction, and backward
chaining, or top-down construction. Forward chaining starts with the axioms
and works forward towards the desired conclusion, whereas backward
chaining starts with the desired conclusion and works backwards towards
the axioms.

More precisely, forward chaining search maintains a set of derivable
judgements, and continually extends this set by adding to it the conclusion
of any rule all of whose premises are in that set. Initially, the set is empty;
the process terminates when the desired judgement occurs in the set. As-
suming that all rules are considered at every stage, forward chaining will
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1.4. RULE INDUCTION 7

eventually find a derivation of any derivable judgement, but it is impos-
sible (in general) to decide algorithmically when to stop extending the set
and conclude that the desired judgement is not derivable. We may go on
and on adding more judgements to the derivable set without ever achiev-
ing the intended goal. It is a matter of understanding the global properties
of the rules to determine that a given judgement is not derivable.

Forward chaining is undirected in the sense that it does not take account
of the end goal when deciding how to proceed at each step. In contrast,
backward chaining is goal-directed. Backward chaining search maintains
a queue of current goals, judgements whose derivations are to be sought.
Initially, this set consists solely of the judgement we wish to derive. At each
stage, we remove a judgement from the queue, and consider all rules whose
conclusion is that judgement. For each such rule, we add the premises of
that rule to the back of the queue. The process terminates when the queue
is empty, all goals having been achieved. As with forward chaining, back-
ward chaining will eventually find a derivation of any derivable judge-
ment, but there is, in general, no algorithmic method for determining in
general whether the current goal is derivable. If it is not, we may futilely
add more and more judgements to the goal set, never reaching a point at
which all goals have been satisfied.

1.4 Rule Induction

Since an inductively defined judgement holds only if there is some deriva-
tion of it according to the rules, we may prove properties of such judge-
ments by rule induction, or induction on derivations. We write P(J) to indi-
cate that the property P holds whenever the judgement J is derivable. To
show that P holds of all derivable J, it is enough to show that P is closed
under the rules defining J. This means that for every rule of the form

J1 . . . Jk
J

,

we have
if P(J1), . . . , P(Jk), then P(J).

The conjunction of properties P(J1), . . . ,P(Jk) is called the inductive hypoth-
esis, and the proof of the implication itself is called the inductive step.

The principle of rule induction is an expression of the fact that the
judgement, J, inductively defined by a set of rules is the strongest judgement
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8 1.4. RULE INDUCTION

closed under those rules. Put in other terms, if J is derivable, it can only be
because there is some rule with J as conclusion such that each premise of
that rule is also derivable. Inductively, we may assume that P holds of each
of the premises while showing that it also holds of the conclusion. If we can
do this for every rule, then P must hold whenever J is derivable. Note that
when a rule has no premises, we are obliged to show P outright.

If P(J) is closed under a set of rules defining a judgement J, then so is
the conjunction Q(J) = P(J) ∧ J, because J is automatically closed under
the rules that define it. This means that in each inductive step of a proof
by rule induction we may freely assume both Ji and P(Ji) for each of the
premises of the rule to derive P(J) for its conclusion. We shall generally
take advantage of this without explicit comment.

As a matter of notation, when J has the form a C for some predicate C,
we sometimes write PC(a), or even just P(a), instead of P(a C) when car-
rying out a proof by rule induction. For specific properties P we often use
ad hoc notational conventions whose meaning should be clear from context.

When specialized to Rules (1.2), the principle of rule induction states
that to show P(a nat) whenever a nat, it is enough to show:

1. P(zero nat).

2. P(succ(a) nat), assuming P(a nat).

This is just the familiar principle of mathematical induction arising as a spe-
cial case of rule induction.

Similarly, rule induction for Rules (1.3) states that to show P(a tree)
whenever a tree, it is enough to show

1. P(empty tree).

2. P(node(a1; a2) tree), assuming P(a1 tree) and P(a2 tree).

This is called the principle of tree induction, and is once again an instance of
rule induction.

As a simple example of a proof by rule induction, let us prove that nat-
ural number equality as defined by Rules (1.4) is reflexive:

Lemma 1.1. If a nat, then a = a nat.

Proof. By rule induction on Rules (1.2):

Rule (1.2a) Applying Rule (1.4a) we obtain zero = zero nat.
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1.4. RULE INDUCTION 9

Rule (1.2b) Assume that a = a nat. It follows that succ(a) = succ(a) nat
by an application of Rule (1.4b).

As another example of the use of rule induction, we may show that the
predecessor of a natural number is also a natural number. While this may
seem self-evident, the point of the example is to show how to derive this
from first principles.

Lemma 1.2. If succ(a) nat, then a nat.

Proof. It is instructive to re-state the lemma in a form more suitable for
inductive proof: if b nat and b is succ(a) for some a, then a nat. We proceed
by rule induction on Rules (1.2).

Rule (1.2a) Vacuously true, since zero is not of the form succ(−).

Rule (1.2b) We have that b is succ(b′), and we may assume both that the
lemma holds for b′ and that b′ nat. The result follows directly, since if
succ(b′) = succ(a) for some a, then a is b′.

Similarly, let us show that the successor operation is injective.

Lemma 1.3. If succ(a1) = succ(a2) nat, then a1 = a2 nat.

Proof. It is instructive to re-state the lemma in a form more directly amenable
to proof by rule induction. We are to show that if b1 = b2 nat then if b1 is
succ(a1) and b2 is succ(a2), then a1 = a2 nat. We proceed by rule induc-
tion on Rules (1.4):

Rule (1.4a) Vacuously true, since zero is not of the form succ(−).

Rule (1.4b) Assuming the result for b1 = b2 nat, and hence that the premise
b1 = b2 nat holds as well, we are to show that if succ(b1) is succ(a1)
and succ(b2) is succ(a2), then a1 = a2 nat. Under these assumptions
we have b1 is a1 and b2 is a2, and so a1 = a2 nat is just the premise
of the rule. (We make no use of the inductive hypothesis to complete
this step of the proof.)

Both proofs rely on some natural assumptions about the universe of
objects; see Section 1.8 on page 13 for further discussion.

JULY 8, 2008 DRAFT 11:12PM



10 1.5. ITERATED AND SIMULTANEOUS . . .

1.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive defini-
tion builds on top of another. For example, the following rules, define the
judgement a list stating that a is a list of natural numbers.

nil list (1.8a)

a nat b list
cons(a; b) list

(1.8b)

The second rule refers to the judgement a nat defined earlier.
Frequently two or more judgements are defined at once by a simultane-

ous inductive definition. In a simultaneous inductive definition the rules may
involve several different judgements, none of which may be considered de-
fined prior to or separately from the others. The principle of rule induction
applies as usual, except that the property P applies to each of the several
judgements being defined.

For example, consider the following rules, which constitute a simulta-
neous inductive definition of the judgements a even, stating that a is an
even natural number, and a odd, stating that a is an odd natural number:

zero even (1.9a)

a odd
succ(a) even

(1.9b)

a even
succ(a) odd (1.9c)

The principle of rule induction for these rules states that to show simul-
taneously that P(a even) whenever a even and P(a odd) whenever a odd, it
is enough to show the following:

1. P(zero even);

2. if P(a odd), then P(succ(a) even);

3. if P(a even), then P(succ(a) odd).

When rewritten using Peven(a) and Podd(a), these conditions are as follows:

1. Peven(zero);

2. if Podd(a), then Peven(succ(a)).

3. if Peven(a), then Podd(succ(a));
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1.6. DEFINING FUNCTIONS BY RULES 11

1.6 Defining Functions by Rules

Another common use of inductive definitions is to present a function by
an inductive definition of its graph, which relates its input(s) to its output,
then showing separately that the graph is a function. For example, one way
to define the addition function on natural numbers is to define inductively
the judgement sum(a, b, c), with the intended meaning that c is the sum of
a and b, as follows:

b nat
sum(zero, b, b) (1.10a)

sum(a, b, c)
sum(succ(a), b, succ(c))

(1.10b)

We then show that c is uniquely determined as a function of a and b.

Theorem 1.4. For every a nat and b nat, there exists a unique c nat such that
sum(a, b, c).

Proof. The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists c nat such that sum(a, b, c).

2. (Uniqueness) If a nat, b nat, c nat, c′ nat, sum(a, b, c), and sum(a, b, c′),
then c = c′ nat.

For existence, let P(a nat) be the proposition if b nat then there exists c nat
such that sum(a, b, c). We prove that if a nat then P(a nat) by rule induction
on Rules (1.2). We have two cases to consider:

Rule (1.2a) We are to show P(zero nat). Assuming b nat and taking c to
be b, we obtain sum(zero, b, c) by Rule (1.10a).

Rule (1.2b) Assuming P(a nat), we are to show P(succ(a) nat). That is,
we assume that if b nat then there exists c such that sum(a, b, c), and
are to show that if b′ nat, then there exists c′ such that sum(succ(a), b′, c′).
To this end, suppose that b′ nat. Then by induction there exists c such
that sum(a, b′, c). Taking c′ = succ(c), and applying Rule (1.10b), we
obtain sum(succ(a), b′, c′), as required.

For uniqueness, we prove that if sum(a, b, c1), then if sum(a, b, c2), then c1 = c2 nat
by rule induction based on Rules (1.10).

Rule (1.10a) We have a = zero and c1 = b. By an inner induction on
the same rules, we may show that if sum(zero, b, c2), then c2 is b. By
Lemma 1.1 on page 8 we obtain b = b nat.
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12 1.7. MODE SPECIFICATIONS

Rule (1.10b) We have that a = succ(a′) and c1 = succ(c′1), where sum(a′, b, c′1).
By an inner induction on the same rules, we may show that if sum(a, b, c2),
then c2 = succ(c′2) nat where sum(a′, b, c′2). By the outer inductive
hypothesis c′1 = c′2 nat and so c1 = c2 nat.

1.7 Mode Specifications

The statement that one or more arguments of a judgement is (perhaps uniquely)
determined by its other arguments is called a mode specification for that
judgement. In the case of addition we have proved that every two natural
numbers have a sum, without proving that the sum is uniquely determined
by its arguments. This can be concisely stated by saying that the addition
judgement has the mode (∀, ∀, ∃), corresponding to the proposition for all
a nat and for all b nat, there exists c nat such that sum(a, b, c). If we wish to
further specify that c is uniquely determined by a and b, we would say that
the judgement has mode (∀, ∀, ∃!), corresponding to the proposition for all
a nat and for all b nat, there exists a unique c nat such that sum(a, b, c). This
states that the sum is a (total) function of its two arguments. If we wish only
to specify that the sum is unique, if it exists, then we would say that the ad-
dition judgement has mode (∀, ∀, ∃≤1), corresponding to the proposition
for all a nat and for all b nat there exists at most one c nat such that sum(a, b, c).
In other words, this mode states that the sum is a partial function of its ar-
guments, which is weaker than stating that it is a total function. In the case
of addition there is no particular reason to settle for this weaker property,
but if we were, instead, to consider the quotient operation, then the best we
can do is to show that the quotient is a partial function of its dividend and
divisor.

As these examples illustrate, a given judgement may satisfy several dif-
ferent mode specifications. In general the universally quantified arguments
are to be thought of as the inputs of the judgement, and the existentially
quantified arguments are to be thought of as its outputs. We usually try to
arrange things so that the outputs come after the inputs, but it is not es-
sential that we do so. For example, addition also has the mode (∀, ∃≤1, ∀),
stating that the sum and the first addend uniquely determine the second
addend, if there is any such addend at all. Put in other terms, addition
of natural numbers has a (partial) inverse, namely subtraction! We could
equally well show that addition has mode (∃≤1, ∀, ∀), which is just another
way of stating that addition has a partial inverse over the natural numbers.
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Often there is an intended, or principal, mode of a given judgement,
which we often foreshadow by choosing our notation to reflect it. For
example, when giving an inductive definition of a function, we often use
equations to indicate the intended input and output relationships. For ex-
ample, we may re-state the inductive definition of addition (1.10) using
equations.

a nat
a + zero = a nat (1.11a)

a + b = c nat
a + succ(b) = succ(c) nat

(1.11b)

When using this notation we tacitly incur the obligation to prove that the
mode of the judgement is such that the object on the right-hand side of the
equations is determined as a function of those on the left. Having done so,
we abuse the notation by using the relation as function, writing just a + b
for the unique c such that a + b = c nat.

1.8 Foundations

An inductively defined judgement form, such as a nat, may be seen as
“carving out” a particular class of objects from an (as yet unspecified) uni-
verse of discourse that is rich enough to include the objects in question. That
is, among the objects in the universe, the judgement a nat isolates those
objects of the form succ(. . . succ(zero) . . .). But what, precisely, are these
objects? And what sorts of objects are permissible in an inductive defini-
tion?

One answer to these questions is to fix in advance a particular set to
serve as the universe over which all inductive definitions are to take place.
This set must be proved to exist on the basis of the standard axioms of
set theory, and the objects that we wish to use in our inductive definitions
must be encoded as elements of this set. But what set shall we choose as
our universe? And how are the various objects of interest encoded within
it?

At the least we wish to include all possible finitary trees whose nodes are
labelled by an element of an infinite set of operators. The object succ(succ(zero))
is a tree of height two whose root is labelled with the operator succ and
whose sole child is also so labelled and has a child labelled zero. Judge-
ments with multiple arguments, such as a + b = c nat, may be handled by
demanding that the universe also be closed under formation of finite tu-
ples (a1, . . . , an) of objects. One may consider other forms of objects, such
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as infinitary trees, whose nodes may have infinitely many children, or reg-
ular trees, whose nodes may have ancestors as children, but we shall not
have need of these in our work.

To construct a set of finitary objects requires that we fix a representation
of trees and tuples as certain sets. This can be done, but the results are
notoriously unenlightening.1 Instead we shall simply assert that such a
set exists (i.e., can be constructed from the standard axioms of set theory).
The construction should ensure that we can construct any finitary tree, and,
given any finitary tree, determine the operator at its root and the set of trees
that are its children.

While many will feel more secure by working within set theory, it is im-
portant to keep in mind that accepting the axioms of set theory is far more
dubious, foundationally speaking, than just accepting the existence of fini-
tary trees indepdendently of their representation as sets. Moreover, there
is a significant disadvantage to working with sets, because doing so com-
plicates the argument for the computability of our constructions. If we use
abstract sets to model computational phenomena, we incur the additional
burden of showing that these set-theoretic constructions can all be imple-
mented on a computer. In contrast, it is intuitively clear how to represent
finitary trees on a computer, and how to compute with them by recursion,
so no further explanation is required.

1.9 Exercises

1. Give an inductive definition of the judgement max(a, b, c), where a nat,
b nat, and c nat, with the meaning that c is the larger of a and b. Prove
that this judgement has the mode (∀, ∀, ∃!).

2. Consider the following rules, which define the height of a binary tree
as the judgement hgt(a; b).

hgt(empty; zero) (1.12a)

hgt(a1; b1) hgt(a2; b2) max(b1, b2, b)
hgt(node(a1; a2); succ(b))

(1.12b)

Prove by tree induction that the judgement hgt has the mode (∀, ∃!),
with inputs being binary trees and outputs being natural numbers.

1Perhaps you have seen the definition of the natural number 0 as the empty set, ∅,
and the number n + 1 as the set n ∪ { n }, or the definition of the ordered pair 〈a, b〉 =
{ a, { a, b } }. Similar coding tricks can be used to represent any finitary tree.
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3. Give an inductive definition of the judgement “∇ is a derivation of J”
for an arbitrary inductively defined judgement J.

4. Give an inductive definition of the forward-chaining and backward-
chaining search strategies.
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Chapter 2

Hypothetical Judgements

A categorical judgement is an unconditional assertion about some object of
the universe. The inductively defined judgements given in Chapter 1 are all
categorical. A hypothetical judgement is made on the basis of one or more hy-
potheses, or assumptions, that entail a consequent. We will consider two forms
of hypothetical judgement, the derivability judgement and the admissibility
judgement, which are both defined relative to some fixed set of rules. These
two forms of hypothetical judgement share a common set of structural prop-
erties that characterize reasoning under hypotheses. These properties are
central to the extension of inductive definitions to admit rules with hypo-
thetical judgements as premises.

2.1 Derivability

For a given set of rules defining a collection of categorical judgements, we
define the derivability judgement, written J ` K, where J and K are cate-
gorical judgements, to mean that we may derive the judgement K from the
extension of our rule set with J as a new axiom (i.e., a rule without premises
having J as conclusion). The assertion J is called the hypothesis, and K the
consequent of the hypothetical judgement.

The hypothetical judgement is naturally extended to permit K to be hy-
pothetical to obtain the iterated form

J1 ` J2 ` . . . Jn ` K, (2.1)

which we abbreviate to
J1, . . . , Jn ` K. (2.2)
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We often use Γ to stand for a finite sequence of assertions, writing Γ ` K to
mean that K is derivable from the judgements Γ.

There is a close correspondence between inference rules and derivabil-
ity judgements. Each inference rule defining a judgement form gives rise
to a valid derivability judgement. For if

J1 . . . Jn

J
(2.3)

is a primitive rule, then the judgement J1, . . . , Jn ` J is valid, since adding
the hypotheses as axioms enables us to apply the displayed rule to derive
the conclusion of that rule. Conversely, if J1, . . . , Jn ` J is valid, then there is
a derivation of J obtained by composing rules starting with the hypotheses
Ji as axioms. Equivalently, we say that the inference rule (2.3) is derivable iff
J1, . . . , Jn ` J. The derivation of J is essentially a compound inference rule
with the Ji’s as premises and J as conclusion.

For example, the derivability judgement

a nat ` succ(succ(a)) nat (2.4)

is valid according to Rules (1.2). For if we regard the premise a nat as a new
axiom, then we may derive succ(succ(a)) nat from it according to those
rules, as follows:

a nat
succ(a) nat

succ(succ(a)) nat

(2.5)

This derivation consists of a composition of Rules (1.2), starting with a nat
as an axiom and ending with succ(succ(a)) nat as conclusion. In other
words, the rule

a nat
succ(succ(a)) nat (2.6)

is derivable.
It is interesting to observe that the derivability of this rule is entirely

independent of the choice of the object a. In particular, we may choose a to
be some rubbish object, say junk, and observe that

junk nat ` succ(succ(junk)) nat (2.7)

is valid. For if we treat junk nat as a new axiom, then surely we can derive
succ(succ(junk)) nat by using the rules defining the natural numbers,
even though we cannot derive junk nat from these rules.
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Evidence for a hypothetical judgement Γ ` J may be thought of as a
derivation ∇Γ for J that may contain the hypotheses Γ as unjustified ax-
ioms. These may be thought of as placeholders for a derivation that may
be plugged in separately without disturbing the rest of the derivation. It
follows that the hypothetical judgement enjoys certain structural properties,
independently of the rule set under consideration:

Reflexivity Every judgement is a consequence of itself: Γ, J ` J. The con-
sequent is justified because it is regarded as an axiom.

Weakening If Γ ` J, then Γ, K ` J. The derivation of J makes use of the
rules and the premises Γ, and is not affected by the (unexercised) op-
tion to use K as an axiom.

Exchange If Γ1, J1, J2, Γ2 ` J, then Γ1, J2, J1, Γ2 ` J. The relative ordering of
the axioms is immaterial.

Contraction If Γ, J, J ` K, then Γ, J ` K. Since we can use any assumption
any number of times, stating it more than once is the same as stating
it once.

Transitivity If Γ, K ` J and Γ ` K, then Γ ` J. If we replace an axiom by a
derivation of it, the result remains a derivation of its consequent.

The contraction and exchange properties together imply that a finite se-
quence of hypotheses Γ may just as well be regarded as a finite set, since
set membership is not affected by duplication of elements or by the order
in which elements are specified. We treat the hypotheses of an iterated
hypothetical judgement as a finite set, which amounts to the tacit use of
exchange and contraction as necessary.

Derivability is a relatively strong condition that is stable under exten-
sion of the set of rules defining a judgement. That is, if a rule is deriv-
able from one set of rules, it remains derivable from any extension of that
set of rules. The existence of a derivation depends only on what rules are
available, and not on which rules are absent. Another characterization of
derivability is explored in Exercise 1 on page 24.

2.2 Admissibility

The admissibility judgement, written J |= K, is a weaker form of hypothet-
ical judgement whose meaning is that K is derivable from the given set of
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rules whenever J is derivable from the same set of rules. Equivalently, the
admissibility judgement is a simple conditional assertion stating that if J
is derivable from the rules, then so is K. As with derivability, we may it-
erate the admissibility judgement, writing J1, . . . , Jn |= J to mean that if J1
is derivable and . . . and Jn is derivable, then J is derivable. Equivalently, we
say that the rule

J1 . . . Jn

J (2.8)

is admissible iff J1, . . . , Jn |= J.
For example, for an arbitrary object a, the admissibility judgement

succ(a) nat |= a nat (2.9)

is valid with respect to Rules (1.2). This may be proved by rule induction,
for if succ(a) nat, then this can only be by virtue of Rule (1.2b). But then
the desired conclusion must hold, since it is the premise of the inference.
Equivalently, we may say that the rule

succ(a) nat
a nat (2.10)

is admissible.
Admissibility is, in general, strictly weaker than derivability: if J1, . . . , Jn `

J is valid, then so is J1, . . . , Jn |= J, but the converse need not be the case.
To see why the implication left to right holds, assume that J1, . . . , Jn ` J.
To show J1, . . . , Jn |= J, assume further that each Ji is derivable from the
original rules, which is to say that ` J1, . . . , ` Jn are all valid derivability
judgements with no hypotheses. But then by weakening and transitivity it
follows that ` J, which means that J is derivable in the original set of rules.
On the other hand, we have already seen that succ(a) nat |= a nat, but

succ(a) nat 6` a nat. (2.11)

That is, there is no way to compose rules starting with succ(a) nat and
end up with a nat. To see this, take a = junk and observe that, even with
succ(junk) nat as a new axiom, there is no way to derive junk nat.

Evidence for admissibility may be thought of as a mathematical func-
tion transforming derivations ∇1, . . . ,∇n of the hypotheses into a deriva-
tion ∇ of the consequent. Typically such a function is defined by an in-
ductive analysis of the derivations of the hypotheses. As a consequence of
this interpretation, the admissibility judgement enjoys the same structural
properties as derivability.
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Reflexivity If J is derivable from the original rules, then J is derivable from
the original rules: J |= J.

Weakening If J is derivable from the original rules assuming that each of
the judgements in Γ are derivable from these rules, then J must also be
derivable assuming that Γ and also K are derivable from the original
rules: if Γ |= J, then Γ, K |= J.

Exchange The order of assumptions in an iterated implication does not
matter.

Contraction Assuming the same thing twice is the same as assuming it
once.

Transitivity If Γ, K |= J and Γ |= K, then Γ |= J. If the assumption K is
used, then we may instead appeal to the assumed derivability of K.

As with derivability we often make tacit use of exchange and contraction
by stating the iterated form using finite sets, rather than sequences, of as-
sumptions.

In contrast to derivability, admissibility is not stable under expansion
of the rule set. For example, suppose we expanded Rules (1.2) with the
following (fanciful) rule:

succ(junk) nat (2.12)

But relative to this expanded rule set, succ(a) nat 6|= a nat, even though
it was valid with respect to the original. For if the premise were derived
using the additional rule, there would be no derivation of junk nat, so the
conclusion fails. In other words, admissibility is sensitive to which rules are
absent from, as well as to which rules are present in, an inductive definition.
At bottom a proof of admissibility amounts to an exhaustive analysis of
the possible ways of deriving the premises, showing in each case that the
conclusion is derivable.

Another way to compare derivability to admissibility is to note that
whereas an admissibility judgement may be vacuously true (because the hy-
pothesis is not derivable), a derivability judgement never holds vacuously
(because it adds the hypothesis to the rules as a new axiom). Thus, relative
to Rules (1.2), the admissibility judgement junk nat |= succ(junk) nat is
vacuously valid, because the hypothesis is not derivable according to those
rules (as may be seen by a simple rule induction). The corresponding deriv-
ability judgement junk nat ` succ(junk) nat is also valid, but not vacu-
ously so! Rather, the conclusion holds because we can apply Rule (1.2b) to
the hypothesis to obtain it.
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2.3 Conditional Inductive Definitions

In Sections 2.1 on page 17 and 2.2 on page 19 we defined the meaning of the
derivability and admissibility hypothetical judgements for an inductively
defined judgement form. According to the derivability interpretation, the
hypotheses of the judgement are treated as temporary axioms asserted for
the purpose of deducing its consequent. According to the admissibility in-
terpretation, we consider all the means (if any) by which the hypotheses
might have been derived, and determine that the consequent must also be
derivable in all such circumstances. The crucial difference is that deriv-
ability is stable under extension, whereas admissibility is not. This licenses
a powerful extension to the framework of inductive definitions in which
hypothetical judgements are permitted in the premises and conclusions of
rules.

A conditional inductive definition consists of a collection of conditional
rules of the form

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
. (2.13)

The hypotheses Γ are the global hypotheses of the rule, and the hypotheses
Γi are the local hypotheses of the ith premise of the rule. Informally, this rule
states that J is a derivable consequence of Γ whenever each Ji is a derivable
consequence of Γ, augmented with the additional hypotheses Γi. Thus, one
way to show that J is derivable from Γ is to show, in turn, that each Ji is
derivable from Γ Γi. The derivation of each premise involves a “context
switch” in which we extend the global hypotheses with the local hypothe-
ses of that premise, establishing a new global hypothesis set for use within
that derivation.

Often a conditional rule is given for each choice of global context, with-
out restriction. In that case the rule is said to be pure, because it applies
irrespective of the context in which it is used. A pure rule, being stated
uniformly for all global contexts, may be given in implicit form, as follows:

Γ1 ` J1 . . . Γn ` Jn

J
. (2.14)

This formulation omits explicit mention of the global context in order to
focus attention on the local aspects of the inference.

Sometimes it is necessary to restrict the global context of an inference,
so that it applies only when the global context satisfies a specified side con-
dition. Such rules are said to be impure. Impure rules cannot be given in
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implicit form, but rather take the form

Γ Γ1 ` J1 . . . Γ Γn ` Jn S(Γ)
Γ ` J

, (2.15)

where S(Γ) is the side condition on the global context. This rule applies
only when the global context Γ satisfies the condition S .

As with an ordinary inductive definition, a conditional inductive defi-
nition is to be understood as defining the strongest judgement closed under
the specified rules. However, we regard a conditional inductive definition
as defining the hypothetical judgement Γ ` J directly by the specified rules,
rather than indirectly in the manner described in Section 2.1 on page 17. In
other words, the rules themselves specify the meaning of Γ ` J, without ref-
erence to any previously given interpretation of J, or any previously given
concept of derivability. We must be careful, however, to ensure that the
rules are sufficient to ensure that the hypothetical judgement they define
really does behave like a hypothetical judgement. For example, we would
expect that Γ, J ` J holds, but there is no reason to expect that this is the
case for an arbitrary set of rules. (Consider the null set, for example.) After
all, the rules are the rules, and we might have omitted this natural principle
of reasoning.

To rule out such pathologies, we insist that the following structural rules,
corresponding to the structural properties of the hypothetical judgement
given earlier, be admissible in any conditional inductive definition:

Γ, J ` J (2.16a)

Γ ` J
Γ, K ` J

(2.16b)

Γ ` K Γ, K ` J
Γ ` J

(2.16c)

Rules (2.16a) and (2.16b) ensure that any hypothesis may be used as evi-
dence for the consequent without further justification. Rule (2.16c) ensures
that we may “plug in” concrete evidence for K into evidence for Γ, K ` J to
obtain evidence for Γ ` J.

Since a conditional inductive definition determines the strongest hypo-
thetical judgement closed under the given rules, we may reason about this
judgement using the principle of rule induction. Specifically, to show that
P(Γ ` J) whenever Γ ` J is derivable from a set of conditional rules, it is
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sufficient to show that P is closed under each rule. For each rule of the
form

Γ Γ1 ` J1 . . . Γ Γn ` Jn

Γ ` J
, (2.17)

we must show

if P(Γ Γ1 ` J1), . . . , P(Γ Γn ` Jn), then P(Γ ` J).

In particular, closure under the structural rule of reflexivity means that we
must show P(Γ, J ` J) for any set of hypotheses Γ.

We use a variety of notations to indicate that a property, P , holds when-
ever Γ ` J. Often it is helpful to think of P as a family of properties indexed
by Γ, writing PΓ(J) or P(J) [Γ], for P(Γ ` J).

2.4 Exercises

1. Define Γ′ ` Γ to mean that Γ′ ` Ji for each Ji in Γ. Show that Γ ` J iff
whenever Γ′ ` Γ, it follows that Γ′ ` J. For the implication right-to-
left, take Γ′ = Γ. For the implication left-to-right, repeatedly appeal
to transitivity to obtain the desired conclusion.

2. Show that it is possible to make sense of admissibility judgements
in the consequents of inference rules by an analysis reminiscent of that
used to justify derivability judgements in the consequent. Hint: make
use of the interpretation of conditional rules as a simultaneous induc-
tive definition of a family of judgement forms described in Section 2.3
on page 22.

3. Show that it is dangerous to permit admissibility judgements in the
premise of a rule. Hint: show that using such rules one may “define”
an inconsistent judgement form J for which we have a J iff it is not
the case that a J.
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Chapter 3

Parametric Judgements

In Chapter 2 we introduced the concept of the derivability judgement, Γ `
J, whose meaning is that J is derivable if we expand the rules defining it
with the hypotheses Γ as new axioms. In this chapter we consider a similar
concept, called the parametric judgement, which permits us to expand the
universe of objects with a finite set of parameters for the sake of a derivation.
We may then construct derivations parametrically, or schematically, by giv-
ing a derivation scheme that involves the specified parameters. The parame-
ters may be thought of as “names” of unspecified objects that are handled
symbolically, as if they were objects of the universe. Just as conditional in-
ductive definitions extend rules to permit hypothetical judgements, a para-
metric inductive definition permits rules that involve parametric judgements.
Such rules figure prominently in the study of programming languages.

3.1 Parameterization

Let X be a finite collection of parameters, and let J be a hypothetical or
categorical judgement. The parametric judgement X | J expresses that
the judgement J holds uniformly, or parametrically, in the parameters X .
Evidence for this judgement consists of a parametric derivation, or derivation
scheme,∇X , of the judgement J in which the parameters in X may be used
as objects.

For example, the parametric hypothethical judgement

x | x nat ` succ(succ(x)) nat (3.1)

states that x nat ` succ(succ(x)) nat holds uniformly in the parameter
x. Evidence for this judgement consists of the following derivation, ∇x,
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involving the parameter x:

x nat
succ(x) nat

succ(succ(x)) nat
. (3.2)

The choice of parameter in a parametric judgement or derivation is
unimportant, as it serves only as a placeholder. Consequently, we do not
distinguish between parametric judgements or derivations that differ only
in the choice of parameter. The judgement (3.1) is indistinguishable from
the variant

y | y nat ` succ(succ(y)) nat

in which the parameter y is used in place of x. Similarly, the derivation ∇x
is indistinguishable from the derivation ∇y in which we replace x by y to
obtain

y nat

succ(y) nat

succ(succ(y)) nat
.

(3.3)

3.2 Structural Properties

The parametric judgement enjoys structural properties that are reminiscent
of those enjoyed by the hypothetical judgement:

Proliferation If X | J and x /∈ X , then X , x | J .

Swapping If X1, x1, x2,X2 | J , then X1, x2, x1,X2 | J .

Duplication If X , x, x | J , then X , x | J .

Renaming If X , x | Jx, then X , y | Jy, provided that y /∈ X .

Proliferation of variables corresponds to weakening, swapping corresponds
to exchange, and duplication corresponds to contraction. Renaming states
that a parametric judgement is invariant under renaming of parameters.

These structural properties may be stated as structural rules as follows:

X | J
X , x | J

(3.4a)

X1, x1, x2,X2 | J
X1, x2, x1,X2 | J

(3.4b)
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X , x, x | J
X , x | J

(3.4c)

X , x | Jx

X , y | Jy
(3.4d)

As with the hypothetical judgement, Rules (3.4b) and (3.4c) are implicit
since X is treated as a set of parameters.

3.3 Parametric Inductive Definitions

Just as it is useful to permit hypothetical judgements in rules, it is similarly
useful to permit parametric judgements as well. Using a parametric judge-
ment in the premise of a rule permits us to isolate parameters to particular
sub-derivations of an overall derivation. This is very similar to introducing
fresh hypotheses for use in the derivation of a premise, the difference being
that instead of working with an unspecified derivation (represented by a
“fresh” axiom), we instead work with an unspecified object (represented
by a “fresh” parameter).

A parametric inductive definition consists of a set of parametric rules of the
form

X X1 | Γ Γ1 ` J1 . . . X Xn | Γ Γn ` Jn

X | Γ ` J
. (3.5)

The set X specifies the global parameters of the inference, and, for each
1 ≤ i ≤ n, the set Xi specifies the fresh local parameters of the ith premise.
The “freshness” condition is captured by the requirement that the local pa-
rameters be disjoint from the global parameters so as to avoid confusion
among them. The global and local hypotheses, Γ and Γi, respectively, are
as described in Chapter 2 for a conditional rule. The pair X | Γ is the global
context of the rule, and each pair Xi | Γi is the local context of the ith premise
of the rule.

A parametric rule is pure if it is stated for all choices of global context,
subject only to the requirement that the global parameters be disjoint from
the local parameters. Such a rule may be written in implicit form, empha-
sizing the local aspects of the inference, as follows:

X1 | Γ1 ` J1 . . . Xn | Γn ` Jn

J
. (3.6)

This form is to be understood as standing for all rules of the form Rule (3.5)
obtained by specifying the global context X | Γ.
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As may be expected, a parametric inductive definition specifies the strongest
judgement closed under the given set of rules. To ensure that the judge-
ment so defined behaves like a parametric hypothetical judgement, we re-
quire that Rules (3.4) be admissible for any parametric inductive definition.
This is usually achieved by including some of the structural rules as part of
the definition, leaving the others to be proved admissible relative to those
explicitly included.

The principle of rule induction applied to a parametric inductive defi-
nition states that to show P(X | Γ ` J) whenever X | Γ ` J, it is enough
to show that P is closed under the rules comprising the definition. Specifi-
cally, for each rule of the form (3.5), we must show that

if P(X X1 | Γ Γ1 ` J1), . . . , P(X Xn | Γ Γn ` Jn), then P(X | Γ ` J).

We often use notation such as P(J) [X | Γ] to emphasize that the property
P may be thought of as a family of properties indexed by the global context
of the inference.

3.4 Exercises
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Chapter 4

Transition Systems

Transition systems are used to describe the execution behavior of programs
by defining an abstract computing device with a set, S, of states that are
related by a transition judgement, 7→. The transition judgement describes
how the state of the machine evolves during execution.

4.1 Transition Systems

An (ordinary) transition system is specified by the following judgements:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s 7→ s′, where s state and s′ state, asserting that state s may transition
to state s′.

We require that if s final, then for no s′ do we have s 7→ s′. In general, a
state s for which there is no s′ ∈ S such that s 7→ s′ is said to be stuck, which
may be indicated by writing s 6 7→. All final states are stuck, but not all stuck
states need be final!

A transition sequence is a sequence of states s0, . . . , sn such that s0 initial,
and si 7→ si+1 for every 0 ≤ i < n. A transition sequence is maximal iff
sn 6 7→, and it is complete iff it is maximal and, in addition, sn final. Thus
every complete transition sequence is maximal, but maximal sequences are
not necessarily complete. A transition system is deterministic iff for every
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state s there exists at most one state s′ such that s 7→ s′, otherwise it is
non-deterministic.

A labelled transition system over a set of labels, I, is a generalization of
a transition system in which the single transition judgement, s 7→ s′ is re-

placed by an I-indexed family of transition judgements, s i7−→ s′, where s
and s′ are states of the system. In typical situations the family of transition
relations is given by a simultaneous inductive definition in which each rule
may make reference to any member of the family.

It is often necessary to consider families of transition relations in which
there is a distinguished unlabelled transition, s 7→ s′, in addition to the
indexed transitions. It is sometimes convenient to regard this distinguished
transition as labelled by a special, anonymous label not otherwise in I. For
historical reasons this distinguished label is often designated by τ or ε, but
we will simply use an unadorned arrow. The unlabelled form is often called
a silent transition, in contrast to the labelled forms, which announce their
presence with a label.

4.2 Iterated Transition

Let s 7→ s′ be a transition judgement, whether drawn from an indexed set
of such judgements or not.

The iteration of transition judgement, s 7→∗ s′, is inductively defined by
the following rules:

s 7→∗ s (4.1a)

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′
(4.1b)

It is easy to show that iterated transition is transitive: if s 7→∗ s′ and s′ 7→∗
s′′, then s 7→∗ s′′.

The principle of rule induction for these rules states that to show that
P(s, s′) holds whenever s 7→∗ s′, it is enough to show these two properties
of P:

1. P(s, s).

2. if s 7→ s′ and P(s′, s′′), then P(s, s′′).

The first requirement is to show that P is reflexive. The second is to show
that P is closed under head expansion, or converse evaluation. Using this prin-
ciple, it is easy to prove that 7→∗ is reflexive and transitive.
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The n-times iterated transition judgement, s 7→n s′, where n ≥ 0, is in-
ductively defined by the following rules.

s 7→0 s (4.2a)

s 7→ s′ s′ 7→n s′′

s 7→n+1 s′′
(4.2b)

Theorem 4.1. For all states s and s′, s 7→∗ s′ iff s 7→k s′ for some k ≥ 0.

Finally, we write ↓ s to indicate that there exists some s′ final such that
s 7→∗ s′.

4.3 Simulation and Bisimulation

A strong simulation between two transition systems 7→1 and 7→2 is given by
a binary relation, s1 S s2, between their respective states such that if s1 S s2,
then s1 7→1 s′1 implies s2 7→2 s′2 for some state s′2 such that s′1 S s′2. Two
states, s1 and s2, are strongly similar iff there is a strong simulation, S, such
that s1 S s2. Two transition systems are strongly similar iff each initial state
of the first is strongly similar to an initial state of the second. Finally, two
states are strongly bisimilar iff there is a single relation S such that both S
and its converse are strong simulations.

A strong simulation between two labelled transition systems over the
same set, I, of labels consists of a relation S between states such that for
each i ∈ I the relation S is a strong simulation between i7−→1 and i7−→2. That

is, if s1 S s2, then s1
i7−→1 s′1 implies that s2

i7−→2 s′2 for some s′2 such that s′1 S s′2.
In other words the simulation must preserve labels, and not just transitions.

The requirements for strong simulation are rather stringent: every step
in the first system must be mimicked by a similar step in the second, up
to the simulation relation in question. This means, in particular, that a se-
quence of steps in the first system can only be simulated by a sequence of
steps of the same length in the second—there is no possibility of perform-
ing “extra” work to achieve the simulation.

A weak simulation between transition systems is a binary relation be-
tween states such that if s1 S s2, then s1 7→1 s′1 implies that s2 7→∗2 s′2 for
some s′2 such that s′1 S s′2. That is, every step in the first may be matched
by zero or more steps in the second. A weak bisimulation is such that both
it and its converse are weak simulations. We say that states s1 and s2 are
weakly (bi)similar iff there is a weak (bi)simulation S such that s1 S s2.
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The corresponding notion of weak simulation for labelled transitions
involves the silent transition. The idea is that to weakly simulate the la-

belled transition s1
i7−→1 s′1, we do not wish to permit multiple labelled tran-

sitions between related states, but rather to permit any number of unlabelled
transitions to accompany the labelled transition. A relation between states
is a weak simulation iff it satisfies both of the following conditions whenever
s1 S s2:

1. If s1 7→1 s′1, then s2 7→∗2 s′2 for some s′2 such that s′1 S s′2.

2. If s1
i7−→1 s′1, then s2 7→∗2

i7−→2 7→∗2 s′2 for some s′2 such that s′1 S s′2.

That is, every silent transition must be mimicked by zero or more silent
transitions, and every labelled transition must be mimicked by a corre-
sponding labelled transition, preceded and followed by any number of
silent transitions. As before, a weak bisimulation is a relation between states
such that both it and its converse are weak simulations. Finally, two states
are weakly (bi)similar iff there is a weak (bi)simulation between them.

4.4 Exercises

1. Prove that S is a weak simulation for the ordinary transition system
7→ iff S is a strong simulation for 7→∗.
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Levels of Syntax





Chapter 5

Basic Syntactic Objects

We will make use of two sorts of objects for representing syntax, strings
of characters, and abstract syntax trees. Strings provide a convenient rep-
resentation for reading and entering programs, but are all but useless for
manipulating programs as objects of study. Abstract syntax trees provide a
representation of programs that exposes their hierarchical structure.

5.1 Symbols

We shall have use for a variety of symbols, which will serve in a variety of
roles as characters, variable names, names of fields, and so forth. Symbols
are sometimes called names, or atoms, or identifiers, according to custom
in particular circumstances. Symbols are to be thought of as atoms with
no structure other than their identity. We write x sym to assert that x is
a symbol, and we assume that there are infinitely many symbols at our
disposal. The judgement x # y, where x sym and y sym, states that x and y
are distinct symbols.

We will make use of a variety of classes of symbols throughout the de-
velopment. We generally assume that any two classes of symbols under
consideration are disjoint from one another, so that there can be no confu-
sion among them.

5.2 Strings Over An Alphabet

An alphabet is a (finite or infinite) collection of symbols, called characters. We
write c char to indicate that c is a character, and let Σ stand for a finite set
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of such judgements, which is sometimes called an alphabet. The judgement
Σ ` s str, defining the strings over the alphabet Σ, is inductively defined by
the following rules:

Σ ` ε str (5.1a)

Σ ` c char Σ ` s str
Σ ` c · s str

(5.1b)

Thus a string is essentially a list of characters, with the null string being the
empty list. We often suppress explicit mention of Σ when it is clear from
context.

When specialized to Rules (5.1), the principle of rule induction states
that to show s P holds whenever s str, it is enough to show

1. ε P, and

2. if s P and c char, then c · s P.

This is sometimes called the principle of string induction. It is essentially
equivalent to induction over the length of a string, except that there is no
need to define the length of a string in order to use it.

The following rules constitute an inductive definition of the judgement
s1 ˆ s2 = s str, stating that s is the result of concatenating the strings s1 and
s2.

ε ˆ s = s str (5.2a)

s1 ˆ s2 = s str

(c · s1) ˆ s2 = c · s str
(5.2b)

It is easy to prove by string induction on the first argument that this judge-
ment has mode (∀, ∀, ∃!). Thus, it determines a total function of its first two
arguments.

Strings are usually written as juxtapositions of characters, writing just
abcd for the four-letter string a · (b · (c · (d · ε))), for example. Concaten-
tation is also written as juxtaposition, and individual characters are often
identified with the corresponding unit-length string. This means that abcd
can be thought of in many ways, for example as the concatenations ab cd,
a bcd, or abc d, or even ε abcd or abcd ε, as may be convenient in a given
situation.
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5.3 Abtract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree in which certain
symbols, called operators, label the nodes. A signature, Ω, is a finite set of
judgements of the form ar(o) = n, where o sym and n nat, assigning an
arity, n, to an operator, o, such that if Ω ` ar(o) = n and Ω ` ar(o) = n′,
then n = n′ nat.

The class of abstract syntax trees over a signature, Ω, is inductively de-
fined as follows.

Ω ` ar(o) = n
a1 ast . . . an ast

o(a1, . . . , an) ast

(5.3a)

The base case of this inductive definition is an operator of arity zero, in
which case Rule (5.3a) has no premises.

5.3.1 Structural Induction

The principle of structural induction is the specialization of the principle of
rule induction to the rules defining ast’s over a signature. To show that
P(a ast), it is enough to show that P is closed under Rules (5.3). That is, if
Ω ` ar(o) = n, then we are to show that

if P(a1 ast), . . . , P(an ast), then P(o(a1, . . . , an) ast).

When n is zero, this reduces to showing that P(o()).
For example, we consider the following inductive definition of the height

of an abstract syntax tree:

hgt(a1) = h1 . . . hgt(an) = hn max(h1, . . . , hn) = h
hgt(o(a1, . . . , an)) = succ(h)

(5.4a)

We may prove by structural induction that this judgement has mode (∀, ∃!),
which is to say that every ast has a unique height. For an operator o of arity
n, we may assume by induction that, for each 1 ≤ i ≤ n, there is a unique
hi such that hgt(ai) = hi. We may show separately that the maximum, h, of
these is uniquely determined, and hence that the overall height, succ(h),
is also uniquely determined.

5.3.2 Variables and Substitution

In practice we often wish to consider ast’s with variables serving as place-
holders for other ast’s. The variables are instantiated by substitution of an
ast for occurrences of that variable in another ast.
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As a notational convenience, we let X = x1 ast, . . . , xn ast stand for the
combined parameter set and hypothesis list { x1, . . . , xn } | x1 ast, . . . , xn ast,
where x1 sym, . . . , xn sym. Moreover, we write x # X to mean that x /∈
{ x1, . . . , xn }. Using this notation, the judgement X ` a ast is inductively
defined by the following rules:

X , x ast ` x ast (5.5a)

Ω ` ar(o) = n X ` a1 ast . . . X ` an ast

X ` o(a1, . . . , an) ast
(5.5b)

The principle of rule induction for these rules states that to showP(X ` a ast),
it is enough to show

1. P(X , x ast ` x ast).

2. If Ω ` ar(o) = n, and if P(X ` a1 ast), . . . , P(X ` an ast), then
P(X ` o(a1, . . . , an) ast).

Thus, the parameters in X are treated as atomic objects, each with its own
abstract syntax tree.

We define the judgement X ` [a/x]b = c, meaning that c is the result of
substituting a for x in b, by the following rules:

X , x ast ` [a/x]x = a (5.6a)

x # y
X , x ast, y ast ` [a/x]y = y

(5.6b)

X ` [a/x]b1 = c1 . . . X ` [a/x]bn = cn

X ` [a/x]o(b1, . . . , bn) = o(c1, . . . , cn)
(5.6c)

The result of substitution is uniquely determined by its other argu-
ments. Consequently, we write [a/x]b for the unique c such that [a/x]b = c.

Theorem 5.1. If X ` a ast and X , x ast ` b ast, where x # X , then there exists
a unique c such that X ` [a/x]b = c and X ` c ast.

Proof. The proof is by structural induction on b relative to the contextX , x ast.
There are three cases to consider:

1. Since X , x ast ` x ast, we must show that there exists a unique c such
that X ` [a/x]x = c. Consulting Rule (5.6a), we see that choosing c
to be a is both necessary and sufficient.
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2. If X , x ast, y ast ` y ast for some y # x, then by Rule (5.6b) choosing c
to be y is necessary and sufficient.

3. Finally if b = o(b1, . . . , bn), then by induction there exists unique
c1, . . . , cn such that X ` [a/x]b1 = c1, . . . , X ` [a/x]bn = cn. By
Rule (5.6c) the only possible choice for c, namely o(c1, . . . , cn), suf-
fices.

5.4 Exercises

1. Give an inductive definition of the two-place judgement |s| = n str,
where s str and n nat, stating that a string s has length n, namely the
number of symbols occurring within it. Use the principle of string
induction to show that this judgement has mode (∀, ∃!), and hence
defines a function.

2. Give an inductive definition of equality of strings, and show that
string concatenation is associative. Specifically, define the judgement
s1 = s2 str, and show that if s1 ˆ s2 = s12 str, s12 ˆ s3 = s123 str, s1 ˆ s23 = s′123 str,
and s2 ˆ s3 = s23 str, then s123 = s′123 str.

3. Give an inductive definition of simultaneous substitution of a sequence
of n ast’s for a sequence of n distinct variables within an ast, written
X ` [a1, . . . , an/x1, . . . , xn]b = c. Show that c is uniquely determined,
and hence we may write X ` [a1, . . . , an/x1, . . . , xn]b for the unique
such c.
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Chapter 6

Binding and Scope

Abstract syntax trees expose the hierarchical structure of syntax, dispens-
ing with the details of how one might represent pieces of syntax on a page
or a computer screen. Abstract binding trees, or abt’s, enrich this represen-
tation with the concepts of binding and scope. In just about every language
there is a means of associating a meaning to an identifier within a specified
range of significance (perhaps the whole program, often limited regions of
it). Examples include definitions, in which we introduce a name for a pro-
gram phrase, or parameters to functions, in which we introduce a name for
the argument to the function within its body.

Abstract binding trees enrich abstract syntax trees with a means of in-
troducing a fresh, or new, name for use within a specified scope. Uses of the
fresh name within that scope are references to the binding site. As such the
particular choice of name is significant only insofar as it does not conflict
with any other name currently in scope; this is the essence of what it means
for the name to be “new” or “fresh.”

In this chapter we introduce the concept of an abstract binding tree, in-
cluding the relation of α-equivalence, which expresses the irrelevance of
the choice of bound names, and the operation of capture-avoiding substitu-
tion, which ensures that names are not confused by substitution. While
intuitively clear, the precise formalization of these concepts requires some
care; experience has shown that it is surprisingly easy to get them wrong.

All of the programming languages that we shall study are represented
as abstract binding trees. Consequently, we will re-use the machinery de-
veloped in this chapter many times, avoiding considerable redundancy and
consolidating the effort required to make precise the notions of binding and
scope.



42 6.1. ABSTRACT BINDING TREES

6.1 Abstract Binding Trees

The concepts of binding and scope are formalized by the concept of an
abstract binding tree, or abt. An abt is an ast in which we distinguish a name-
indexed family of operators, called abstractors. An abstractor has the form
x.a; it binds the name, x, for use in the abt, a, which is called the scope of
the binding. The bound name x is meaningful only within a, and is, in a
sense to be made precise shortly, treated as distinct from any other names
that may be currently in scope.

As with abstract syntax trees, the well-formed abstract binding trees are
determined by a signature that specifies the arity of each of a finite collection
of operators. For ast’s the arity specified only the number of arguments for
each operator, but for abt’s we must also specify the number of names that
are bound by each operator. Thus an arity is a finite sequence (n1, . . . , nk)
of natural numbers, with k specifying the number of arguments, and each
ni specifying the valence, or number of bound names, in the ith argument.
The arity (0, 0, . . . , 0), of length k specifies an operator with k arguments
that binds no variables in any argument; it is therefore the analogue of the
arity k for an operator over abstract syntax trees.

A signature, Ω, consists of a finite set of judgements of the form ar(o) =
(n1, . . . , nk) such that no operator occurs in more than one such judgement.
The well-formed abt’s over a signature Ω are specified by a parametric hy-
pothetical judgement of the form

{ x1, . . . , xk } | x1 abt0, . . . , xk abt0 ` a abtn

stating that a is an abt of valence n, with parameters, or free names, x1, . . . , xk.
We sometimes write just a abt as short-hand for a abt0.

We use the meta-variable X to range over finite sets of parameters, and
the meta-variable A to range over finite sets of assumptions of the form
x abt0, with one assumption for each x ∈ X . As a notational convenience,
the judgement X | A ` a abtn is often abbreviated to just A ` a abtn when
X is clear from context. In such cases we write x # A to mean that x /∈ X ,
where X is the set of parameters governed by A.

The rules defining the well-formed abt’s over a given signature are as
follows:

X , x | A, x abt0 ` x abt0 (6.1a)

ar(o) = (n1, . . . , nk)
X | A ` a1 abtn1 . . . X | A ` ak abtnk

X | A ` o(a1, . . . , ak) abt0

(6.1b)
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X , x′ | A, x′ abt0 ` [x′ ↔ x] a abtn (x′ /∈ X )
X | A ` x.a abtn+1

(6.1c)

Rule (6.1c) specifies that an abstractor, x.a, is well-formed relative to A,
provided that its body, a, is well-formed for some variable x′ /∈ X replac-
ing the bound variable, x, in a. The replacement of x by x′ ensures that
the formation of x.a does not depend on whether x is already an active
parameter.

According to the conventions on the names of parameters given in Chap-
ter 3, we do not distinguish between parametric judgements that differ
only in the choice of parameter names, nor do we distinguish between
their corresponding parametric derivations. Consequently, Rule (6.1c) ad-
mits a dual reading as specifying that the body of the abstractor must be
well-formed for some particular choice, x′ of bound name not already oc-
curring in X , and, moreover, specifying that the same condition holds for
any choice of parameter not already in X . This means, in particular, that
we may always assume that the variable, x′, is chosen to satisfy any finite
freshness restrictions we may wish to impose in a particular context, there
being an infinite supply of names, only finitely many of which may be al-
ready in use in a given context.

6.1.1 Structural Induction With Binding and Scope

The principle of structural induction for abstract syntax trees extends to
abstract binding trees. To show that P(X | A ` a abtn) whenever X | A `
a abtn, it suffices to show that P is closed under Rules (6.1). Specifically, we
must show:

1. P(X , x | A, x abt0 ` x abt0).

2. For any operator o of arity (m1, . . . , mk), if P(X | A ` a1 abtm1), . . . ,
P(X | A ` ak abtmk), then P(X | A ` o(a1, . . . , ak) abt0).

3. If P(X , x′ | A, x′ abt0 ` [x′ ↔ x] a abtn) for some/any x′ /∈ X , then
P(X | A ` x.a abtn+1).

The condition on abstractors arises from the convention on parameter names
described in Chapter 3. Since we identify parametric judgements that differ
only in the choice of parameters, any property of a parametric judgement is
constrained to respect this variation—it must not depend on the choice of
parameter, only on its freshness relative to active parameters. This means
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that in the inductive hypothesis for abstractors, we may regard x′ to be any
fresh parameter not occurring in X according to our convenience.

As an example let us define the size, s, of an abt, a, of valence n by a
judgement of the form |a abtn| = s. More generally, we define the paramet-
ric hypothetical judgement

|x1 abt0| = 1, . . . , |xk abt0| = 1 ` |a abtn| = s,

with implied parameters x1, . . . , xk, by the following rules:

S , |x abt0| = 1 ` |x abt0| = 1 (6.2a)

S ` |a1 abtn1 | = s1 . . . S ` |am abtnm | = sm s = s1 + · · ·+ sm + 1

S ` |o(a1, . . . , am) abt0| = s
(6.2b)

S , |x′ abt0| = 1 ` |[x ↔ x′] a abtn| = s

S ` |x.a abtn+1| = s + 1
(6.2c)

Thus, the size of an abt is defined inductively counting variables as unit
size, and adding one for each operator and abstractor within the abt.

Theorem 6.1. Every well-formed abt has a unique size. If x1 abt0, . . . , xk abt0 `
a abtn, then there exists a unique s nat such that

|x1 abt0| = 1, . . . , |xk abt0| = 1 ` |a abtn| = s.

Proof. By structural induction on the derivation of the premise. Note that
the size of an abt is not sensitive to the choice of parameters, since all pa-
rameters are assigned unit size. It is straightforward to show that this prop-
erty is closed under the given rules and to show that the size is uniquely
determined for well-formed abt’s.

6.1.2 Apartness

The relation of a name, x, lying apart from an abt, a, states that a is indepen-
dent of the variable x. The judgement A ` x # a abtn, where A ` a abtn, is
inductively defined by the following rules:

x # y

A ` x # y abt0 (6.3a)

A ` x # a1 abtn1 . . . A ` x # ak abtnk

A ` x # o(a1, . . . , ak) abt0 (6.3b)
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A, y abt0 ` x # a abtn

A ` x # y.a abtn+1
(6.3c)

We say that a name, x, lies within, or is free in, an abt, a, written x ∈ a abt,
iff it is not the case that x # a abt. We leave as an exercise to give an explicit
inductive definition of this judgement.

6.1.3 Renaming of Bound Names

Two abt’s are said to be α-equivalent iff they differ at most in the choice of
bound variable names. It is inductively defined by the following rules:

A, x abt0 ` x =α x abt0 (6.4a)

A ` a1 =α b1 abtn1 . . . A ` ak =α bk abtnk

A ` o(a1, . . . , ak) =α o(b1, . . . , bk) abt0 (6.4b)

A, z abt0 ` [z↔ x] a =α [z↔ y] b abtn

A ` x.a =α y.b abtn+1
(6.4c)

In Rule (6.4c) we tacitly assume that the parameter z is chosen apart from
those in A.

We write A ` a =α b for A ` a =α b abtn for some n. Further, we
sometimes write just a =α b to mean A ` a =α b when the appropriate A
is clear from context.

Lemma 6.2. The following instance of α-equivalence, called α-conversion, is
derivable:

A ` x.a =α y.[x ↔ y] a abtn+1 (y # A).

Theorem 6.3. α-equivalence is reflexive, symmetric, and transitive.

Proof. Reflexivity and symmetry are immediately obvious from the form
of the definition. Transitivity is proved by a simultaneous induction on the
heights of the derivations of A ` a =α b abtn and A ` b =α c abtn. The
most interesting case is when both derivations end with Rule (6.4c). We
have a = x.a′, b = y.b′, c = z.c′, and n = m + 1 for some m. Moreover,
A, u abt0 ` [u↔ x] a′ =α [u↔ y] b′ abtm, andA, v abt0 ` [v↔ y] b′ =α [v↔ z] c′ abtm,
for every u, v # A. Let w # A be an arbitrary name. By choosing u and v
to be w, we obtain the desired result by an application of the inductive hy-
pothesis.
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6.1.4 Capture-Avoiding Substitution

Substitution is the process of replacing all occurrences (if any) of a free name
in an abt by another abt in such a way that the scopes of names are properly
respected. The judgment A ` [a/x]b = c abtn is inductively defined by the
following rules:

A ` [a/x]x = a abt0 (6.5a)

x # y

A ` [a/x]y = y abt0 (6.5b)

A ` [a/x]b1 = c1 abtn1 . . . A ` [a/x]bk = ck abtnk

A ` [a/x]o(b1, . . . , bk) = o(c1, . . . , ck) abt0 (6.5c)

A, y′ abt0 ` [a/x]([y′ ↔ y] b) = b′ abtn y′ # A y′ 6= x
A ` [a/x]y.b = y′.b′ abtn (6.5d)

In Rule (6.5d) the requirement that y′ # A ensures that y′ # a, and the
requirement that y′ 6= x ensures that we do not confuse y′ with x. Since
the bound name, y, of the abstractor might well occur withinA, it may also
occur in a. This necessitates that y be renamed to a fresh name y′ before
substituting a into the body of the abstractor. The potential confusion of an
occurrence of y within a with the bound variable of the abstractor is called
capture, and for this reason substitution as defined here is called capture-
avoiding substitution.

The penalty for avoiding capture during substitution is that the result
of performing a substitution is determined only up to α-equivalence. Ob-
serve that in the conclusion of Rule (6.5d), we have y.[y↔ y′] b′ =α y′.b′,
provided that y # A, by Lemma 6.2 on the preceding page. If, on the con-
trary, y occurs within A, then the equivalence does not apply, and, as a
consequence, we cannot preserve the bound name after substitution.

Theorem 6.4. If A ` a abt0 and A, x abt0 ` b abtn, then there exists A `
c abtn such that A ` [a/x]b = c abtn. If A ` [a/x]b = c abtn and A `
[a/x]b = c′ abtn, then A ` c =α c′ abtn.

Proof. The first part is proved by rule induction on A, x abt0 ` b abtn, in
each case constructing the required derivation of the substitution judge-
ment. The second part is proved by simultaneous rule induction on the
two premises, deriving the desired equivalence in each case.

Even though the result is not uniquely determined, we abuse notation and
write [a/x]b for any c such that [a/x]b = c, with the understanding that c
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is determined only up to choice of bound names. To ensure that this con-
vention is sensible, we will ensure that all judgements on abt’s are defined
so as to respect α-equivalence—in particular, substitution itself enjoys this
property.

Theorem 6.5. IfA ` a =α a′ abt0,A, x abt0 ` b =α b′ abtn,A ` [a/x]b = c abtn

and A ` [a′/x]b′ = c′ abtn, then A ` c =α c′ abtn.

Proof. By rule induction on A, x abt0 ` b =α b′ abtn.

More generally, we will henceforth insist that all judgements respect
α-equivalence of abt’s. This allows us to tacitly assume that the bound
variable of an abstractor may be chosen so as to satisfy any finite constraint
that we may wish to impose in a given context without further comment.
Using this convention we may write the formation rule for abstractors in
the simplified form

A, x abt0 ` a abtn

A ` x.a abtn+1
(6.6)

with the tacit understanding that x is to be chosen so that x # A. This con-
vention extends the convention on parametric judgements stated in Chap-
ter 3 to include the abt’s occurring within the judgement, as well as the
parameters of the judgement itself. As a consequence we may always as-
sume that parameters and bound variables are chosen so as to be as fresh
as needed in any given context, provided that only finitely many variables
need be avoided by the choice.

6.2 Exercises

1. Show that the structural rule of weakening is not admissible for the
conditional inductive definition of abstract binding trees (Rules (6.1)).

2. Suppose that let is an operator of arity (0, 1) and that plus is an op-
erator of arity (0, 0). Determine whether or not each of the following
α-equivalences are valid.

let(x, x.x) =α let(x, y.y) (6.7a)
let(y, x.x) =α let(y, y.y) (6.7b)
let(x, x.x) =α let(y, y.y) (6.7c)

let(x, x.plus(x, y)) =α let(x, z.plus(z, y)) (6.7d)
let(x, x.plus(x, y)) =α let(x, y.plus(y, y)) (6.7e)
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3. Prove that apartness respects α-equivalence.

4. Prove that substitution respects α-equivalence.
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Chapter 7

Concrete Syntax

The concrete syntax of a language is a means of representing expressions as
strings that may be written on a page or entered using a keyboard. The
concrete syntax usually is designed to enhance readability and to eliminate
ambiguity. While there are good methods for eliminating ambiguity, im-
proving readability is, to a large extent, a matter of taste.

In this chapter we introduce the main methods for specifying concrete
syntax, using as an example an illustrative expression language, called
L{num str}, that supports elementary arithmetic on the natural numbers
and simple computations on strings. In addition, L{num str} includes a
construct for binding the value of an expression to a variable within a spec-
ified scope.

7.1 Lexical Structure

The first phase of syntactic processing is to convert from a character-based
representation to a symbol-based representation of the input. This is called
lexical analysis, or lexing. The main idea is to aggregate characters into sym-
bols that serve as tokens for subsequent phases of analysis. For example,
the numeral 467 is written as a sequence of three consecutive characters,
one for each digit, but is regarded as a single token, namely the number 467.
Similarly, an identifier such as temp comprises four letters, but is treated as
a single symbol representing the entire word. Moreover, many character-
based representations include empty “white space” (spaces, tabs, newlines,
and, perhaps, comments) that are discarded by the lexical analyzer.1

1In some languages white space is significant, in which case it must be converted to
symbolic form for subsequent processing.
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The character representation of symbols is, in most cases, conveniently
described using regular expressions. The lexical structure of L{num str} is
specified as follows:

Item itm ::= kwd | id | num | lit | spl
Keyword kwd ::= l · e · t · ε | b · e · ε | i · n · ε
Identifier id ::= ltr (ltr | dig)∗

Numeral num ::= dig dig∗

Literal lit ::= qum (ltr | dig)∗qum
Special spl ::= + | * | ˆ | ( | ) | |
Letter ltr ::= a | b | . . .
Digit dig ::= 0 | 1 | . . .
Quote qum ::= "

A lexical item is either a keyword, an identifier, a numeral, a string literal,
or a special symbol. There are three keywords, specified as sequences of
characters, for emphasis. Identifiers start with a letter and may involve
subsequent letters or digits. Numerals are non-empty sequences of digits.
String literals are sequences of letters or digits surrounded by quotes. The
special symbols, letters, digits, and quote marks are as enumerated. (Ob-
serve that we tacitly identify a character with the unit-length string consist-
ing of that character.)

The job of the lexical analyzer is to translate character strings into token
strings using the above definitions as a guide. An input string is scanned,
ignoring white space, and translating lexical items into tokens, which are
specified by the following rules:

s str
ID[s] tok

(7.1a)

n nat
NUM[n] tok

(7.1b)

s str
LIT[s] tok

(7.1c)

LET tok (7.1d)

BE tok (7.1e)

IN tok (7.1f)

ADD tok (7.1g)

MUL tok (7.1h)
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CAT tok (7.1i)

LP tok (7.1j)

RP tok (7.1k)

VB tok (7.1l)

Lexical analysis is inductively defined by the following judgement forms:

s inp←→ t tokstr Scan input
s itm←→ t tok Scan an item

s kwd←→ t tok Scan a keyword
s id←→ t tok Scan an identifier

s num←→ t tok Scan a number
s spl←→ t tok Scan a symbol
s lit←→ t tok Scan a string literal

s whs Skip white space

The definition of these forms, which follows, makes use of several auxiliary
judgements corresponding to the classifications of characters in the lexical
structure of the language. For example, s whs states that the string s consists
only of “white space”, and s lord states that s is either an alphabetic letter
or a digit, and so forth.

ε inp←→ ε tokstr (7.2a)

s = s1 ˆ s2 ˆ s3 str s1 whs s2 itm←→ t tok s3 inp←→ ts tokstr

s inp←→ t · ts tokstr
(7.2b)

s kwd←→ t tok
s itm←→ t tok

(7.2c)

s id←→ t tok
s itm←→ t tok

(7.2d)

s num←→ t tok
s itm←→ t tok

(7.2e)

s lit←→ t tok
s itm←→ t tok

(7.2f)

s spl←→ t tok

s itm←→ t tok
(7.2g)

s = l · e · t · ε str
s kwd←→ LET tok

(7.2h)

s = b · e · ε str
s kwd←→ BE tok

(7.2i)
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s = i · n · ε str
s kwd←→ IN tok

(7.2j)

s = s1 ˆ s2 str s1 ltr s2 lord

s id←→ ID[s] tok
(7.2k)

s = s1 ˆ s2 str s1 dig s2 dgs s num←→ n nat

s num←→ NUM[n] tok
(7.2l)

s = s1 ˆ s2 ˆ s3 str s1 qum s2 lord s3 qum

s lit←→ LIT[s2] tok
(7.2m)

s = + · ε str
s spl←→ ADD tok (7.2n)

s = * · ε str
s spl←→ MUL tok (7.2o)

s = ˆ · ε str
s spl←→ CAT tok

(7.2p)

s = ( · ε str
s spl←→ LP tok

(7.2q)

s = ) · ε str
s spl←→ RP tok

(7.2r)

s = | · ε str
s spl←→ VB tok

(7.2s)

By convention Rule (7.2k) applies only if none of Rules (7.2h) to (7.2j) ap-
ply. Technically, Rule (7.2k) has implicit premises that rule out keywords
as possible identifiers.

7.2 Context-Free Grammars

The standard method for defining concrete syntax is by giving a context-free
grammar for the language. A grammar consists of three components:

1. The tokens, or terminals, over which the grammar is defined.

2. The syntactic classes, or non-terminals, which are disjoint from the ter-
minals.

3. The rules, or productions, which have the form A ::= α, where A is a
non-terminal and α is a string of terminals and non-terminals.
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Each syntactic class is a collection of token strings. The rules determine
which strings belong to which syntactic classes.

When defining a grammar, we often abbreviate a set of productions,

A ::= α1

...
A ::= αn,

each with the same left-hand side, by the compound production

A ::= α1 | . . . | αn,

which specifies a set of alternatives for the syntactic class A.
A context-free grammar determines a simultaneous inductive defini-

tion of its syntactic classes. Specifically, we regard each non-terminal, A, as
a judgement form, s A, over strings of terminals. To each production of the
form

A ::= s1 A1 s2 . . . sn An sn+1 (7.3)

we associate an inference rule

s′1 A1 . . . s′n An

s1 s′1 s2 . . . sn s′n sn+1 A
. (7.4)

The collection of all such rules constitutes an inductive definition of the
syntactic classes of the grammar.

Recalling that juxtaposition of strings is short-hand for their concatena-
tion, we may re-write the preceding rule as follows:

s′1 A1 . . . s′n An s = s1 ˆ s′1 ˆ s2 ˆ . . . sn ˆ s′n ˆ sn+1

s A
. (7.5)

This formulation makes clear that s A holds whenever s can be partitioned
as described so that s′i A for each 1 ≤ i ≤ n. Since string concatenation is
not invertible, the decomposition is not unique, and so there may be many
different ways in which the rule applies.

7.3 Grammatical Structure

The concrete syntax ofL{num str}may be specified by a context-free gram-
mar over the tokens defined in Section 7.1 on page 49. The grammar has

JULY 8, 2008 DRAFT 11:12PM



54 7.3. GRAMMATICAL STRUCTURE

only one syntactic class, exp, which is defined by the following compound
production:

Expression exp ::= num | lit | id | LP exp RP | exp ADD exp |
exp MUL exp | exp CAT exp | VB exp VB |
LET id BE exp IN exp

Number num ::= NUM[n] (n nat)
String lit ::= LIT[s] (s str)
Identifier id ::= ID[s] (s str)

This grammar makes use of some standard notational conventions to im-
prove readability: we identify a token with the corresponding unit-length
string, and we use juxtaposition to denote string concatenation.

Applying the interpretation of a grammar as an inductive definition,
we obtain the following rules:

s num
s exp (7.6a)

s lit
s exp (7.6b)

s id
s exp (7.6c)

s1 exp s2 exp
s1 ADD s2 exp (7.6d)

s1 exp s2 exp
s1 MUL s2 exp (7.6e)

s1 exp s2 exp
s1 CAT s2 exp (7.6f)

s exp
VB s VB exp (7.6g)

s exp
LP s RP exp (7.6h)

s1 id s2 exp s3 exp
LET s1 BE s2 IN s3 exp

(7.6i)

n nat
NUM[n] num

(7.6j)

s str
LIT[s] lit

(7.6k)

s str
ID[s] id

(7.6l)
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To emphasize the role of string concatentation, we may rewrite Rule (7.6e),
for example, as follows:

s = s1 MUL s2 str

s1 exp s2 exp
s exp

.
(7.7)

That is, s exp is derivable if s is the concatentation of s1, the multiplication
sign, and s2, where s1 exp and s2 exp.

7.4 Ambiguity

Apart from subjective matters of readability, a principal goal of concrete
syntax design is to eliminate ambiguity. The grammar of arithmetic expres-
sions given above is ambiguous in the sense that some token strings may be
thought of as arising in several different ways. More precisely, there are to-
ken strings s for which there is more than one derivation ending with s exp
according to Rules (7.6).

For example, consider the character string 1+2*3, which, after lexical
analysis, is translated to the token string

NUM[1] ADD NUM[2] MUL NUM[3].

Since string concatenation is associative, this token string can be thought of
as arising in several ways, including

NUM[1] ADD ∧NUM[2] MUL NUM[3]

and
NUM[1] ADD NUM[2]∧ MUL NUM[3],

where the caret indicates the concatenation point.
One consequence of this observation is that the same token string may

be seen to be grammatical according to the rules given in Section 7.3 on
page 53 in two different ways. According to the first reading, the expres-
sion is principally an addition, with the first argument being a number, and
the second being a multiplication of two numbers. According to the second
reading, the expression is principally a multiplication, with the first argu-
ment being the addition of two numbers, and the second being a number.

Ambiguity is a purely syntactic property of grammars; it has nothing to
do with the “meaning” of a string. For example, the token string

NUM[1] ADD NUM[2] ADD NUM[3],
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also admits two readings. It is immaterial that both readings have the same
meaning under the usual interpretation of arithmetic expressions. More-
over, nothing prevents us from interpreting the token ADD to mean “divi-
sion,” in which case the two readings would hardly coincide! Nothing in
the syntax itself precludes this interpretation, so we do not regard it as rel-
evant to whether the grammar is ambiguous.

To eliminate ambiguity the grammar of L{num str} given in Section 7.3
on page 53 must be re-structured to ensure that every grammatical string
has at most one derivation according to the rules of the grammar. The
main method for achieving this is to introduce precedence and associativ-
ity conventions that ensure there is only one reading of any token string.
Parenthesization may be used to override these conventions, so there is no
fundamental loss of expressive power in doing so.

Precedence relationships are introduced by layering the grammar, which
is achieved by splitting syntactic classes into several sub-classes.

Factor fct ::= num | lit | id | LP prg RP
Term trm ::= fct | fct MUL trm | VB fct VB
Expression exp ::= trm | trm ADD exp | trm CAT exp
Program prg ::= exp | LET id BE exp IN prg

The effect of this grammar is to ensure that let has the lowest precedence,
addition and concatenation intermediate precedence, and multiplication
and length the highest precedence. Moreover, all forms are right-associative.
Other choices of rules are possible, according to taste; this grammar illus-
trates one way to resolve the ambiguities of the original expression gram-
mar.

7.5 Exercises
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Chapter 8

Abstract Syntax

The concrete syntax of a language is concerned with the linear representa-
tion of the phrases of a language as strings of symbols—the form in which
we write them on paper, type them into a computer, and read them from
a page. The main goal of concrete syntax design is to enhance the read-
ability and writability of the language, based on subjective criteria such as
similarity to other languages, ease of editing using standard tools, and so
forth.

But languages are also the subjects of study, as well as the instruments
of expression. As such the concrete syntax of a language is just a nuisance.
When analyzing a language mathematically we are only interested in the
deep structure of its phrases, not their surface representation. The abstract
syntax of a language exposes the hierarchical and binding structure of the
language, and suppresses the linear notation used to write it on the page.

Parsing is the process of translation from concrete to abstract syntax. It
consists of analyzing the linear representation of a phrase in terms of the
grammar of the language and transforming it into an abstract syntax tree
or an abstract binding tree that reveals the deep structure of the phrase.
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8.1 Abstract Syntax Trees

The abstract syntax tree representation of L{num str} is specified by the
following signature:

ar(num[n]) = 0 (n nat)
ar(str[s]) = 0 (s str)

ar(id[s]) = 0 (s str)
ar(plus) = 2

ar(times) = 2
ar(cat) = 2
ar(len) = 1

ar(let[s]) = 2

Observe that each identifier is regarded as operators of arity 0, and that the
let construct is regarded as a family of operators of arity two, indexed by
the identifier that it binds.

Specializing the rules for abstract syntax trees to this signature, we ob-
tain the following inductive definition of the abstract syntax of L{num str}:

n nat
num[n] ast

(8.1a)

s str
str[s] ast

(8.1b)

s str
id[s] ast

(8.1c)

a1 ast a2 ast

plus(a1; a2) ast
(8.1d)

a1 ast a2 ast

times(a1; a2) ast
(8.1e)

a1 ast a2 ast

cat(a1; a2) ast
(8.1f)

a ast
len(a) ast

(8.1g)

s id a1 ast a2 ast

let[s](a1; a2) ast
(8.1h)

Strictly speaking, the last rule is a specialization of the rule induced by the
arity assignment for let in which we demand that the first argument be an
identifier.
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8.2 Parsing Into Abstract Syntax Trees

The process of translation from concrete to abstract syntax is called pars-
ing. We will define parsing as a judgement between the concrete and ab-
stract syntax of a language. This judgement will have the mode (∀, ∃≤1)
over strings and ast’s, which states that the parser is a partial function of
its input, being undefined for ungrammatical token strings, but otherwise
uniquely determining the abstract syntax tree representation of each well-
formed input.

The parsing judgements for L{num str} follow the unambiguous gram-
mar given in Chapter 7:

s prg←→ a ast Parse as a program
s exp←→ a ast Parse as an expression
s trm←→ a ast Parse as a term
s fct←→ a ast Parse as a factor

s num←→ a ast Parse as a number
s lit←→ a ast Parse as a literal
s id←→ a ast Parse as an identifier

These judgements are inductively defined simultaneously by the following
rules:

n nat
NUM[n] num←→ num[n] ast

(8.2a)

s str
LIT[s] lit←→ str[s] ast

(8.2b)

s str
ID[s] id←→ id[s] ast

(8.2c)

s num←→ a ast
s fct←→ a ast

(8.2d)

s lit←→ a ast
s fct←→ a ast

(8.2e)

s id←→ a ast
s fct←→ a ast

(8.2f)

s prg←→ a ast

LP s RP fct←→ a ast
(8.2g)

s fct←→ a ast
s trm←→ a ast

(8.2h)

s1 fct←→ a1 ast s2 trm←→ a2 ast

s1 MUL s2 trm←→ times(a1; a2) ast
(8.2i)
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s fct←→ a ast
VB s VB trm←→ len(a) ast

(8.2j)

s trm←→ a ast
s exp←→ a ast (8.2k)

s1 trm←→ a1 ast s2 exp←→ a2 ast

s1 ADD s2 exp←→ plus(a1; a2) ast
(8.2l)

s1 trm←→ a1 ast s2 exp←→ a2 ast

s1 CAT s2 exp←→ cat(a1; a2) ast
(8.2m)

s exp←→ a ast
s prg←→ a ast

(8.2n)

s1 id←→ id[s] ast s2 exp←→ a2 ast s3 prg←→ a3 ast

LET s1 BE s2 IN s3 prg←→ let[s](a2; a3) ast
(8.2o)

A successful parse implies that the token string must have been derived
according to the rules of the unambiguous grammar and that the result is a
well-formed abstract syntax tree.

Theorem 8.1. If s prg←→ a ast, then s prg and a ast, and similarly for the other
parsing judgements.

Proof. By rule induction on Rules (8.2).

Moreover, if a string is generated according to the rules of the grammar,
then it has a parse as an ast.

Theorem 8.2. If s prg, then there is a unique a such that s prg ←→ a ast, and
similarly for the other parsing judgements. That is, the parsing judgements have
mode (∀, ∃!) over the class of well-formed strings and abstract syntax trees.

Proof. By rule induction on the rules determined by reading Grammar (7.4)
as an inductive definition.

Finally, any piece of abstract syntax may be formatted as a string that
parses as the given ast.

Theorem 8.3. If a ast, then there exists a (not necessarily unique) string s such
that s prg and s prg←→ a ast. That is, the parsing judgement has mode (∃, ∀).

Proof. By rule induction on Grammar (7.4).

The string representation of an abstract syntax tree is not unique, since
we may introduce parentheses at will around any sub-expression.
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8.3 Parsing Into Abstract Binding Trees

The representation of L{num str} using abstract syntax trees exposes the
hierarchical structure of the language, but does not manage the binding
and scope of variables in a let expression. In this section we revise the
parser given in Section 8.1 on page 58 to translate from token strings (as
before) to abstract binding trees to make explicit the binding and scope of
identifiers in a program.

The abstract binding tree representation of L{num str} is specified by
the following assignment of (generalized) arities to operators:

ar(num[n]) = ()
ar(str[s]) = ()

ar(plus) = (0, 0)
ar(times) = (0, 0)

ar(cat) = (0, 0)
ar(len) = (0)
ar(let) = (0, 1)

The arity of the operator let specifies that it takes two arguments, the sec-
ond of which is an abstractor of valence 1, meaning that it binds one vari-
able in the second argument position. Observe that identifiers are no longer
declared as operators; instead, identifiers are translated by the parser into
variables. Similarly, parentheses are “parsed away” on passage to abstract
syntax, and thus have no representation as operators.

The revised parsing judgement, s prg ←→ a abt, between strings s and
abt’s a, is defined by a collection of rules similar to those given in Section 8.2
on page 59. These rules take the form of a parametric inductive definition
(see Chapter 2) in which the premises and conclusions of the rules involve
hypothetical judgments of the form

ID[s1] id←→ x1 abt, . . . , ID[sn] id←→ xn abt ` s prg←→ a abt,

where the xi’s are pairwise distinct variable names. The hypotheses of the
judgement dictate how identifiers are to be parsed as variables, for it fol-
lows from the reflexivity of the hypothetical judgement that

Γ, ID[s] id←→ x abt ` ID[s] id←→ x abt.

To maintain the association between identifiers and variables when pars-
ing a let expression, we update the hypotheses to record the association
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between the bound identifier and a corresponding variable:

Γ ` s1 id←→ x abt Γ ` s2 exp←→ a2 abt

Γ, s1 id←→ x abt ` s3 prg←→ a3 abt

Γ ` LET s1 BE s2 IN s3 prg←→ let(a2; x.a3) abt

(8.3a)

Unfortunately, this approach does not quite work properly! If an inner let
expression binds the same identifier as an outer let expression, there is
an ambiguity in how to parse occurrences of that identifier. Parsing such
nested let’s will introduce two hypotheses, say ID[s] id ←→ x1 abt and
ID[s] id ←→ x2 abt, for the same identifier ID[s]. By the structural prop-
erty of exchange, we may choose arbitrarily which to apply to any partic-
ular occurrence of ID[s], and hence we may parse different occurrences
differently.

To rectify this we must resort to less elegant methods. Rather than use
hypotheses, we instead maintain an explicit symbol table to record the as-
sociation between identifiers and variables. We must define explicitly the
procedures for creating and extending symbol tables, and for looking up
an identifier in the symbol table to determine its associated variable. This
gives us the freedom to implement a shadowing policy for re-used iden-
tifiers, according to which the most recent binding of an identifier deter-
mines the corresponding variable.

The main change to the parsing judgement is that the hypothetical judge-
ment

Γ ` s prg←→ a abt

is reduced to the categorical judgement

s prg←→ a abt [σ],

where σ is a symbol table. (Analogous changes must be made to the other
parsing judgements.) The symbol table is now an argument to the judge-
ment form, rather than an implicit mechanism for performing inference
under hypotheses.

The rule for parsing let expressions is then formulated as follows:

s1 id←→ x [σ] s2 exp←→ a2 abt [σ]
σ′ = σ[s1 7→ x] s3 prg←→ a3 abt [σ′]

LET s1 BE s2 IN s3 prg←→ let(a2; x.a3) abt [σ]

(8.4)

This rule is quite similar to the hypothetical form, the difference being that
we must manage the symbol table explicitly. In particular, we must include
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a rule for parsing identifiers, rather than relying on the reflexivity of the
hypothetical judgement to do it for us.

σ(ID[s]) = x
ID[s] id←→ x [σ]

(8.5)

The premise of this rule states that σ maps the identifier ID[s] to the vari-
able x.

Symbol tables may be defined to be finite sequences of ordered pairs
of the form (ID[s], x), where ID[s] is an identifier and x is a variable
name. Using this representation it is straightforward to define the follow-
ing judgement forms:

σ symtab well-formed symbol table
σ′ = σ[ID[s] 7→ x] add new association

σ(ID[s]) = x lookup identifier

We leave the precise definitions of these judgements as an exercise for the
reader.

8.4 Syntactic Conventions

To specify a language we shall use a concise tabular notation for simulta-
neously specifying both its abstract and concrete syntax. Officially, the lan-
guage is always a collection of abt’s, but when writing examples we shall
often use the concrete notation for the sake of concision and clarity. Our
method of specifying the concrete syntax is sufficient for our purposes, but
leaves out niggling details such as precedences of operators or the use of
bracketing to disambiguate.

The method is best illustrated by example. Here is a specification of
the syntax of L{num str} presented in the tabular style that we shall use
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throughout the book:

Category Item Abstract Concrete
Type τ ::= num num

| str str
Expr e ::= x x

| num[n] n
| str[s] "s"
| plus(e1; e2) e1+e2
| times(e1; e2) e1*e2
| cat(e1; e2) e1^e2
| len(e) |e|
| let(e1; x.e2) let x be e1 in e2

This specification is to be understood as defining two judgments, τ type
and τ exp, which specify two classes of abstract binding trees, one for types,
the other for expressions. The abstract syntax column uses patterns rang-
ing over abt’s to determine the arities of the operators for that syntactic
class. The concrete syntax column specifies the typical notational conven-
tions used in examples. In this manner Table (8.4) defines two signatures,
Ωtype and Ωexpr, that specify the operators for types and expressions, re-
spectively. The signature for types specifies that num and str are two op-
erators of arity (). The signature for expressions specifies two families of
operators, num[n] and str[s], of arity (), three operators of arity (0, 0) cor-
responding to addition, multiplication, and concatenation, one operator of
arity (0) for length, and one operator of arity (0, 1) for let-binding expres-
sions to identifiers.

8.5 Exercises

11:12PM DRAFT JULY 8, 2008



Part III

Static and Dynamic Semantics





Chapter 9

Static Semantics

The static semantics of a language consists of a collection of rules for impos-
ing constraints on the formation of programs, called a type system. Phrases
of the language are classified by types, which govern how they may be used
in combination with other phrases. Roughly speaking, the type of a phrase
predicts the form of its value, and a phrase is said to be well-typed if it is con-
structed consistently with these predictions. For example, the sum of two
expressions of numeric type is itself of numeric type, which expresses the
evident fact that the sum of two numbers is itself a number. On the other
hand, the sum of an expression of string type with any other expression is
ill-typed, expressing that addition is undefined on strings.

It is rather straightforward to formulate a type system for simple calculator-
like languages which do not involve variable binding. The task becomes
more interesting once variables are introduced, for then we must employ
parameteric hypothetical judgements to account for their types. The static
semantics of such languages takes the form of a parametric inductive defi-
nition, for which we must show that the structural rules are admissible (as
described in Chapter 3).
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9.1 Static Semantics of L{num str}
Recall that the abstract syntax of L{num str} is given by Grammar (8.4),
which we repeat here for convenience:

Category Item Abstract Concrete
Type τ ::= num num

| str str
Expr e ::= x x

| num[n] n
| str[s] "s"
| plus(e1; e2) e1+e2
| times(e1; e2) e1*e2
| cat(e1; e2) e1^e2
| len(e) |e|
| let(e1; x.e2) let x be e1 in e2

This grammar specifies two classes of abt’s specified by the judgement
forms τ type and e exp, as described in Chapter 8.

The role of a static semantics is to impose constraints on the formations
of phrases that are sensitive to the context in which they occur. For ex-
ample, whether or not the expression plus(x; num[n]) is sensible depends
on whether or not the variable x is declared to have type num in the sur-
rounding context of the expression. This example is, in fact, illustrative of
the general case, in that the only information required about the context of
an expression is the type of the variables within whose scope the expres-
sion lies. Consequently, the static semantics of L{num str} consists of an
inductive definition of parametric hypothetical judgements of the form

X | Γ ` e : τ,

where X is a finite set of variables, and Γ is a typing context consisting of hy-
potheses of the form x : τ with x ∈ X . In practice we usually omit explicit
mention of the parameters, X , of the judgement since they are determined
from the form of Γ.

The rules defining the static semantics of L{num str} are as follows:

Γ, x : τ ` x : τ (9.1a)

Γ ` str[s] : str (9.1b)

Γ ` num[n] : num (9.1c)
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Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(9.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(9.1e)

Γ ` e1 : str Γ ` e2 : str
Γ ` cat(e1; e2) : str

(9.1f)

Γ ` e : str
Γ ` len(e) : num

(9.1g)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1; x.e2) : τ2
(9.1h)

In Rule (9.1h) we tacitly assume that the variable, x, is not already declared
in Γ. This condition may always be met by choosing a suitable representa-
tive of the α-equivalence class of the let expression.

It is easy to check that every expression has a unique type, if it has a
type at all.

Lemma 9.1 (Unicity of Typing). For every typing context Γ and expression e,
there exists at most one τ such that Γ ` e : τ.

Proof. By rule induction on Rules (9.1).

The typing rules are syntax-directed in the sense that there is exactly one
rule for each form of expression. Consequently, we obtain the following
inversion properties for typing, which state that the typing rules are neces-
sary, as well as sufficient, for each form of expression.

Lemma 9.2 (Inversion for Typing). Suppose that Γ ` e : τ. If e = plus(e1; e2),
then τ = num, Γ ` e1 : num, and Γ ` e2 : num, and similarly for the other
constructs of the language.

Proof. These may all be proved by induction on the derivation of the typing
judgement Γ ` e : τ.

9.2 Structural Properties

The static semantics enjoys the structural properties of the hypothetical
and parametric judgements. We will focus our attention here on two key
properties, the combination of proliferation (Rule (3.4a)) and weakening
(Rule (2.16b)), and substitution, which generalizes transitivity (Rule (2.16c)).
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Lemma 9.3 (Proliferation and Weakening). If Γ ` e′ : τ′, then Γ, x : τ ` e′ : τ′

for any x # Γ and any τ type.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We will give one
case here, for rule (9.1h). We have that e′ = let(e1; z.e2), where by the
conventions on parameters we may assume z is chosen such that z # Γ and
z # x. By induction we have

1. Γ, x : τ ` e1 : τ1,

2. Γ, x : τ, z : τ1 ` e2 : τ′,

from which the result follows by Rule (9.1h).

Lemma 9.4 (Substitution). If Γ, x : τ ` e′ : τ′ and Γ ` e : τ, then Γ ` [e/x]e′ :
τ′.

Proof. By induction on the derivation of Γ, x : τ ` e′ : τ′. We again consider
only rule (9.1h). As in the preceding case, e′ = let(e1; z.e2), where z may
be chosen so that z # x, z # Γ, and z # e. We have by induction

1. Γ ` [e/x]e1 : τ1,

2. Γ, z : τ1 ` [e/x]e2 : τ′.

Since we have chosen z such that z # e, we have

[e/x]let(e1; z.e2) = let([e/x]e1; z.[e/x]e2).

It follows by Rule (9.1h) that Γ ` [e/x]let(e1; z.e2) : τ, as desired.

The substitution lemma states that an expression may be composed
from separate parts by replacing a variable with any expression of the ex-
pected type. The decomposition lemma states the converse, that any ex-
pression can be decomposed into parts, with the separation mediated by a
variable.

Lemma 9.5 (Decomposition). If Γ ` [e/x]e′ : τ′, then there exists a unique type
τ such that Γ ` e : τ and Γ, x : τ ` e′ : τ′.

Proof. This follows directly from the unicity of types (Lemma 9.1 on the
preceding page), since τ is the unique type for e in the composite expression
[e/x]e′.
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9.3 Exercises

1. Show that the expression e = plus(num[7]; str[abc]) is ill-typed in
that there is no τ such that e : τ.
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Chapter 10

Dynamic Semantics

The dynamic semantics of a language specifies how programs are to be ex-
ecuted. One important method for specifying dynamic semantics is called
structural semantics, which consists of a collection of rules defining a transi-
tion system whose states are expressions with no free variables. Contextual
semantics may be viewed as an alternative presentation of the structural se-
mantics of a language. Another important method for specifying dynamic
semantics, called evaluation semantics, is the subject of Chapter 12.

10.1 Structural Semantics of L{num str}
A structural semantics forL{num str} consists of a transition system whose
states are closed expressions, all of which are initial states. The final states
are the closed values, as defined by the following rules:

num[n] val (10.1a)

str[s] val (10.1b)

The transition judgement, e 7→ e′, is also inductively defined.

n1 + n2 = n nat

plus(num[n1]; num[n2]) 7→ num[n] (10.2a)

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

(10.2b)

e1 val e2 7→ e′2
plus(e1; e2) 7→ plus(e1; e′2)

(10.2c)
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s1 ˆ s2 = s str

cat(str[s1]; str[s2]) 7→ str[s]
(10.2d)

e1 7→ e′1
cat(e1; e2) 7→ cat(e′1; e2)

(10.2e)

e1 val e2 7→ e′2
cat(e1; e2) 7→ cat(e1; e′2)

(10.2f)

e1 val

let(e1; x.e2) 7→ [e1/x]e2
(10.2g)

e1 7→ e′1
let(e1; x.e2) 7→ let(e′1; x.e2)

(10.2h)

We have omitted rules for multiplication and computing the length of a
string, which follow a similar pattern. Rules (10.2a), (10.2d), and (10.2g)
are instruction transitions, since they correspond to the primitive steps of
evaluation. The remaining rules are search transitions that determine the
order in which instructions are executed.

When defined using structural semantics, a derivation sequence has a
“two-dimensional” structure, with the number of steps in the sequence be-
ing its “width” and the derivation tree for each step being its “depth.” For
example, consider the following evaluation sequence.

let(plus(num[1]; num[2]); x.plus(plus(x; num[3]); num[4]))
7→ let(num[3]; x.plus(plus(x; num[3]); num[4]))
7→ plus(plus(num[3]; num[3]); num[4])
7→ plus(num[6]; num[4])
7→ num[10]

Each step in this sequence of transitions is justified by a derivation accord-
ing to Rules (10.2). For example, the third transition in the preceding ex-
ample is justified by the following derivation:

plus(num[3]; num[3]) 7→ num[6]
(10.2a)

plus(plus(num[3]; num[3]); num[4]) 7→ plus(num[6]; num[4])
(10.2b)

The other steps are similarly justified by a composition of rules.
Since the transition judgement is inductively defined, we may reason

about it using rule induction. Specifically, to show that P(e 7→ e′) holds
whenever e 7→ e′, it is sufficient to show that P is closed under the rules
defining the transition judgement.
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For example, it is a simple matter to show by rule induction that the
transition judgement for evaluation of expressions is deterministic.

Lemma 10.1. If e 7→ e′ and e 7→ e′′, then e′ is e′′.

Proof. By simultaneous induction on the two premises using Rules (10.2).
The key observation is that only one rule applies for a given e, from which
the result follows easily by induction in each case.

10.2 Contextual Semantics of L{num str}
A variant of structural semantics, called contextual semantics, is sometimes
useful. There is no fundamental difference between the two approaches,
only a difference in the style of presentation. The main idea is to isolate
instruction steps as a special form of judgement, called instruction transi-
tion, and to formalize the process of locating the next instruction using a
device called an evaluation context. The judgement, e val, defining whether
an expression is a value, remains unchanged.

The instruction transition judgement, e1  e2, for L{num str} is de-
fined by the following rules, together with similar rules for multiplication
of numbers and the length of a string.

m + n = p nat

plus(num[m]; num[n]) num[p] (10.3a)

s ˆ t = u str
cat(str[s]; str[t]) str[u] (10.3b)

e1 val

let(e1; x.e2) [e1/x]e2
(10.3c)

The left-hand side of each instruction is called a redex (that which is re-
duced), and the corresponding right-hand side is called its contractum (that
to which it is contracted).

The judgement E ectxt determines the location of the next instruction to
execute in a larger expression. The position of the next instruction step is
specified by a “hole”, written ◦, into which the next instruction is placed, as
we shall detail shortly. (The rules for multiplication and length are omitted
for concision, as they are handled similarly.)

◦ ectxt (10.4a)

E1 ectxt

plus(E1; e2) ectxt
(10.4b)
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e1 val E2 ectxt

plus(e1; E2) ectxt
(10.4c)

E1 ectxt

cat(E1; e2) ectxt
(10.4d)

e1 val E2 ectxt

cat(e1; E2) ectxt
(10.4e)

E1 ectxt

let(E1; x.e2) ectxt
(10.4f)

The first rule for evaluation contexts specifies that the next instruction may
occur “here”, at the point of the occurrence of the hole. The remaining rules
correspond one-for-one to the search rules of the structural semantics. For
example, Rule (10.4c) states that in an expression plus(e1; e2), if the first
principal argument, e1, is a value, then the next instruction step, if any, lies
at or within the second principal argument, e2.

An evaluation context is to be thought of as a template that is instanti-
ated by replacing the hole with an instruction to be executed. The judge-
ment e′ = E{e} states that the expression e′ is the result of filling the hole
in the evaluation context E with the expression e. It is inductively defined
by the following rules:

e = ◦{e} (10.5a)

e1 = E1{e}
plus(e1; e2) = plus(E1; e2){e}

(10.5b)

e1 val e2 = E2{e}
plus(e1; e2) = plus(e1; E2){e}

(10.5c)

e1 = E1{e}
cat(e1; e2) = cat(E1; e2){e}

(10.5d)

e1 val e2 = E2{e}
cat(e1; e2) = cat(e1; E2){e}

(10.5e)

e1 = E1{e}
let(e1; x.e2) = let(E1; x.e2){e}

(10.5f)

There is one rule for each form of evaluation context. Filling the hole with
e results in e; otherwise we proceed inductively over the structure of the
evaluation context.
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Finally, the dynamic semantics for L{num str} is defined using contex-
tual semantics by a single rule:

e = E{e0} e0  e′0 e′ = E{e′0}
e 7→ e′

(10.6)

Thus, a transition from e to e′ consists of (1) decomposing e into an evalua-
tion context and an instruction, (2) execution of that instruction, and (3) re-
placing the instruction by the result of its execution in the same spot within
e to obtain e′.

The structural and contextual semantics define the same transition re-
lation. For the sake of the proof, let us write e 7→s e′ for the transition
relation defined by the structural semantics (Rules (10.2)), and e 7→c e′ for
the transition relation defined by the contextual semantics (Rules (10.6)).

Theorem 10.2. e 7→s e′ if, and only if, e 7→c e′.

Proof. From left to right, proceed by rule induction on Rules (10.2). It is
enough in each case to exhibit an evaluation context E such that e = E{e0},
e′ = E{e′0}, and e0  e′0. For example, for Rule (10.2a), take E = ◦, and
observe that e  e′. For Rule (10.2b), we have by induction that there
exists an evaluation context E1 such that e1 = E1{e0}, e′1 = E1{e′0}, and
e0  e′0. Take E = plus(E1; e2), and observe that e = plus(E1; e2){e0} and
e′ = plus(E1; e2){e′0} with e0  e′0.

From right to left, observe that if e 7→c e′, then there exists an evaluation
context E such that e = E{e0}, e′ = E{e′0}, and e0  e′0. We prove by
induction on Rules (10.5) that e 7→s e′. For example, for Rule (10.5a), e0
is e, e′0 is e′, and e  e′. Hence e 7→s e′. For Rule (10.5b), we have that
E = plus(E1; e2), e1 = E1{e0}, e′1 = E1{e′0}, and e1 7→s e′1. Therefore e is
plus(e1; e2), e′ is plus(e′1; e2), and therefore by Rule (10.2b), e 7→s e′.

Since the two transition judgements coincide, contextual semantics may
be seen as an alternative way of presenting a structural semantics. It has
two advantages over structural semantics, one relatively superficial, one
rather less so. The superficial advantage stems from writing Rule (10.6) in
the simpler form

e0  e′0
E{e0} 7→ E{e′0}

. (10.7)

This formulation is simpler insofar as it leaves implicit the definition of
the decomposition of the left- and right-hand sides. The deeper advantage,
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which we will exploit in Chapter 16, is that the transition judgement in con-
textual semantics applies only to closed expressions of a fixed type, whereas
structural semantics transitions are necessarily defined over expressions of
every type.

10.3 Exercises

1. For the structural operational semantics of L{num str}, prove that if
e 7→ e1 and e 7→ e2, then e1 =α e2.

2. Formulate a variation of L{num str} with both a by-name and a by-
value let construct.
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Chapter 11

Type Safety

Most contemporary programming languages are safe (or, type safe, or strongly
typed). Informally, this means that certain kinds of mismatches cannot arise
during execution. For example, type safety forL{num str} states that it will
never arise that a number is to be added to a string, or that two numbers
are to be concatenated, neither of which is meaningful.

In general type safety expresses the coherence between the static and
the dynamic semantics. The static semantics may be seen as predicting that
the value of an expression will have a certain form so that the dynamic se-
mantics of that expression is well-defined. Consequently, evaluation can-
not “get stuck” in a state for which no transition is possible, correspond-
ing in implementation terms to the absence of “illegal instruction” errors
at execution time. This is proved by showing that each step of transition
preserves typability and by showing that typable states are well-defined.
Consequently, evaluation can never “go off into the weeds,” and hence can
never encounter an illegal instruction.

More precisely, type safety for L{num str}may be stated as follows:

Theorem 11.1 (Type Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

The first part, called preservation, says that the steps of evaluation pre-
serve typing; the second, called progress, ensures that well-typed expres-
sions are either values or can be further evaluated. Safety is the conjunction
of preservation and progress.

We say that an expression, e, is stuck iff it is not a value, yet there is no
e′ such that e 7→ e′. It follows from the safety theorem that a stuck state is
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necessarily ill-typed. Or, putting it the other way around, that well-typed
states do not get stuck.

11.1 Preservation

The preservation theorem for L{num str} defined in Chapters 9 and 10 is
proved by rule induction on the transition system (rules (10.2)).

Theorem 11.2 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. We will consider two cases, leaving the rest to the reader. Consider
rule (10.2b),

e1 7→ e′1
plus(e1; e2) 7→ plus(e′1; e2)

.

Assume that plus(e1; e2) : τ. By inversion for typing, we have that τ =
num, e1 : num, and e2 : num. By induction we have that e′1 : num, and hence
plus(e′1; e2) : num. The case for concatenation is handled similarly.

Now consider rule (10.2g),

e1 val

let(e1; x.e2) 7→ [e1/x]e2
.

Assume that let(e1; x.e2) : τ2. By the inversion lemma 9.2 on page 69,
e1 : τ1 for some τ1 such that x : τ1 ` e2 : τ2. By the substitution lemma 9.4
on page 70 [e1/x]e2 : τ2, as desired.

The proof of preservation must proceed by rule induction on the rules
defining the transition judgement. It cannot, for example, proceed by in-
duction on the structure of e, for in most cases there is more than one tran-
sition rule for each expression form. Nor can it be proved by induction on
the typing rules, for in the case of the let rule, the context is enriched to
consider an open term, to which no dynamic semantics is assigned.

11.2 Progress

The progress theorem captures the idea that well-typed programs cannot
“get stuck”. The proof depends crucially on the following lemma, which
characterizes the values of each type.

Lemma 11.3 (Canonical Forms). If e val and e : τ, then
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1. If τ = num, then e = num[n] for some number n.

2. If τ = str, then e = str[s] for some string s.

Proof. By induction on rules (9.1) and (10.1).

Progress is proved by rule induction on rules (9.1) defining the static
semantics of the language.

Theorem 11.4 (Progress). If e : τ, then either e val, or there exists e′ such that
e 7→ e′.

Proof. The proof proceeds by induction on the typing derivation. We will
consider only one case, for rule (9.1d),

e1 : num e2 : num
plus(e1; e2) : num

,

where the context is empty because we are considering only closed terms.
By induction we have that either e1 val, or there exists e′1 such that

e1 7→ e′1. In the latter case it follows that plus(e1; e2) 7→ plus(e′1; e2), as
required. In the former we also have by induction that either e2 val, or there
exists e′2 such that e2 7→ e′2. In the latter case we have that plus(e1; e2) 7→
plus(e1; e′2), as required. In the former, we have, by the Canonical Forms
Lemma 11.3 on the preceding page, e1 = num[n1] and e2 = num[n2], and
hence

plus(num[n1]; num[n2]) 7→ num[n1 + n2].

Since the typing rules for expressions are syntax-directed, the progress
theorem could equally well be proved by induction on the structure of e,
appealing to the inversion theorem at each step to characterize the types of
the parts of e. But this approach breaks down when the typing rules are not
syntax-directed, that is, when there may be more than one rule for a given
expression form. No difficulty arises if the proof proceeds by induction on
the typing rules.

Summing up, the combination of preservation and progress together
constitute the proof of safety. The progress theorem ensures that well-typed
expressions do not “get stuck” in an ill-defined state, and the preservation
theorem ensures that if a step is taken, the result remains well-typed (with
the same type). Thus the two parts work hand-in-hand to ensure that the
static and dynamic semantics are coherent, and that no ill-defined states
can ever be encountered while evaluating a well-typed expression.
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11.3 Run-Time Errors

Suppose that we wish to extend L{num str}with, say, a quotient operation
that is undefined for a zero divisor. The natural typing rule for quotients is
given by the following rule:

e1 : num e2 : num
div(e1; e2) : num

.

But the expression div(num[3]; num[0]) is well-typed, yet stuck! We have
two options to correct this situation:

1. Enhance the type system, so that no well-typed program may divide
by zero.

2. Add dynamic checks, so that division by zero signals an error as the
outcome of evaluation.

Either option is, in principle, viable, but the most common approach is the
second. The first requires that the type checker prove that an expression be
non-zero before permitting it to be used in the denominator of a quotient.
It is difficult to do this without ruling out too many programs as ill-formed,
because one cannot often predict statically whether an expression will turn
out to be non-zero when executed. We therefore consider the second ap-
proach, which is typical of current practice.

The general idea is to distinguish checked from unchecked errors. An
unchecked error is one that is ruled out by the type system. No run-time
checking is performed to ensure that such an error does not occur, because
the type system rules out the possibility of it arising. For example, the dy-
namic semantics need not check, when performing an addition, that its two
arguments are, in fact, numbers, as opposed to strings, because the type
system ensures that this is the case. On the other hand the dynamic seman-
tics for quotient must check for a zero divisor, because the type system does
not rule out the possibility.

One approach to modelling checked errors is to give an inductive def-
inition of the judgment e err stating that the expression e incurs a checked
run-time error, such as division by zero. Here are some representative rules
that would appear in a full inductive definition of this judgement:

e1 val

div(e1; num[0]) err
(11.1a)

e1 err

plus(e1; e2) err
(11.1b)
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e1 val e2 err

plus(e1; e2) err
(11.1c)

Rule (11.1a) signals an error condition for division by zero. The other rules
propagate this error upwards: if an evaluated sub-expression is a checked
error, then so is the overall expression.

The preservation theorem is not affected by the presence of checked er-
rors. However, the statement (and proof) of progress is modified to account
for checked errors.

Theorem 11.5 (Progress With Error). If e : τ, then either e err, or e val, or there
exists e′ such that e 7→ e′.

Proof. The proof is by induction on typing, and proceeds similarly to the
proof given earlier, except that there are now three cases to consider at each
point in the proof.

A disadvantage of this approach to the formalization of error checking
is that it appears to require a special set of evaluation rules to check for
errors. An alternative is to fold in error checking with evaluation by en-
riching the language with a special error expression, error, which signals
that an error has arisen. Since an error condition aborts the computation,
the static semantics assigns an arbitrary type to error:

error : τ (11.2)

This rule destroys the unicity of typing property (Lemma 9.1 on page 69).
This can be restored by introducing a special error expression for each type,
but we shall not do so here for the sake of simplicity.

The dynamic semantics is augmented with rules that provoke a checked
error (such as division by zero), plus rules that propagate the error through
other language constructs.

e1 val

div(e1; num[0]) 7→ error
(11.3a)

plus(error; e2) 7→ error (11.3b)

e1 val

plus(e1; error) 7→ error
(11.3c)

There are similar error propagation rules for the other constructs of the
language. By defining e err to hold exactly when e = error, the revised
progress theorem continues to hold for this variant semantics.
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11.4 Exercises

1. Complete the proof of preservation.

2. Complete the proof of progress.
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Chapter 12

Evaluation Semantics

In Chapter 10 we defined the dynamic semantics of L{num str} using the
method of structural semantics. This approach is useful as a foundation for
proving properties of a language, but other methods are often more appro-
priate for other purposes, such as writing user manuals. Another method,
called evaluation semantics, or ES, presents the dynamic semantics as a rela-
tion between a phrase and its value, without detailing how it is to be deter-
mined in a step-by-step manner. Two variants of evaluation semantics are
also considered, namely environment semantics, which delays substitution,
and cost semantics, which records the number of steps that are required to
evaluate an expression.

12.1 Evaluation Semantics

Another method for defining the dynamic semantics of L{num str}, called
evaluation semantics, consists of an inductive definition of the evaluation
judgement, e ⇓ v, stating that the closed expression, e, evaluates to the
value, v.

num[n] ⇓ num[n] (12.1a)

str[s] ⇓ str[s] (12.1b)

e1 ⇓ num[n1] e2 ⇓ num[n2] n1 + n2 = n nat

plus(e1; e2) ⇓ num[n]
(12.1c)

e1 ⇓ str[s1] e2 ⇓ str[s2] s1 ˆ s2 = s str

cat(e1; e2) ⇓ str[s]
(12.1d)

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let(e1; x.e2) ⇓ v2
(12.1e)



86 12.2. RELATING TRANSITION AND . . .

The value of a let expression is determined by the value of its binding, and
the value of the corresponding substitution instance of its body. Since the
substitution instance is not a sub-expression of the let, the rules are not
syntax-directed.

The evaluation judgement is inductively defined, we prove properties
of it by rule induction. Specifically, to show that the property P(e ⇓ v)
holds, it is enough to show that P is closed under Rules (12.1):

1. Show that P(num[n] ⇓ num[n]).

2. Show that P(str[s] ⇓ str[s]).

3. Show thatP(plus(e1; e2) ⇓ num[n]), ifP(e1 ⇓ num[n1]),P(e2 ⇓ num[n2]),
and n1 + n2 = n nat.

4. Show thatP(cat(e1; e2) ⇓ str[s]), ifP(e1 ⇓ str[s1]),P(e2 ⇓ str[s2]),
and s1 ˆ s2 = s str.

5. Show that P(let(e1; x.e2) ⇓ v2), if P(e1 ⇓ v1) and P([v1/x]e2 ⇓ v2).

This induction principle is not the same as structural induction on e exp,
because the evaluation rules are not syntax-directed!

Lemma 12.1. If e ⇓ v, then v val.

Proof. By induction on Rules (12.1). All cases except Rule (12.1e) are im-
mediate. For the latter case, the result follows directly by an appeal to the
inductive hypothesis for the second premise of the evaluation rule.

12.2 Relating Transition and Evaluation Semantics

We have given two different forms of dynamic semantics for L{num str}.
It is natural to ask whether they are equivalent, but to do so first requires
that we consider carefully what we mean by equivalence. The transition
semantics describes a step-by-step process of execution, whereas the eval-
uation semantics suppresses the intermediate states, focussing attention on
the initial and final states alone. This suggests that the appropriate cor-
respondence is between complete execution sequences in the transition se-
mantics and the evaluation judgement in the evaluation semantics. (We
will consider only numeric expressions, but analogous results hold also for
string-valued expressions.)

Theorem 12.2. For all closed expressions e and values v, e 7→∗ v iff e ⇓ v.
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How might we prove such a theorem? We will consider each direction
separately. We consider the easier case first.

Lemma 12.3. If e ⇓ v, then e 7→∗ v.

Proof. By induction on the definition of the evaluation judgement. For ex-
ample, suppose that plus(e1; e2) ⇓ num[n] by the rule for evaluating addi-
tions. By induction we know that e1 7→∗ num[n1] and e2 7→∗ num[n2]. We
reason as follows:

plus(e1; e2) 7→∗ plus(num[n1]; e2)
7→∗ plus(num[n1]; num[n2])
7→ num[n1 + n2]

Therefore plus(e1; e2) 7→∗ num[n1 + n2], as required. The other cases are
handled similarly.

For the converse, recall from Chapter 4 the definitions of multi-step
evaluation and complete evaluation. Since v ⇓ v whenever v val, it suf-
fices to show that evaluation is closed under head expansion.

Lemma 12.4. If e 7→ e′ and e′ ⇓ v, then e ⇓ v.

Proof. By induction on the definition of the transition judgement. For ex-
ample, suppose that plus(e1; e2) 7→ plus(e′1; e2), where e1 7→ e′1. Sup-
pose further that plus(e′1; e2) ⇓ v, so that e′1 ⇓ num[n1], e2 ⇓ num[n2],
n1 + n2 = n nat, and v is num[n]. By induction e1 ⇓ num[n1], and hence
plus(e1; e2) ⇓ num[n], as required.

12.3 Environment Semantics

Both the transition semantics and the evaluation semantics given earlier
rely on substitution to replace let-bound variables by their bindings dur-
ing evaluation. This approach maintains the invariant that only closed ex-
pressions are ever considered. However, in practice, we do not perform
substitution, but rather record the bindings of variables in some sort of
data structure. In this section we show how this can be elegantly modeled
using hypothetical judgements.

The basic idea is to consider hypotheses of the form x ⇓ v, where x is
a variable and v is a value, such that no two hypotheses govern the same
variable. Let E range over finite sets of such hypotheses, which we call an
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environment. We will consider judgements of the form E ` e ⇓ v, where E
is an environment governing some finite set of variables.

E , x ⇓ v ` x ⇓ v (12.2a)

E ` e1 ⇓ num[n1] E ` e2 ⇓ num[n2]

E ` plus(e1; e2) ⇓ num[n1 + n2]
(12.2b)

E ` e1 ⇓ str[s1] E ` e2 ⇓ str[s2]

E ` cat(e1; e2) ⇓ str[s1 ˆ s2]
(12.2c)

E ` e1 ⇓ v1 E , x ⇓ v1 ` e2 ⇓ v2

E ` let(e1; x.e2) ⇓ v2
(12.2d)

The variable rule is an instance of the reflexivity rule for hypothetical judge-
ments, and therefore need not be explicitly stated. We nevertheless include
it here for clarity. The let rule augments the environment with a new as-
sumption governing the bound variable (which, by α-conversion, may be
chosen to be distinct from any other variable currently in E to preserve the
invariant that no two assumptions govern the same variable).

The environment semantics is related to the evaluation semantics by the
following theorem:

Theorem 12.5. x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v iff [v1, . . . , vn/x1, . . . , xn]e ⇓ v.

Proof. The left to right direction is proved by induction on the rules defin-
ing the evaluation semantics, making use of the definition of substitution
and the definition of the evaluation semantics for closed expressions. The
converse is proved by induction on the structure of e, again making use of
the definition of substitution. Note that we must induct on e in order to
detect occurrences of variables xi in e, which are governed by a hypothesis
in the environment semantics.

12.4 Cost Semantics

A structural semantics provides a natural notion of time complexity for pro-
grams, namely the number of steps required to reach a final state. An evalu-
ation semantics, on the other hand, does not provide such a direct notion of
complexity. Since the individual steps required to complete an evaluation
are suppressed, we cannot directly read off the number of steps required to
evaluate to a value. Instead we must augment the evaluation relation with
a cost measure, resulting in a cost semantics.
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Evaluation judgements have the form e ⇓k v, with the meaning that e
evaluates to v in k steps.

num[n] ⇓0 num[n] (12.3a)

e1 ⇓k1 num[n1] e2 ⇓k2 num[n2]

plus(e1; e2) ⇓k1+k2+1 num[n1 + n2]
(12.3b)

str[s] ⇓0 str[s] (12.3c)

e1 ⇓k1 s1 e2 ⇓k2 s2

cat(e1; e2) ⇓k1+k2+1 str[s1 ˆ s2]
(12.3d)

e1 ⇓k1 v1 [v1/x]e2 ⇓k2 v2

let(e1; x.e2) ⇓k1+k2+1 v2
(12.3e)

Theorem 12.6. For any closed expression e and closed value v of the same type,
e ⇓k v iff e 7→k v.

Proof. From left to right proceed by rule induction on the definition of the
cost semantics. From right to left proceed by induction on k, with an inner
rule induction on the definition of the transition semantics.

12.5 Type Safety, Revisited

The type safety theorem for L{num str} (Theorem 11.1 on page 79) states
that a language is safe iff it satisfies both preservation and progress. This
formulation depends critically on the use of a transition system to specify
the dynamic semantics. But what if we had instead specified the dynamic
semantics as an evaluation relation, instead of using a transition system?
Can we state and prove safety in such a setting?

The answer, unfortunately, is that we cannot. While there is an analogue
of the preservation property for an evaluation semantics, there is no clear
analogue of the progress property. Preservation may be stated as saying
that if e ⇓ v and e : τ, then v : τ. This can be readily proved by induc-
tion on the evaluation rules. But what is the analogue of progress? One
might be tempted to phrase progress as saying that if e : τ, then e ⇓ v for
some v. While this property is true for L{num str}, it demands much more
than just progress — it requires that every expression evaluate to a value!
If L{num str} were extended to admit operations that may result in an er-
ror (as discussed in Section 11.3 on page 82), or to admit non-terminating
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expressions, then this property would fail, even though progress would
remain valid.

One possible attitude towards this situation is to simply conclude that
type safety cannot be properly discussed in the context of an evaluation se-
mantics, but only by reference to a transition semantics. Another point of
view is to instrument the semantics with explicit checks for run-time type
errors, and to show that any expression with a type fault must be ill-typed.
Re-stated in the contrapositive, this means that a well-typed program can-
not incur a type error. A difficulty with this point of view is that one must
explicitly account for a class of errors solely to prove that they cannot arise!
Nevertheless, we will press on to show how a semblance of type safety can
be established using evaluation semantics.

The main idea is to define a judgement e ⇑ stating, in the jargon of the
literature, that the expression e goes wrong when executed. The exact defi-
nition of “going wrong” is given by a set of rules, but the intention is that
it should cover all situations that correspond to type errors. The following
rules are representative of the general case:

plus(str[s]; e2)⇑ (12.4a)

e1 val

plus(e1; str[s])⇑ (12.4b)

These rules explicitly check for the misapplication of addition to a string;
similar rules govern each of the primitive constructs of the language.

Theorem 12.7. If e ⇑, then there is no τ such that e : τ.

Proof. By rule induction on Rules (12.4). For example, for Rule (12.4a), we
observe that str[s] : str, and hence plus(str[s]; e2) is ill-typed.

Corollary 12.8. If e : τ, then ¬(e ⇑).

Apart from the inconvenience of having to define the judgement e ⇑
only to show that it is irrelevant for well-typed programs, this approach
suffers a very significant methodological weakness. If we should omit one
or more rules defining the judgement e ⇑, the proof of Theorem 12.7 re-
mains valid; there is nothing to ensure that we have included sufficiently
many checks for run-time type errors. We can prove that the ones we de-
fine cannot arise in a well-typed program, but we cannot prove that we
have covered all possible cases. By contrast the transition semantics does
not specify any behavior for ill-typed expressions. Consequently, any ill-
typed expression will “get stuck” without our explicit intervention, and the
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progress theorem rules out all such cases. Moreover, the transition system
corresponds more closely to implementation—a compiler need not make
any provisions for checking for run-time type errors. Instead, it relies on
the static semantics to ensure that these cannot arise, and assigns no mean-
ing to any ill-typed program. Execution is therefore more efficient, and the
language definition is simpler, an elegant win-win situation for both the
semantics and the implementation.

12.6 Exercises

1. Prove that if e ⇓ v, then v val.

2. Prove that if e ⇓ v1 and e ⇓ v2, then v1 = v2.

3. Complete the proof of equivalence of evaluation and transition se-
mantics.

4. Prove preservation for the instrumented evaluation semantics, and
conclude that well-typed programs cannot go wrong.

5. Is it possible to use environments in a structural semantics? What
difficulties do you encounter?
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Chapter 13

Types and Languages

The static and dynamic semantics of L{num str} illustrates several funda-
mental organizing principles of language design on which we shall rely
throughout this book. Chief among these is the central role of types in
programming languages. The informal concept of a language “feature”
is formally analyzed as a manifestation of type structure. For example, in
L{num str} the type nat comprises the numeric literals and some arith-
metic operations, and the type str comprises the string literals and some
string operations. These types account for nearly all of the “features” of
L{num str}, apart from the generic concepts of variable binding and ref-
erence, which arise from the structural properties of the parametric hypo-
thetical typing judgement, and are not tied to particular types.

The language L{num str} illustrates a number of important themes that
recur throughout the text. In this chapter we summarize the main concepts
that will be used throughout the remainder of the text.

13.1 Phase Distinction

The semantics of L{num str}maintains a phase distinction between the static
phase and the dynamic phase of processing. The static semantics, or typing
rules, impose constraints on the formation of programs that are sufficient to
ensure that the dynamic semantics, or evaluation rules, are well-behaved.
The static phase occurs prior to, and independently of, the dynamic phase.
The static phase may be seen as predicting the form of the value of an ex-
pression computed during the dynamic phase. For example, by assigning
the type nat to the addition of two expressions of the same type, the static
semantics is predicting that the result of the sum will be a number. Con-
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sequently, it can be used as the argument to multiplication, for example,
without fear of error.

The type safety theorem may be seen as stating that the predictions of
the static semantics are true of the dynamic semantics, for otherwise the
dynamic semantics would “get stuck.” A counterexample to safety is a call
for revision to either the static semantics—to ensure that the example is
barred from consideration—or the dynamic semantics—to ensure that the
error condition is checked at run-time. The purpose of proving safety is to
ensure the coherence of the static and dynamic semantics.

The phase distinction also manifests itself in the syntax of a language. In
most cases the syntax of types does not involve expressions, but the syntax
of expressions may well involve types. This is consistent with the idea that
the static phase of processing (type checking) usually occurs prior to exe-
cution, and hence is independent of it. Languages that do not respect the
phase distinction usually do not maintain a clear separation between types
and expressions, and consequently intermix some aspects of the dynamic
and static phases of processing.

13.2 Introduction and Elimination

The primitive operations associated with a type may generally be classified
as either introduction or elimination forms. The introduction operators deter-
mine the values of the type, and the elimnation operators determine the
instructions for computing with those values. For example in L{num str},
the introduction forms for the type nat are the numerals, and those for the
type str are the string literals. The elimination forms for the type nat are
addition and multiplication, and those for the type str are concatenation
and length.

The dynamic semantics of L{num str} is based on the inversion princi-
ple, which, roughly speaking, states that the elimination forms are inverse
to the introduction forms. This may also be thought of as a kind of conser-
vation principle for computations: what can be extracted from a value by an
elimination form is limited to what was put into it by the introduction form
from which it is built. For example, we may think of the addition opera-
tion of L{num str} as extracting the underlying number from the numeral,
performing the computation, and creating a new numeral to represent the
result.

The type safety theorem may be seen as verifying the inversion princi-
ple for the language. Returning to the addition example, the type preser-
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vation theorem ensures that the values of the arguments of addition must
themselves be of type nat, and hence by the canonical forms theorem must
be numerals. This ensures that addition can make progress, yielding a nu-
meral, which is a value of type nat. Had the type safety theorem failed, say
by assigning the type nat to a string, then the addition function would have
to extract the underlying number of a string literal, which it manifestly can-
not do. Fortunately (rather, by design) the static semantics ensures that this
situation cannot arise. This is the core idea of type safety.

The inversion principle serves as a guide for deriving the dynamic se-
mantics of a language, but in most cases does not fully determine it. For
example, suppose that we added the conditional expression ifz(e; e1; e2)
to L{num str}, thought of as an elimination form for the type nat. The ex-
pression e of type nat is tested, resulting in e1, if e evaluates to zero, and in
e2, otherwise. The dynamic semantics of this construct must specify that e
is to be evaluated to determine how to proceed, but we do not wish to eval-
uate e1 or e2 in advance, only once the decision about e has been made. We
say that e is a major, or principal, argument of the conditional elimination
form, and that e1 and e2 are minor, or non-principal arguments. As a rule,
the major arguments of an elimination form must be evaluated, but the mi-
nor arguments need not be. In the case of L{num str} all arguments to the
arithmetic and string elimination forms are principal, and hence must be
evaluated before evaluation of the operation itself.

Another opportunity for discretion in the definition of the dynamic se-
mantics arises when considering the evaluation rule for introductory forms.
Suppose that we replace the numerals in L{num str} with two new prim-
itives, z and s(e), which represent zero and successor, respectively. These
are both introductory forms of type nat, but this classification does not de-
termine whether s(e) should be considered a value regardless of the form
of e, or only if e is itself a value. If an argument to an introduction form
is required to be a value, then there is an associated search rule in the dy-
namic semantics to evaluate that argument; the operator is said to be strict,
in that position. If an argument to an introduction form is not required to
be a value, then the operator is said to be non-strict in that position. When
all arguments of all introduction forms are strict, then the language itself is
said to be strict, and similarly when all arguments of all introduction forms
are non-strict, then the language itself is said to be non-strict.
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13.3 Compositionality

The combined structural properties of substitution and transitivity for typ-
ing, which we repeat here for reference, captures an essential feature of a
type system, called compositionality, or modularity.

Γ ` e : τ Γ, x : τ ` e′ : τ′

Γ ` [e/x]e′ : τ′

This rule captures the essence of linking. The expression e′, with a free
variable x of type τ, represents a client of a separately compiled component,
e, which is referenced by the variable, x. The job of the linker is to combine
e with e′, by substitution for x, to obtain a complete compilation unit, albeit
one with further free references to other units to be linked later. The result
is composed from the shared component and the client, which gives rise to
the terminology.

It is important that the client, e′, is type checked independently of the
implementation of the shared component, e. All that is propagated from
the library to its clients is its type, and not the details of its implementa-
tion. This means, in particular, that a revised implementation of the li-
brary can be linked with the same client, without requiring any re-writing
or other modification to the client code, so long as the type, τ, remains the
same. Modular program development is the process of decomposing a pro-
gram into parts whose interactions are mediated by a specification, or type,
that serves as a contract between the client and the implementor. In other
words, types provide the foundation for modularity.

13.4 Variables and Values

The typing judgement Γ ` e : τ admits two different interpretations, ac-
cording to whether variables are considered to range over values, or over
general computations, of their type. Which interpretation is appropriate de-
pends on the dynamic semantics of the language. If a variable is only ever
bound to (i.e., replaced by) a value at execution time, then it is a value vari-
able; otherwise, it is a computation variable.

This distinction can be expressed formally by considering carefully the
meaning of the typing judgement

x1 : τ1, . . . , xn : τn ` e : τ.
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According to the interpretation given in Chapter 3, this judgement spec-
ifies that variables range over computations, and not just values. This is
expressed by the rule of substitution,

Γ ` e : τ Γ, x : τ ` e′ : τ′

Γ ` [e/x]e′ : τ′
,

which was proved admissible in Chapter 9. The substitution principle does
not constrain the expression e to be a value, but can be any expression.

To express the restriction of variables to values, we first extend the
judgement e val, which states that e is a closed value, to admit open values,
which may involve free variables. The parametric hypothetical judgement

x1 val, . . . , xn val ` e val

states that e is an open value, all of whose free variables are restricted to
values. It is straightforward to give an inductive definition of this judge-
ment; we need only extend the definition of e val given in Chapter 10 to
open values by adding a rule of reflexivity:

x1 val, . . . , xn val ` xi val
.

(13.1)

The static semantics is then modified to constrain variables to range only
over open values. The typing judgement takes the form

x1 val, . . . , xn val x1 : τ1, . . . , xn : τn ` e : τ,

in which each variable is constrained to be bound to values. Letting Φ
range over hypotheses of the form x1 val, . . . , xn val, the substitution prin-
ciple may then be stated in the following form:

Φ Γ ` e : τ Φ ` e val Φ, x val Γ, x : τ ` e′ : τ′

Φ Γ ` [e/x]e′ : τ′
,

To substitute for a variable, we must prove that it is a value.

13.5 Exercises
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Chapter 14

Functions

In L{num str} it is possible to express doubling of any given expression of
type num, but it is not possible to express the concept of doubling in general.
For this we need functions, which capture patterns of computation that can
be instantiated to obtain specific computations. To pass from particular
instances of doubling, of the form e+e for some expression e, to the general
case, we replace occurrences of a fixed expression, e, by a variable, x, and
then mark that variable as subject to variation using λ-abstraction. Thus the
general pattern of doubling can be captured by the function

λ(x:num. x+x).

The variable, x, is called the parameter of the function, and the expres-
sion x+x is its body. The parameter is bound by the λ-abstraction, and,
consequently, may be renamed freely in accordance with the rules of α-
equivalence. We may apply this function to any argument, e, of type num to
obtain an instance of the doubling function for that choice of expression e
to be doubled.

To ensure type consistency the type of the parameter of the λ-abstraction
is given explicitly, and instances are restricted to arguments of that type.
The type of the result is arbitrary, since we are free to use the parameter,
x, in any way at all, provided only that it is type-correct. In general, the
type of a λ-abstraction has the form σ → τ, where σ is the domain type, the
type of its parameter, and τ is the range type, the type of its body. Thus,
d : num→ num, so that if e : num, then d(e) : num as well. Since function
types are themselves types, we have higher-order functions with types such
as

1. num→ (num→ num),
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2. (num→ num)→ num,

3. (num→ num)→ (num→ num).

These are, respectively,

1. the type of functions that assign a function on the natural numbers to
each natural number;

2. the type of functions that assign a natural number to each function on
the natural numbers;

3. the type of functions that assign a function on the natural numbers to
each function on the natural numbers.

Examples of mathematical functions of each of these types are, respectively,

1. The function that, given a natural number, b, returns the exponential
function to the base b, which computes bn as a function of n.

2. The function that, given a function f , returns the sum of f(0), f(1),
. . . , f(10).

3. The function that, given an increasing function f on the natural num-
bers, returns the function that, on input m, yields the first number n
such that f(n) is larger than m.

It is a good exercise to think of further examples of mathematical functions
with these types.

A higher-order language is any language with higher-order function types.
In this chapter we study a rudimentary example of a higher-order lan-
guage, the enrichment of L{num str} with function types, which we call
L{→}. In subsequent chapters we will eliminate the arithmetic and string
primitives of the language in favor of more general mechanisms for defin-
ing such constructs from first principles, but for now it is useful for the sake
of examples to retain them.
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14.1 Syntax

The language L{→} of pure functions is defined by the following gram-
mar:

Category Item Abstract Concrete
Type τ ::= arr(τ1; τ2) τ1 → τ2
Expr e ::= x x

| lam[τ](x.e) λ(x:τ. e)
| ap(e1; e2) e1(e2)

The language L{num str→} is obtained by incorporating the types and
expressions of L{num str} as given by Grammar (8.4) into the above gram-
mar.

As we mentioned in the introduction to this chapter, the expression
λ(x:τ. e) is called a λ-abstraction. The variable x is the parameter of the
abstraction, and e is its body. It represents the function mapping e0 : τ
to (the value of) [e0/x]e. The expression e1(e2) is called an application, with
function e1 and argument e2. If e1 evaluates to a λ-abstraction λ(x:τ. e), then
the application e1(e2) evaluates to the value of [e2/x]e1, the instance of the
body obtained by replacing the parameter by the argument.

In the presence of functions we may treat let as a derived form by
defining let[τ](e1; x.e2) to stand for the expression

ap(lam[τ](x.e2); e1). (14.1)

The dynamic semantics of this form of let is inherited from that given to
function applications, as described in Section 14.3 on the following page.

14.2 Static Semantics

The static semantics of L{→} is defined by a parametric inductive defini-
tion of judgements of the form Γ ` e : τ, where Γ is a finite set of assump-
tions of the form x : τ, where each x is a variable.

Γ, x : τ ` x : τ (14.2a)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(14.2b)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(14.2c)
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Lemma 14.1 (Inversion). Suppose that Γ ` e : τ.

1. If e = x, then Γ = Γ′, x : τ.

2. If e = lam[τ1](x.e), then τ = arr(τ1; τ2) and Γ, x : τ1 ` e : τ2.

3. If e = ap(e1; e2), then there exists τ2 such that Γ ` e1 : arr(τ2; τ) and
Γ ` e2 : τ2.

Proof. The proof proceeds by rule induction on the typing rules. Observe
that for each rule, exactly one case applies, and that the premises of the rule
in question provide the required result.

The structural property of substitution holds for the typing judgement
defined by the above rules.

Lemma 14.2 (Substitution). If Γ, x : τ ` e′ : τ′, and Γ ` e : τ, then Γ `
[e/x]e′ : τ′.

Proof. By rule induction on the derivation of the first judgement.

14.3 Dynamic Semantics

The dynamic semantics of L{→} is given by a transition semantics on
closed expressions. The judgement e val, where e is a closed expression,
is inductively defined.

lam[τ](x.e) val (14.3a)

Observe that no restriction is placed on the form of e, the body of the func-
tion.

There are two forms of dynamic semantics for functions, call-by-value
and call-by-name. Under call-by-value, the argument is evaluated before
the function is called with the resulting value as argument; under call-by-
name, the function is called with the argument in unevaluated form, defer-
ring evaluation until it is actually needed.

The call-by-value dynamic semantics is defined by the following rules:

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(14.4a)

e1 val e2 7→ e′2
ap(e1; e2) 7→ ap(e1; e′2)

(14.4b)
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e2 val

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
(14.4c)

The call-by-name semantics is, instead, defined by the following rules:

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(14.5a)

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1 (14.5b)

In contrast to Rule (14.4c) there is no requirement on Rule (14.5b) that the
argument be a value.

14.4 Safety

Theorem 14.3 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. The proof is by induction on rules (14.4), which define the dynamic
semantics of the language.

Consider rule (14.4c),

e2 val

ap(lam[τ2](x.e1); e2) 7→ [e2/x]e1
.

Suppose that ap(lam[τ2](x.e1); e2) : τ1. By Lemma 14.1 on the preceding
page e2 : τ2 and x : τ2 ` e1 : τ1, so by Lemma 14.2 on the facing page
[e2/x]e1 : τ1.

The other rules governing application are handled similarly.

Lemma 14.4 (Canonical Forms). If e val and e : arr(τ1; τ2), then e = lam[τ1](x.e2)

for some x and e2 such that x : τ1 ` e2 : τ2.

Proof. By induction on the typing rules, using the assumption e val.

Theorem 14.5 (Progress). If e : τ, then either e is a value, or there exists e′ such
that e 7→ e′.

Proof. The proof is by induction on rules (14.2). Note that since we consider
only closed terms, there are no hypotheses on typing derivations.

Consider rule (14.2c). By induction either e1 val or e1 7→ e′1. In the
latter case we have ap(e1; e2) 7→ ap(e′1; e2). Otherwise we have by in-
duction either e2 val or e2 7→ e′2. In the latter case we have ap(e1; e2) 7→
ap(e1; e′2) (bearing in mind e1 val). Otherwise, by Lemma 14.4, we have
e1 = lam[τ2](x.e) for some x and e. But then ap(e1; e2) 7→ [e2/x]e, again
bearing in mind that e2 val.
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14.5 Evaluation Semantics

An inductive definition of the evaluation judgement e ⇓ v for L{→} is
given by the following rules:

lam[τ](x.e) ⇓ lam[τ](x.e) (14.6a)

e1 ⇓ lam[τ](x.e) e2 ⇓ v2 [v2/x]e ⇓ v
ap(e1; e2) ⇓ v

(14.6b)

It is easy to check that if e ⇓ v, then v val, and that if e val, then e ⇓ e.

Theorem 14.6. e ⇓ v iff e 7→∗ v and v val.

Proof. In the forward direction we proceed by rule induction on Rules (14.6).
The proof makes use of a pasting lemma stating that, for example, if e1 7→∗ e′1,
then ap(e1; e2) 7→∗ ap(e′1; e2), and similarly for the other constructs of the
language.

In the reverse direction we proceed by rule induction on Rules (4.1).
The proof relies on a head expansion lemma, which states that if e 7→ e′ and
e′ ⇓ v, then e ⇓ v. The head expansion lemma is proved by rule induction
on Rules (14.4).

14.6 Dynamic Binding

The environment semantics of Chapter 12 uses hypothetical judgements of
the form

x1 ⇓ v1, . . . , xn ⇓ vn ` e ⇓ v

to state that the expression e evaluates to the value v, under the assumption
that the variables xi evaluate to vi. Let us naı̈vely extend this semantics to
L{→} using the following rules for functions and applications:

E ` lam[τ](x.e) ⇓ lam[τ](x.e) (14.7a)

E ` e1 ⇓ lam[τ](x.e) E ` e2 ⇓ v2 E , x ⇓ v2 ` e ⇓ v
E ` ap(e1; e2) ⇓ v

(14.7b)

When applying a function to an argument, the parameter of the function
is bound to the argument value for the duration of the evaluation of the
body. It is implicit in Rule (14.7b) that the variable x lie apart from E ; this
condition may always be met by choosing a suitable representative of the
α-equivalence class of the function.
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This extension of the environment semantics given in Chapter 10 seems
to make sense, but, surprisingly, it is incorrect. Specifically, the environ-
ment semantics does not agree with the substitution semantics given by
Rules (14.6), in contrast to the case of L{num str}. The culprit is the inter-
action between higher-order functions and environments. This is the locus
classicus of a language design error, which therefore merits careful consid-
eration to avoid repetition of a classical mistake in modern times.

To see what is wrong, consider the expression

e = ap(lam[num](x.lam[num](y.x)); num[3]),

which, when written in concrete syntax, is the application

λ(x:num. λ(y:num. x))(3).

According to the substitution semantics for functions (Rules (14.6)), this
expression evaluates to

lam[num](y.num[3]),

as the reader may readily check.
Let us now evaluate e using Rules (14.7). To show that e ⇓ v, it is enough

to apply Rule (14.7b), and show that the judgement

x ⇓ num[3] ` lam[num](y.x) ⇓ v

is derivable. Evidently, v must be lam[num](y.x), since a λ-abstraction is a
value, and consequently we obtain e ⇓ lam[num](y.x) categorically, which
is to say under no hypotheses.

But something must be wrong, because the value v involves the free
variable, x, for which we have no binding. Indeed, we can use e to build
an expression that has no value in the environment semantics, but which
has a definite value in the substitution semantics. Let e′ be the application
ap(e; num[4]). To show that e′ ⇓ v′ for some v′, it is necessary and sufficient
to derive the judgement

y ⇓ num[4] ` x ⇓ v′.

But there is no such value, because there is no hypothesis governing the
variable x—the variable x has escaped its scope.

The source of the difficulty is the stack-like behavior of hypotheses in
the environment semantics. To evaluate a function application, the body is
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evaluated under an additional hypothesis binding a fresh copy of the pa-
rameter to the argument value. The value of the application is the value
of the body, which is returned to the original, unextended context of hy-
potheses. But, as the foregoing example shows, if the value of the body
is a function, it may contain free occurrences of the parameter, which es-
cape their scope when returned. Higher-order languages are therefore said
to violate the stack discipline for binding function parameters, in contrast to
first-order languages (those that lack higher-order functions), which adhere
to it.

What to do? The obvious solution is to ensure that function parameters
do not escape their scope. This may be achieved by substituting the argu-
ment for the parameter in the value of the function body at the point where
it is returned to the surrounding context.

E ` e1 ⇓ lam[τ](x.e) E ` e2 ⇓ v2 E , x ⇓ v2 ` e ⇓ v
E ` ap(e1; e2) ⇓ [v2/x]v

. (14.8)

The sole difference compared to Rule (14.7b) is that the returned value is
[v2/x]v, rather than v, so that x is replaced by its binding before v is re-
turned to the surrounding context. A disadvantage of this solution is that
it makes use of substitution, undermining the motivation for the use of en-
vironments. We shall return to this point in Section 14.7 on the facing page
below.

Surprisingly, the classic “solution” to this problem is to re-characterize
the bug as a feature, called dynamic binding. According to this view, vari-
ables are permitted to escape their scope without restriction. Whenever a
binding for a variable, x, is required, we simply use whatever binding for x
happens to be available in the current environment, regardless of the scop-
ing rules given in Chapter 6. If no binding is available, the computation
is aborted with an “unbound variable” error. For this approach to make
any sense at all, we must rescind the policy of identifying expressions up
to α-equivalence because dynamic binding is sensitive to the choice of pa-
rameter name. This does violence to the very concept of variable binding,
a strong argument against it, but its advocates regard this as a good thing.

The strongest argument against dynamic binding is that it is not type
safe. Consider the expression

let f beλ(x:num. λ(y:num. x+y))(3) inλ(x:str. f(5))("abc")

The variable f is bound to λ(y:num. x+y), which was obtained with x bound
to 3, but whose binding is now lost. The application f(5) is evaluated in
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the presence of this binding for f , and with x bound to the string "abc".
Evaluation of this application results in the evaluation of x+y with y bound
to 5, but x bound to "abc", which is a run-time type error!

If we change the example to

let f beλ(x:num. λ(y:num. x+y))(3) inλ(x:num. f(5))(7)

then no run-time type error arises, but evaluation results in 12, rather than
8. If we further change the example by innocently renaming the bound
variable in the body of the let expression to obtain

let f beλ(x:num. λ(y:num. x+y))(3) inλ(y:num. f(5))(7)

evaluation aborts with an unbound variable. The behavior is highly sensi-
tive to the names of bound variables, and is not stable under changes to the
types of bound variables, even if all uses within the scope of the binding
are type correct.

How, then, can anyone advocate for dynamic binding? First, languages
with dynamic binding have only one type, so that type mismatches cannot
arise, albeit at the expense of incurring run-time errors such as attempt-
ing to add a string to a number. (See Chapter 23 for more information
about such languages.) Second, the concept of dynamic binding may be
re-interpreted so as to avoid disrupting the basic principles of binding and
scope. Rather than think of variables as being dynamically bound, we may
instead introduce a type of symbols that serve as keys for a dictionary data
structure that maintains their bindings. (See Chapter 36 for more on this
approach.)

14.7 Closures

The standard method for preventing a variable in a higher-order language
from escaping its scope is explicit substitution. Rather than perform substi-
tution as called for in Rule (14.8), we instead regard [v/x]lam[τ](y.e) as
a form of expression representing a delayed substitution. Rather than per-
form the indicated substitution, we instead record the intention to do so.
Whenever such an expression is applied, we reinstate the substitution as
a hypothesis during the evaluation of the body of the λ-abstraction. If the
value of the variable x is ever required, it is determined by this assumption.

Since λ-abstractions may be nested arbitrarily deeply, the general form
of function value is an iterated delayed substitution of the form

[v1/x1]. . . [vk/xk]lam[τ](x.e),

JULY 8, 2008 DRAFT 11:12PM



110 14.7. CLOSURES

where the free variables of e are among x and x1, . . . , xk. Collapsing the
iterated substitution into a single simultaneous substitution, we obtain the
standard form

[v1, . . . , vk/x1, . . . , xk]lam[τ](x.e).

This form of expression is called a closure, since it closes the free variables
of the λ-abstraction by providing explicit bindings for them. The abstract
binding tree representation of a closure has the form clo[τ](E; x.e), where
E is a finite function mapping xi to vi for each 1 ≤ i ≤ k, called the environ-
ment of the closure.

A correct environment semantics for L{→} may be given in terms of
closures. We consider judgements of the form E ` e ⇓ v, where E is x1 ⇓
v1, . . . , xk ⇓ vk and the free variables of e are among the x1, . . . , xk. The
value v, and the values vi, are all closed.

E , x ⇓ v ` x ⇓ v (14.9a)

E = { x1 7→ v1 . . . xk 7→ vk }
x1 ⇓ v1, . . . , xk ⇓ vk ` lam[τ](x.e) ⇓ clo[τ](E; x.e)

(14.9b)

E ` e1 ⇓ clo[τ](E; x.e) E ` e2 ⇓ v
E = { x1 7→ v1 . . . xk 7→ vk }

x1 ⇓ v1, . . . , xk ⇓ vk, x ⇓ v ` e ⇓ w
E ` ap(e1; e2) ⇓ w

(14.9c)

In Rule (14.9b) the entire collection of evaluation hypotheses is used to form
the closure that serves as the value of the λ-abstraction. In Rule (14.9c) the
environment of the closure, augmented with a binding of the parameter to
the argument, is installed as the hypothesis set with which to evaluate the
body of the abstraction. Observe that by storing bindings for variables in a
closure we are explicitly violating the stack discipline, as must be the case
for a higher-order language.

To relate the environment semantics to the substitution semantics re-
quires two auxiliary functions, Ê(e) and v̂, which, respectively, substitute
expanded values for variables in an expression, and expand values for sub-
stitution into expressions. These are inductively defined as follows:

E = x1 ⇓ v1, . . . , xk ⇓ vk

v̂1=v′1 . . . v̂k=v′k
Ê(e)=[v′1, . . . , v′k/x1, . . . , xk]e

(14.10a)
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n̂um[n]=num[n] (14.10b)

ŝtr[s]=str[s] (14.10c)

E = { x1 7→ v1 . . . xk 7→ vk }
v̂1=v′1 . . . v̂k=v′k

[v′1, . . . , v′k/x1, . . . , xk]e = e′

̂clo[τ](E; x.e)=lam[τ](x.e′)

(14.10d)

To avoid confusion, we temporarily write e◦ and v◦ for expressions and
values in L{→} (without closures), and e◦ ⇓◦ v◦ for the evaluation relation
on this language defined by Rules (14.6).

Theorem 14.7. E ` e ⇓ v iff Ê(e) ⇓◦ v̂.

Proof. In the forward direction we proceed by induction on Rules (14.9),
making use of the definition of expansion given by Rules (14.10). In the
case of Rule (14.9a), the result follows immediately, since Ê(x)=v̂. In the
case of Rule (14.9c), we have by induction

1. Ê(e1) ⇓◦ ̂clo[τ](E; x.e);

2. Ê(e2) ⇓◦ v̂; and

3. Ê ′(e) ⇓◦ ŵ, where E ′ = x1 ⇓ v1, . . . , xk ⇓ vk, x ⇓ v.

The result follows from the observation that

̂clo[τ](E; x.e)=lam[τ](x.[v̂1, . . . , v̂k/x1, . . . , xk]e),

and an application of Rule (14.6b), making use of Rule (14.10a).
In the reverse direction we show by induction on Rules (14.6) that if

Ê(e) ⇓◦ v◦, then E ` e ⇓ v for some v such that v̂ = v◦. Consider
Rule (14.6b). We have

1. Ê(e) = ap(e◦1 ; e◦2), so e = ap(e1; e2) and Ê(e1) = e◦1 and Ê(e2) = e◦2 ;

2. e◦1 ⇓
◦ v◦1 with v◦1 = lam[τ](x.e◦);

3. e◦2 ⇓
◦ v◦2 ; and

4. [v◦2/x]e◦ ⇓◦ v◦.

Consequently, we have by induction
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1. E ` e1 ⇓ v1 with v̂1 = v◦1 , so v1 = clo[τ](E′; x.e) for some E′ and e
such that E ′ corresponds to E′ and Ê ′(e) = e◦;

2. E ` e2 ⇓ v2 with v̂2 = v◦2 .

3. E ′, x ⇓ v2 ` e ⇓ v with v̂ = v◦.

It follows from Rule (14.9c) that E ` e ⇓ v with v̂ = v◦, as required.

14.8 Exercises

1. Formulate dynamic binding within a statically scoped language.
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Chapter 15

Gödel’s System T

The language L{nat→}, better known as Gödel’s System T, is the combi-
nation of function types with the type of natural numbers. In contrast to
L{num str}, which equips the naturals with some arbitrarily chosen arith-
metic primitives, the language L{nat→} provides a general mechanism,
called primitive recursion, for defining functions on the natural numbers.
Primitive recursion captures the essential inductive character of the natural
numbers, from which we may define a wide range of functions, including
elementary arithmetic.

A chief characteristic of L{nat→} is that it permits the definition only
of total functions, i.e., those that assign a value in the range type to every el-
ement of the domain type. This means that programs written in L{nat→}
may be considered to “come equipped” with their own termination proof,
in the form of typing annotations to ensure that it is well-typed. But only
certain forms of proof are codifiable in this manner, with the inevitable re-
sult that some well-defined total functions on the natural numbers cannot
be programmed in L{nat→}.
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15.1 Static Semantics

The syntax of L{nat→} is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= nat nat

| arr(τ1; τ2) τ1 → τ2
Expr e ::= x x

| z z
| s(e) s(e)
| rec[τ](e; e0; x.y.e1) rec e {z⇒e0 | s(x) with y⇒e1}
| lam[τ](x.e) λ(x:τ. e)
| ap(e1; e2) e1(e2)

We write n for the expression s(. . . s(z)), in which the successor is applied
n ≥ 0 times to zero. The expression

rec[τ](e; e0; x.y.e1)

is called primitive recursion. It represents the e-fold iteration of the transfor-
mation x.y.e1 starting from e0. The bound variable x represents the prede-
cessor and the bound variable y represents the result of the x-fold iteration.
The “with” clause in the concrete syntax for the recursor binds the variable
y to the result of the recursive call, as will become apparent shortly.

Sometimes iteration, written iter[τ](e; e0; y.e1), is considered as an al-
ternative to primitive recursion. It has essentially the same meaning as
primitive recursion, except that only the result of the recursive call is bound
to y in e1, and no binding is made for the predecessor. Clearly iteration is
a special case of primitive recursion, since we can always ignore the pre-
decessor binding. Conversely, primitive recursion is definable from itera-
tion, provided that we have product types (Chapter 17) at our disposal. To
define primitive recursion from iteration we simultaneously compute the
predecessor while iterating the specified computation.

The static semantics ofL{nat→} is given by the following typing rules:

Γ, x : nat ` x : nat (15.1a)

Γ ` z : nat (15.1b)

Γ ` e : nat
Γ ` s(e) : nat

(15.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` rec[τ](e; e0; x.y.e1) : τ
(15.1d)
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Γ, x : σ ` e : τ x # Γ
Γ ` lam[σ](x.e) : arr(σ; τ)

(15.1e)

Γ ` e1 : arr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(15.1f)

As usual, admissibility of the structural rule of substitution is crucially
important.

Lemma 15.1. If Γ ` e : τ and Γ, x : τ ` e′ : τ′, then Γ ` [e/x]e′ : τ′.

15.2 Dynamic Semantics

We will adopt a lazy semantics for the successor operation, and a call-by-
name semantics for function applications. Variables range over computa-
tions, which are not necessarily values. These choices are not forced on
us, but are natural and convenient in a language in which (as we shall see)
every closed expression has a value.

The closed values of L{nat→} are determined by the following rules:

z val (15.2a)

s(e) val (15.2b)

lam[τ](x.e) val (15.2c)

The dynamic semantics of L{nat→} is given by the following rules:

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(15.3a)

ap(lam[τ](x.e); e2) 7→ [e2/x]e (15.3b)

e 7→ e′

rec[τ](e; e0; x.y.e1) 7→ rec[τ](e′; e0; x.y.e1)
(15.3c)

rec[τ](z; e0; x.y.e1) 7→ e0 (15.3d)

rec[τ](s(e); e0; x.y.e1) 7→ [e, rec[τ](e; e0; x.y.e1)/x, y]e1 (15.3e)

Rules (15.3d) and (15.3e) specify the behavior of the recursor on z and
s(e). In the former case the recursor evaluates e0, and in the latter case the
variable x is bound to e and the variable y is bound to a recursive call on e
before evaluating e1. Because of the lazy semantics of variable binding, if e1
does not need y to determine its value, the recursive call is never executed.
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Lemma 15.2 (Canonical Forms). If e : τ and e val, then

1. If τ = nat, then either e = z or e = s(e′) for some e′.

2. If τ = τ1 → τ2, then e = λ(x:τ1. e2) for some e2.

Theorem 15.3 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′

15.3 Equivalence and Termination of Expressions

One beauty of L{nat→} is that it admits a very natural notion of equality
of expressions that supports patterns of reasoning familiar from conven-
tional mathematics. We shall have much more to say about this in Chap-
ter 52, but for the time being we will make informal use of observational
equivalence, e1

∼= e2 : τ [Γ], where Γ ` e1 : τ and Γ ` e2 : τ. This judgement
states that two open expressions, e1 and e2, of the same type are indistin-
guishable wherever they are used in L{nat→}, and therefore may be freely
interchanged with one another in any context.

Observational equivalence enjoys the following convenient properties:

1. It is consistent in that it does not equate zero, z, with any non-zero
number, s(−).

2. It is a congruence, so that we may replace equals by equals and get
equals.

3. It contains symbolic execution, meaning that all of the rules of the dy-
namic semantics are valid equivalences, even if the expressions in-
volved have free variables.

We will rely on these properties in our reasoning below. They will be justi-
fied formally in Chapter 52.

Another important property of L{nat→} is that it is impossible to de-
fine an infinite loop in L{nat→}.

Theorem 15.4. If e : τ, then there exists v val such that e 7→∗ v.

Proof. See Corollary 52.8 on page 412 in Chapter 52.

Consequently, values of function type in L{nat→} behave like mathe-
matical functions in that every element of the domain type of the function
is mapped to a unique element of the range type.
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15.4 Definability

A mathematical function f : N→N is definable inL{nat→} iff there exists
an expression e f of type nat→ nat such that for every n ∈N,

e f(n) ∼= f (n) : nat. (15.4)

That is, the numeric function f : N → N is definable iff there is a expres-
sion e f of type nat → nat that accurately mimics the behavior of f on all
possible inputs.

For example, the successor function is obviously definable in L{nat→}
by the expression succ = λ(x:nat. s(x)). The doubling function, d(n) =
2× n, is definable by the expression

ed = λ(x:nat. rec x {z⇒z | s(u) with v⇒s(s(v))}).

To see this, observe that ed(0) ∼= 0 : nat, and, assuming that ed(n) ∼= d(n) :
nat, check that

ed(n + 1) ∼= s(s(ed(n))) (15.5)
∼= s(s(2× n)) (15.6)

= 2× (n + 1) (15.7)

= d(n + 1) (15.8)

As another example, consider the following function, called Ackermann’s
function, defined by the following equations:

A(0, n) = n + 1 (15.9)
A(m + 1, 0) = A(m, 1) (15.10)

A(m + 1, n + 1) = A(m, A(m + 1, n)) (15.11)

This function grows very quickly! For example, A(4, 2) ≈ 265,536, which is
often cited as being much larger than the number of atoms in the universe!
Yet we can show that the Ackermann function is total by a lexicographic
induction on the pair of argument (m, n). On each recursive call, either m
decreases, or else m remains the same, and n decreases, so inductively the
recursive calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat → nat
that is defined using primitive recursion, but without using any higher or-
der functions. Ackermann’s function is defined so as to grow more quickly
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than any first-order primitive recursive function, but if we permit our-
selves to use higher-order functions, then we may give a definition of it
in L{nat→}. The key is to observe that A(m + 1, n) iterates the function
A(m,−) for n times, starting with A(m, 1). As an auxiliary, let us define the
higher-order function

it : (nat→ nat)→ nat→ nat→ nat

to be the λ-abstraction

λ( f:nat→ nat. λ(n:nat. rec n {z⇒id | s( ) with g⇒ f ◦ g})),

where id = λ(x:nat. x) is the identity, and f ◦ g = λ(x:nat. f(g(x))) is
the composition of f and g. It is easy to check that

it( f)(n)(m) ∼= f (n)(m) : nat,

where the latter expression is the n-fold composition of f starting with m.
With this in hand we may define the Ackermann function

a : nat→ nat→ nat

to be the λ-abstraction

λ(m:nat. recm {z⇒succ | s( ) with f⇒λ(n:nat. it( f)(n)( f(1)))}).

It is instructive to check that the following equivalences, which show
that the Ackermann function is definable, are valid:

a(0)(n) ∼= s(n) (15.12)

a(m + 1)(0) ∼= a(m)(1) (15.13)

a(m + 1)(n + 1) ∼= a(m)(a(s(m))(n)). (15.14)

15.5 Non-Definability

It follows directly from Theorem 15.4 on page 116 that all functions in
L{nat→} are total: if f : σ→ τ and e : σ, then f(e) evaluates to a value
of type τ. Using this, we can show, using a technique called diagonalization,
that there are functions on the natural numbers that are not definable in the
L{nat→}.

The proof of this result makes use of a technique called Gödel-numbering,
which establishes a one-to-one representation of closed expressions ofL{nat→}
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as natural numbers. The importance of this technique is that it permits us
to manipulate expressions of L{nat→} within L{nat→} itself. This is
not a priori obvious, but is an important observation of Gödel’s that plays
a central role in the development of his famous incompleteness theorems for
mathematical logic. Indeed, the non-definability of certain functions on the
natural numbers within L{nat→} may be seen as a form of incomplete-
ness similar to that considered by Gödel.

The essence of Gödel-numbering is captured by the following simple
construction on abstract syntax trees. (The generalization to abstract bind-
ing trees is not difficult, the main complication being to ensure that α-
equivalent expressions are assigned the same Gödel number.) Recall that
a general ast, a, has the form o(a1, . . . , ak), where o is an operator of arity
k. Fix an enumeration of the operators so that every operator has an index
i ∈ N, and let m be the index of o in this enumeration. Define the Gödel
number paq of a to be the number

2m 3n1 5n2 . . . pnk
k ,

where pk is the kth prime number (so that p0 = 2, p1 = 3, etc..), and
n1, . . . , nk are the Gödel numbers of a1, . . . , ak, respectively. This obviously
assigns a natural number to each ast. Conversely, given a natural number,
n, we may apply the prime factorization theorem to “parse” n as a unique
abstract syntax tree. (If the factorization is not of the appropriate form,
which can only be because the arity of the operator does not match the
number of factors, then n does not code any ast.)

Now, using this representation, we may define (mathematically!) a
function E : N→N→N such that, for any e : nat→ nat, E(peq)(m) = n
iff e(m) ∼= n : nat. By the consistency of observational equivalence, this is
equivalent to e(m) 7→∗ n. The determinacy of the dynamic semantics to-
gether with Theorem 15.4 on page 116 ensure that E is a well-defined func-
tion. Using this we may define another mathematical function, F : N→N,
by the equation F(m) = E(m)(m), so that F(peq) = n iff e(peq) ∼= n : nat.
We will show that the function F is not definable in L{nat→}.

Suppose for a contradiction that F were defined by the expression eF,
which means that eF(peq) ∼= e(peq) : nat. Let eD be the expression

λ(x:nat. s(eF(x))).

We then have

eD(peDq) ∼= s(eF(peDq)) (15.15)
∼= s(eD(peDq)), (15.16)
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which is a contradiction (why?).
It is crucial to the argument just given that all functions in L{nat→}

are total, and it is precisely this property that precludes defining the evalu-
ation function, E, in the preceding argument. To ensure that every function
is total, we must, in effect, encode the termination proof for a function into
the source code of the function itself. But this rules out defining an evalu-
ation function, for its one totality proof would have to encode the totality
proof for all possible programs in L{nat→}, which is scarcely plausible. The
foregoing argument proves that it is, indeed, impossible.

15.6 Exercises
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Chapter 16

Plotkin’s PCF

The language L{nat⇀}, also known as Plotkin’s PCF, integrates functions
and natural numbers using general recursion, a means of defining self-referential
expressions. In contrast to L{nat→} expressions in L{nat⇀} may not
terminate when evaluated; consequently, functions are partial (may be un-
defined for some arguments), rather than total (which explains the “partial
arrow” notation for function types). Compared to L{nat→}, the language
L{nat⇀} moves the termination proof from the expression itself to the
mind of the programmer. The type system no longer ensures termination,
which permits a wider range of functions to be defined in the system, but
at the cost of admitting infinite loops when the termination proof is either
incorrect or absent.

The crucial concept embodied in L{nat⇀} is the fixed point characteri-
zation of recursive definitions. In ordinary mathematical practice one may
define a function f by recursion equations such as these:

f (0) = 1
f (n + 1) = (n + 1)× f (n)

These may be viewed as simultaneous equations in the variable, f , ranging
over functions on the natural numbers. The function we seek is a solution to
these equations—a function f : N→ N such that the above conditions are
satisfied. We must, of course, show that these equations have a unique so-
lution, which is easily shown by mathematical induction on the argument
to f .

The solution to such a system of equations may be characterized as
the fixed point of an associated functional (operator mapping functions to
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functions). To see this, let us re-write these equations in another form:

f (n) =

{
1 if n = 0
n× f (n′) if n = n′ + 1

Re-writing yet again, we seek f such that

f : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Now define the functional F by the equation F( f ) = f ′, where

f ′ : n 7→
{

1 if n = 0
n× f (n′) if n = n′ + 1

Note well that the condition on f ′ is expressed in terms of the argument, f ,
to the functional F, and not in terms of f ′ itself! The function f we seek is
then a fixed point of F, which is a function f : N→N such that f = F( f ). In
other words f is defined to the fix(F), where fix is an operator on functionals
yielding a fixed point of F.

Why does an operator such as F have a fixed point? Informally, a fixed
point may be obtained as the limit of series of approximations to the desired
solution obtained by iterating the functional F. This is where partial func-
tions come into the picture. Let us say that a partial function, φ on the nat-
ural numbers, is an approximation to a total function, f , if φ(m) = n implies
that f (m) = n. Let ⊥: N ⇀ N be the totally undefined partial function—
⊥ (n) is undefined for every n ∈N. Intuitively, this is the “worst” approx-
imation to the desired solution, f , of the recursion equations given above.
Given any approximation, φ, of f , we may “improve” it by considering
φ′ = F(φ). Intuitively, φ′ is defined on 0 and on m + 1 for every m ≥ 0 on
which φ is defined. Continuing in this manner, φ′′ = F(φ′) = F(F(φ)) is
an improvement on φ′, and hence a further improvement on φ. If we start
with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F(i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈N,
and hence is the function f itself. Turning this around, if the limit exists, it
must be the solution we seek.

This fixed point characterization of recursion equations is taken as a
primitive concept in L{nat⇀}—we may obtain the least fixed point of any
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functional definable in the language. Using this we may solve any set of
recursion equations we like, with the proviso that there is no guarantee
that the solution is a total function. Rather, it is guaranteed to be a partial
function that may be undefined on some, all, or no inputs. This is the price
we may for expressive power—we may solve all systems of equations, but
the solution may not be as well-behaved as we might like it to be. It is our
task as programmer’s to ensure that the functions defined by recursion are
total—i.e., that all of our loops terminate.

16.1 Static Semantics

The abstract binding syntax of PCF is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= nat nat

| parr(τ1; τ2) τ1 ⇀ τ2
Expr e ::= x x

| z z
| s(e) s(e)
| ifz(e; e0; x.e1) ifz e {z⇒e0 | s(x)⇒e1}
| lam[τ](x.e) λ(x:τ. e)
| ap(e1; e2) e1(e2)
| fix[τ](x.e) fix x:τ is e

The expression fix[τ](x.e) is called general recursion; it is discussed in
more detail below. The expression ifz(e; e0; x.e1) branches according to
whether e evaluates to z or not, binding the predecessor to x in the case
that it is not.

The static semantics of L{nat⇀} is inductively defined by the follow-
ing rules:

Γ, x : τ ` x : τ (16.1a)

Γ ` z : nat (16.1b)

Γ ` e : nat
Γ ` s(e) : nat

(16.1c)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat ` e1 : τ

Γ ` ifz(e; e0; x.e1) : τ
(16.1d)

Γ, x : τ1 ` e : τ2

Γ ` lam[τ1](x.e) : parr(τ1; τ2)
(16.1e)
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Γ ` e1 : parr(τ2; τ) Γ ` e2 : τ2

Γ ` ap(e1; e2) : τ
(16.1f)

Γ, fix[τ](x.e) : τ ` [fix[τ](x.e)/x]e : τ

Γ ` fix[τ](x.e) : τ
(16.1g)

Rule (16.1g) captures the essence of recursive self-reference by replacing
occurrences of x by the recursive expression itself during type checking.
The reasoning is “circular” in that to check fix[τ](x.e) : τ, we assume
that it is so, and deduce that [fix[τ](x.e)/x]e : τ.

The structural rules, including in particular substitution, are admissible
for the static semantics.

Lemma 16.1. If Γ, x : τ ` e′ : τ′, Γ ` e : τ, then Γ ` [e/x]e′ : τ′.

An equivalent formulation of Rule (16.1g) treats the recursive self-reference
as a variable:

Γ, x : τ ` e : τ

Γ ` fix[τ](x.e) : τ
(16.2)

To type check a recursive expression, we assume that the variable, x, has
type τ while checking that the body has type τ. The advantage of Rule (16.1g)
is that it avoids treating x as a variable, since its meaning does not vary—it
stands for the recursive expression itself.

To see that Rule (16.2) is admissible relative to Rules (16.1), suppose that
Γ, x : τ ` e : τ. Then by substitution and weakening it follows that

Γ, fix[τ](x.e) : τ ` [fix[τ](x.e)/x]e : τ,

and hence by Rule (16.1g) we have Γ ` fix[τ](x.e) : τ. Conversely, if we
take Rule (16.2) as primitive, then Rule (16.1g) is admissible. To show this,
suppose that Γ, fix[τ](x.e) : τ ` [fix[τ](x.e)/x]e : τ. In the derivation
of the consequent replace each use of reflexivity for the indicated assump-
tion by a use of reflexivity in the form Γ, x : τ ` x : τ. The result is a
derivation of Γ, x : τ ` e : τ, from which we have Γ ` fix[τ](x.e) : τ by
Rule (16.2).

16.2 Dynamic Semantics

The judgement e val determines which expressions are (closed) values. The
definition of this judgement varies according to whether we adopt an ea-
ger or lazy interpretation of L{nat⇀}. This judgement is defined by the
following rules:

z val (16.3a)
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{e val}
s(e) val

(16.3b)

lam[τ](x.e) val (16.3c)

The bracketed premise is to be omitted for the lazy variant, and included
for the eager variant.

The dynamic semantics of L{nat⇀} is defined by the following rules:{
e 7→ e′

s(e) 7→ s(e′)

}
(16.4a)

e 7→ e′

ifz(e; e0; x.e1) 7→ ifz(e′; e0; x.e1)
(16.4b)

ifz(z; e0; x.e1) 7→ e0 (16.4c)

ifz(s(e); e0; x.e1) 7→ [e/x]e1 (16.4d)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(16.4e){
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

}
(16.4f)

{e2 val}
ap(lam[τ](x.e); e2) 7→ [e2/x]e

(16.4g)

fix[τ](x.e) 7→ [fix[τ](x.e)/x]e (16.4h)

The bracketed rules and premises are to be omitted for the lazy variant,
and included for the eager variant of L{nat⇀}. Rule (16.4h) implements
self-reference by substituting the recursive expression itself for the variable
x in its body. This is called unwinding the recursion.

Theorem 16.2 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Proof. The proof of preservation is by induction on the derivation of the
transition judgement. Consider Rule (16.4h). Suppose that fix[τ](x.e) :
τ. By inversion of typing we have fix[τ](x.e) : τ ` [fix[τ](x.e)/x]e : τ,
from which the result follows directly by transitivity of the hypothetical
judgement. The proof of progress proceeds by induction on the derivation
of the typing judgement. For example, for Rule (16.1g) the result follows
immediately since we may make progress by unwinding the recursion.
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16.3 Definability

General recursion is a very flexible programming technique that permits a
wide variety of functions to be defined within L{nat⇀}. The drawback
is that, in contrast to primitive recursion, the termination of a recursively
defined function is not intrinsic to the program itself, but rather must be
proved extrinsically by the programmer. The benefit is a much greater free-
dom in writing programs.

Every primitive recursive function is definable in PCF. One way to see
this is to first introduce notation for general recursive functions, and then
use these to define primitive recursion. A general recursive function ex-
pression has the form fun[τ1; τ2](x.y.e), where x is a variable standing
for the function itself, and y is its argument. This form generalizes ordinary
λ-notation, since we may always disregard the name for the function itself.
The static semantics of general recursive function expressions is given by
the following rule:

Γ, fun[τ1; τ2](x.y.e) : parr(τ1; τ2), y : τ1 ` e : τ2

Γ ` fun[τ1; τ2](x.y.e) : parr(τ1; τ2)
. (16.5)

Its dynamic semantics may be given by the following rule for application,
generalized to recursive functions:

{e1 val} e = fun[τ1; τ2](x.y.e′)
ap(e; e1) 7→ [e, e1/x, y]e′

(16.6)

At the call site the function itself is substituted for x, the name that it has
given itself, within its body.

General recursive functions are definable from general recursion and
non-recursive functions. Specifically, we may take fun[τ1; τ2](x.y.e) to
stand for the compound expression

fix[parr(τ1; τ2)](x.lam[τ1](y.e)).

It is easy to check that the static and dynamic semantics of recursive func-
tions are derivable from this definition.

Returning to primitive recursion, we may define rec[τ](e; e0; x.y.e1)
to be the expression ap(e′; e), where e′ is the recursive function

fun[nat; τ]( f.u.ifz(u; e0; x.[ap( f ; x)/y]e1)).

It is easy to check that the static and dynamic semantics of primitive recur-
sion are derivable in L{nat⇀} using this expansion.
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To discuss definability in general, we proceed as in Chapter 15. First, we
define the relation e ∼= e′ : τ [Γ] of observational congruence to be the coars-
est consistent congruence relation—an equivalence relation such that (a)
any expression may be replaced by an observationally congruent one with-
out changing the observable behavior, and (b) is consistent in that it does
not equate a terminating to a non-terminating expression. We rely here
on some intuitively plausible forms of equational reasoning for L{nat⇀}
whose justifications are made rigorous in Chapter 53.

Since expressions in L{nat⇀} may not terminate, functions definable
in it are necessarily partial. We say that a partial function of the natural
numbers, φ : N ⇀ N, is definable in L{nat⇀} iff there is an expression
eφ : nat⇀ nat such that φ(m) = n iff eφ(m) ∼= n : nat. So, for example,
if φ is the totally undefined function, then eφ must be a function that loops
infinitely whenever it is called.

It is informative to classify those partial functions φ that are definable in
L{nat⇀}. It turns out that these are the so-called partial recursive functions,
which are defined to be the primitive recursive functions (definable in the
first-order fragment of L{nat→}), augmented by closure under minimiza-
tion: given φ, define ψ(m) to be the least n ≥ 0 such that (1) for m < n,
φ(m) is defined and non-zero, and (2) φ(n) = 0. If no such n exists, then
ψ(m) is undefined.

Theorem 16.3. A partial function φ on the natural numbers is definable inL{nat⇀}
iff it is partial recursive.

Proof sketch. Minimization is readily definable in L{nat⇀}, so it is at least
as powerful as the class of partial recursive functions. Conversely, we may,
with considerable tedium, define an evaluator for expressions ofL{nat⇀}
as a partial recursive function, using Gödel-numbering to represent expres-
sions as numbers. Consequently, L{nat⇀} does not exceed the power of
the class of partial recursive functions.

Church’s Law states that the partial recursive functions coincide with
the class of effectively computable functions on the natural numbers—those
that can be carried out by a program written in any programming language
currently available or that will ever be available.1 Therefore L{nat⇀} is
as powerful as any other programming language with respect to the class
of definable functions on the natural numbers.

1See Chapter 22 for further discussion of Church’s Law.
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Let φuniv be the partial function on the natural numbers such that

φuniv(peq)(m) = n iff e(m) 7→∗ n.

By Church’s Law this function is definable inL{nat⇀}, whereas we showed
in Chapter 15 that the analogous function is not definable inL{nat→}. It is
an instructive exercise to consider why the diagonal argument given there
does not apply here.

16.4 ∗Contextual Semantics

Recall from Chapter 10 that a contextual semantics has only one transition
rule,

e = E{e0} e0  e′0 e′ = E{e′0}
e 7→c e′

(16.7)

This rule is defined in terms of the decomposition of an expression into an
evaluation context and a redex, which is then replaced by its contractum.

The instruction steps for L{nat⇀} are inductively defined by the fol-
lowing inference rules:

ifz(z; e0; x.e1) e0 (16.8a)

{e val}
ifz(s(e); e0; x.e1) [e/x]e1

(16.8b)

{e2 val}
ap(lam[τ2](x.e); e2) [e2/x]e

(16.8c)

fix[τ](x.e) [fix[τ](x.e)/x]e (16.8d)

The bracketed premises are to be omitted for the lazy variant, and included
for the eager variant.

The evaluation contexts are inductively defined by the following rules:

◦ ectxt (16.9a){
E ectxt

s(E) ectxt

}
(16.9b)

E ectxt
ifz(E ; e0; x.e1) ectxt

(16.9c)

E1 ectxt

ap(E1; e2) ectxt
(16.9d)
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{
e1 val E2 ectxt

ap(e1; E2) ectxt

}
(16.9e)

The bracketed rules are to be omitted for the lazy variant of the language.
It is a straightforward exercise to define the judgement e = E{e0},

which states that the result of replacing the “hole” in E by e0 is e.
Let us write e 7→s e′ for the transition relation defined by the structural

operational semantics, and e 7→c e′ for the transition relation defined by the
contextual semantics.

Theorem 16.4. For any expression e : nat and any v val, e 7→∗s v iff e 7→∗c v

Proof. It suffices to that e 7→s e′ iff e 7→c e′, as in the proof of Theorem 10.2
on page 77.

16.5 ∗Compactness

An important property of general recursion is called compactness, which
implies that only finitely many unwindings of a recursive expression are
needed to complete the evaluation of a program. While intuitively obvious
(one cannot complete infinitely many recursive calls in a finite computa-
tion), it is rather tricky to state and prove rigorously. To get a feel for what
is involved, we consider two motivating examples.

Consider the familiar factorial function, f , in L{nat⇀}:

fix f:nat⇀ nat isλ(x:nat. ifz x {z⇒s(z) | s(x′)⇒x* f(x′)}).

Obviously evaluation of f(n) requires n recursive calls to the function it-
self. This means that, for a given input, n, we may place a bound, k, on the
recursion that is sufficient to ensure termination of the computation. This
can be expressed formally using the k-bounded form of factorial, f (k), is
written

fixk f:nat⇀ nat isλ(x:nat. ifz x {z⇒s(z) | s(x′)⇒x* f(x′)}).

The superscript k limits the recursion to at most k unwindings, after which
the computation diverges. Thus, if f(n) terminates, then for some k ≥ 0
(in fact, k = n for this simple case), f (k)(n) also terminates.

One might expect something even stronger, namely that there is a bound
that ensures termination with the same value. But this is not always the
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case. For example, in the case of a lazy dynamic semantics, we may con-
sider the identity function defined by

fix i:nat isλ(x:nat. ifz x {z⇒z | s(x′)⇒s(i(x′))}).

Applying this to a number, n, results in the successor of a recursive call to
the function itself. Thus, for any non-zero input the computation termi-
nates in three steps (unwind, apply, conditional branch), but the result is
not the same when the recursion is bounded as when it is not, because the
residual will contain bounded recursions whereas the original will contain
unbounded recursions.

This example does not apply in the eager variant of the language, since
values of type nat are numerals. But something similar does arise. Con-
sider the addition function, a, of type τ = nat⇀ (nat⇀ nat), given by the
expression

fix p:τ isλ(x:nat. ifz x {z⇒id | s(x′)⇒s ◦ (p(x′))}),

where id = λ(y:nat. y) is the identity, e′ ◦ e = λ(x:τ. e′(e(x))) is compo-
sition, and s = λ(x:nat. s(x)) is the successor function. The application
a(m) terminates after three transitions, regardless of the value of m, result-
ing in a λ-abstraction. When m is positive, the result contains a residual
copy of a itself, which is applied to the predecessor of m as a recursive call.
The corresponding k-bounded version of a, written a(k), also terminates in
three steps, provided that k > 0. But the result in the case of a positive
argument, m, is a λ-abstraction that contains a residual copy of a(k−1), not
of a(k) or of a itself.

The proof of compactness is based on the contextual semantics given in
Section 16.4 on page 128. This simplifies the proof compared to the usual
structural semantics, because contextual semantics permits us to restrict
attention to transitions between complete programs, whereas structural se-
mantics requires us to consider transitions at arbitrary type to account for
the premises of the rules.

As a technical convenience we will enrich the syntax of L{nat⇀}with
bounded recursion, written fixk x:τ is e, where k ≥ 0. The static semantics is
the same as for general recursion, the parameter k playing no role in typing.
The dynamic semantics is defined by the following primitive instruction
rules:

fix0[τ](x.e) fix0[τ](x.e) (16.10a)

fixk+1[τ](x.e) [fixk[τ](x.e)/x]e (16.10b)
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If k is positive, the recursive bound is decremented so that subsequent uses
of it will be limited to one fewer unrolling. If k reaches zero, the expression
steps to itself so that computation with it diverges with no result.

Let f (ω) = fix x:τ is ex be an arbitrarily chosen recursive expression
such that f (ω) : τ, and let f (k) = fixk x:τ is ex be the corresponding k-
bounded recursive expression, for which we also have f (k) : τ. Observe
that by inversion of the static semantics of recursive expressions, we have
x : τ ` ex : τ.

Lemma 16.5. If e0 = [ f (ω)/y]e1  e′0, then e′0 = [ f (ω)/y]e′1 for some e′1.
Moreover, if e0 = [ f (k)/y]e1  e′0, then e′0 = [ f (j)/y]e′1 for some e′1 and j ≤ k.

Proof. Immediate, by inspection of Rules (16.8).

Lemma 16.6. If [ f (k)/y]e ↓, then [ f (k+1)/y]e ↓.

Proof. It is enough to prove that if

[ f (k)/y]E{[ f (k)/y]e0} ↓,

then
[ f (k+1)/y]E{[ f (k+1)/y]e0} ↓ .

Theorem 16.7 (Compactness). Suppose that y : τ ` e : τ′, where y # f (ω). If
[ f (ω)/y]e ↓, then there exists k ≥ 0 such that [ f (k)/y]e ↓.

Proof. If [ f (ω)/y]e val, then since e cannot be the variable y, it must itself
be a value, independently of whether y val. The result then follows imme-
diately, choosing k arbitrarily. Otherwise, suppose that [ f (ω)/y]e 7→c e′ ↓.
That is, [ f (ω)/y]e = E{e0}, e′ = E{e′0}, and e0  e′0. Therefore E has the
form [ f (ω)/y]E1 for some evaluation context E1, e0 = [ f (ω)/y]e1 for some
closed expression e1, and so e′ = [ f (ω)/y]E1{e′0}.

We proceed by case analysis on whether or not e1 is the distinguished
variable, y. If so, the instruction step under consideration is precisely the
unrolling of the distinguished recursive expression f (ω). Consequently,
e0 = f (ω), and, therefore, e′0 = [ f (ω)/x]ex, where we may assume with-
out loss of generality x # y. Now

[ f (ω)/y]E1{[ f (ω)/x]ex} = [ f (ω)/y](E1{[y/x]ex}),
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and so by induction there exists k ≥ 0 such that

[ f (k)/y](E1{[y/x]ex}) = [ f (k)/y]E1{[y/x]ex}
= [ f (k)/y]E1{[ f (k)/x]ex} ↓ .

Hence, by Lemma 16.6 on the preceding page, noting that y # [ f (k)/x]ex,
and applying the dynamic semantics of bounded recursion, we have

[ f (k+1)/y](E1{y}) = [ f (k+1)/y]E1{ f (k+1)}
7→c [ f (k+1)/y]E1{[ f (k)/x]ex} ↓ .

This completes the proof for the case e1 = y.
Otherwise, it follows from Lemma 16.5 on the previous page that e′0 =

[ f (ω)/y]e′1 for some expression e′1. That is, we have

[ f (ω)/y](E1{e0}) = [ f (ω)/y]E1{[ f (ω)/y]e1}
7→c [ f (ω)/y]E1{[ f (ω)/y]e′1}
= [ f (ω)/y](E1{e′1}) ↓ .

Therefore, by induction, there exists k ≥ 0 such that

[ f (k)/y]E1{[ f (k)/y]e′1} = [ f (k)/y](E1{e′1}) ↓ .

It follows that

[ f (k)/y]E1{[ f (k)/y]e1} 7→c [ f (k)/y]E1{[ f (k)/y]e′1} ↓ .

16.6 Exercises
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Part V

Products and Sums





Chapter 17

Product Types

The binary product of two types consists of ordered pairs of values, one from
each type in the order specified. The associated eliminatory forms are pro-
jections, which select the first and second component of a pair. The nullary
product, or unit, type consists solely of the unique “null tuple” of no values,
and has no associated eliminatory form.

More generally, we may consider the general product, ∏i∈I τi, where τi
is a type for each i ∈ I. The elements of the general product type are
I-indexed tuples whose ith component is an element of type τi. The com-
ponents are accessed by I-indexed projection operations, generalizing the bi-
nary case. Special cases of the general product include n-tuples, indexed by
sets of the form I = { 0, . . . , n− 1 }, and labelled tuples, or records, indexed
by sets of symbols that label the components of the tuple.

17.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= unit unit

| prod(τ1; τ2) τ1 × τ2
Expr e ::= triv 〈〉

| pair(e1; e2) 〈e1, e2〉
| fst(e) fst(e)
| snd(e) snd(e)

The type prod(τ1; τ2) is sometimes called the binary product of the types τ1
and τ2, and the type unit is correspondingly called the nullary product (of
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no types). We sometimes speak loosely of product types in such as way as
to cover both the binary and nullary cases. The introductory form for the
product type is called pairing, and its eliminatory forms are called projec-
tions. For the unit type the introductory form is called the unit element, or
null tuple. There is no eliminatory form, there being nothing to extract from
a null tuple!

The static semantics of product types is given by the following rules.

Γ ` triv : unit (17.1a)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair(e1; e2) : prod(τ1; τ2)
(17.1b)

Γ ` e : prod(τ1; τ2)

Γ ` fst(e) : τ1
(17.1c)

Γ ` e : prod(τ1; τ2)

Γ ` snd(e) : τ2
(17.1d)

The dynamic semantics of product types is specified by the following
rules:

triv val (17.2a)

{e1 val} {e2 val}
pair(e1; e2) val

(17.2b){ e1 7→ e′1
pair(e1; e2) 7→ pair(e′1; e2)

}
(17.2c){

e1 val e2 7→ e′2
pair(e1; e2) 7→ pair(e1; e′2)

}
(17.2d)

e 7→ e′

fst(e) 7→ fst(e′)
(17.2e)

e 7→ e′

snd(e) 7→ snd(e′)
(17.2f)

{e1 val} {e2 val}
fst(pair(e1; e2)) 7→ e1

(17.2g)

{e1 val} {e2 val}
snd(pair(e1; e2)) 7→ e2

(17.2h)

The bracketed rules and premises are to be omitted for a lazy semantics,
and included for an eager semantics of pairing.

Theorem 17.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ then either e val or there exists e′ such that e 7→ e′.
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17.2 Finite Products

Finite product types are the natural generalization of nullary and binary tu-
ples to finite index sets. The syntax of finite products makes use of finite
families of types and expressions.

A finite family of types indexed by I is a finite function φ such that φ(i) is
a type for each i ∈ I, and similarly a finite family of expressions indexed by I
is a finite function ε such that ε(i) is an expression for each i ∈ I. We often
write i 7→ τi for the type family φ such that φ(i) = τi for each i ∈ I, where
the index set I is understood from context. Similarly, we write i 7→ ei for
the expression family ε such that ε(i) = ei for each i ∈ I. As a notational
convenience, we write 〈i0 : τ0, . . . , in−1 : τn−1〉 for the type family i 7→ τi in-
dexed by I = { i0, . . . , in−1 }, and we similarly write 〈i0 : e0, . . . , in−1 : en−1〉
for the expression i 7→ ei indexed over the same set I.

The syntax of general product types is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= prod[I](i 7→ τi) ∏i∈I τi
Expr e ::= tuple[I](i 7→ ei) 〈ei〉i∈I

| proj[I][i](e) e · i

Using the explicit notation for finite families, we write ∏ 〈i0 : τ0, . . . , in−1 : τn−1〉
for ∏i∈I τ1, and 〈i0 : e0, . . . , in−1 : en−1〉 for 〈ei〉i∈I , where I = { i0, . . . , in−1 }.

The static semantics of finite products is given by the following rules:

(∀i ∈ I) Γ ` ei : τi

Γ ` tuple[I](i 7→ ei) : prod[I](i 7→ τi)
(17.3a)

Γ ` e : prod[I](i 7→ ei) j ∈ I
Γ ` proj[I][j](e) : τj

(17.3b)

In Rule (17.3b) the index j ∈ I is a particular element of the index set I,
whereas in Rule (17.3a), the index i ranges over the index set I.

The dynamic semantics of finite products is given by the following
rules:

{(∀i ∈ I) ei val}
tuple[I](i 7→ ei) val

(17.4a)

ej 7→ e′j (∀i 6= j) e′j = ej

tuple[I](i 7→ ei) 7→ tuple[I](i 7→ e′i)
(17.4b)

tuple[I](i 7→ ei) val

proj[I][j](tuple[I](i 7→ ei)) 7→ ej
(17.4c)
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Rule (17.4b) specifies that the components of a tuple are to be evaluated in
some sequential order, without specifying the order in which they compo-
nents are considered. It is straightforward, if a bit technically complicated,
to impose a linear ordering on index sets that determines the evaluation
order of the components of a tuple.

Theorem 17.2 (Safety). If e : τ, then either e val or there exists e′ such that e′ : τ
and e 7→ e′.

Proof. The safety theorem may be decomposed into progress and preserva-
tion lemmas, which are proved as in Section 17.1 on page 135.

We may define nullary and binary products as particular instances of
finite products by choosing an appropriate index set. The type unit may
be defined as the product ∏ ∈∅ ∅ of the empty family over the empty index
set, taking the expression 〈〉 to be the empty tuple, 〈∅〉 ∈∅. Binary products
τ1× τ2 may be defined as the product ∏i∈{ 1,2 } τi of the two-element family
of types consisting of τ1 and τ2. The pair 〈e1, e2〉 may then be defined as
the tuple 〈ei〉i∈{ 1,2 }, and the projections fst(e) and snd(e) are correspond-
ingly defined, respectively, to be e · 1 and e · 2.

Finite products may similarly be used to define labelled tuples, or records,
whose components are accessed by symbolic names. For example, let L =
{ l1, . . . , ln } be a finite set of symbols serving as field labels. The product type
∏ 〈l0 : τ0, . . . , ln−1 : τn−1〉 has as values tuples of the form 〈l0 : e0, . . . , ln−1 : en−1〉,
where ei : τi for each 0 ≤ i < n. The components of such a tuple, say e, are
accessed by projections of the form e · l, where l ∈ L.

17.3 Exercises
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Chapter 18

Sum Types

Most data structures involve alternatives such as the distinction between a
leaf and an interior node in a tree, or a choice in the outermost form of a
piece of abstract syntax. Importantly, the choice determines the structure
of the value. For example, nodes have children, but leaves do not, and so
forth. These concepts are expressed by sum types, specifically the binary
sum, which offers a choice of two things, and the nullary sum, which offers
a choice of no things. Finite sums generalize nullary and binary sums to
permit an arbitrary number of cases indexed by a finite index set, includ-
ing the important special case of labelled sums, in which the summands are
designated by a symbolic label.

18.1 Binary and Nullary Sums

The abstract syntax of sums is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= void void

| sum(τ1; τ2) τ1 + τ2
Expr e ::= abort[τ](e) abortτ e

| in[l][τ](e) in[l](e)
| in[r][τ](e) in[r](e)
| case(e; x1.e1; x2.e2) case e {in[l](x1)⇒ e1 | in[r](x2)⇒ e2}

The type void is the nullary sum type, whose values are selected from a
choice of zero alternatives — there are no values of this type, and so no in-
troductory forms. The eliminatory form, abort[τ](e), aborts the compu-
tation in the event that e evaluates to a value, which it cannot do. The type
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τ = sum(τ1; τ2) is the binary sum. The elements of the sum type are labelled
to indicate whether they are drawn from the left or the right summand, ei-
ther in[l][τ](e) or in[r][τ](e). A value of the sum type is eliminated
by case analysis on the label of the value.

The static semantics of sum types is given by the following rules.

Γ ` e : void
Γ ` abort[τ](e) : τ

(18.1a)

Γ ` e : τ1 τ = sum(τ1; τ2)

Γ ` in[l][τ](e) : τ
(18.1b)

Γ ` e : τ2 τ = sum(τ1; τ2)

Γ ` in[r][τ](e) : τ
(18.1c)

Γ ` e : sum(τ1; τ2) Γ, x1 : τ1 ` e1 : τ Γ, x2 : τ2 ` e2 : τ

Γ ` case(e; x1.e1; x2.e2) : τ
(18.1d)

Both branches of the case analysis must have the same type. Since a type
expresses a static “prediction” on the form of the value of an expression,
and since a value of sum type could evaluate to either form at run-time, we
must insist that both branches yield the same type.

The dynamic semantics of sums is given by the following rules:

e 7→ e′

abort[τ](e) 7→ abort[τ](e′)
(18.2a)

{e val}
in[l][τ](e) val

(18.2b)

{e val}
in[r][τ](e) val

(18.2c){
e 7→ e′

in[l][τ](e) 7→ in[l][τ](e′)

}
(18.2d){

e 7→ e′

in[r][τ](e) 7→ in[r][τ](e′)

}
(18.2e)

e 7→ e′

case(e; x1.e1; x2.e2) 7→ case(e′; x1.e1; x2.e2)
(18.2f)

{e val}
case(in[l][τ](e); x1.e1; x2.e2) 7→ [e/x1]e1

(18.2g)

{e val}
case(in[r][τ](e); x1.e1; x2.e2) 7→ [e/x2]e2

(18.2h)
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The bracketed premises and rules are to be included for an eager semantics,
and excluded for a lazy semantics.

The coherence of the static and dynamic semantics is stated and proved
as usual.

Theorem 18.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val or e 7→ e′ for some e′.

Proof. The proof proceeds along standard lines, by induction on Rules (18.2)
for preservation, and by induction on Rules (18.1) for progress.

18.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so
may we also generalize nullary and binary sums to finite sums. The syntax
for finite sums is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= sum[I](i 7→ τi) ∑i∈I τi
Expr e ::= inj[I][j](e) in[j](e)

| case[I](e; i 7→ xi.ei) case e {in[i](xi)⇒ ei}i∈I

The abstract binding tree representation of the finite case expression in-
volves an I-indexed family of abstractors xi.ei, but is otherwise similar
to the binary form. We write ∑ 〈i0 : τ0, . . . , in−1 : τn−1〉 for ∑i∈I τi, where
I = { i0, . . . , in−1 }.

The static semantics of finite sums is defined by the following rules:

Γ ` e : τj j ∈ I
Γ ` inj[I][j](e) : sum[I](i 7→ τi)

(18.3a)

Γ ` e : sum[I](i 7→ τi) (∀i ∈ I) Γ, xi : τi ` ei : τ

Γ ` case[I](e; i 7→ xi.ei) : τ
(18.3b)

These rules generalize to the finite case the static semantics for nullary and
binary sums given in Section 18.1 on page 139.

The dynamic semantics of finite sums is defined by the following rules:

{e val}
inj[I][j](e) val

(18.4a){
e 7→ e′

inj[I][j](e) 7→ inj[I][j](e′)

}
(18.4b)
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e 7→ e′

case[I](e; i 7→ xi.ei) 7→ case[I](e′; i 7→ xi.ei)
(18.4c)

inj[I][j](e) val

case[I](inj[I][j](e); i 7→ xi.ei) 7→ [e/xj]ej
(18.4d)

These again generalize the dynamic semantics of binary sums given in Sec-
tion 18.1 on page 139.

Theorem 18.2 (Safety). If e : τ, then either e val or there exists e′ : τ such that
e 7→ e′.

Proof. The proof is similar to that for the binary case, as described in Sec-
tion 18.1 on page 139.

As with products, nullary and binary sums are special cases of the finite
form. The type voidmay be defined to be the sum type ∑ ∈∅ ∅ of the empty
family of types. The expression abort(e) may corresponding be defined as
the empty case analysis, case e {∅}. Similarly, the binary sum type τ1 + τ2
may be defined as the sum ∑i∈I τi, where I = { l, r } is the two-element
index set. The binary sum injections in[l](e) and in[r](e) are defined
to be their counterparts, in[l](e) and in[r](e), respectively. Finally, the
binary case analysis,

case e {in[l](xl)⇒ el | in[r](xr)⇒ er},

is defined to be the case analysis, case e {in[i](xi)⇒ τi}i∈I . It is easy to
check that the static and dynamic semantics of sums given in Section 18.1
on page 139 is preserved by these definitions.

Two special cases of finite sums arise quite commonly. The n-ary sum
corresponds to the finite sum over an index set of the form { 0, . . . , n− 1 }
for some n ≥ 0. The labelled sum corresponds to the case of the index set
being a finite set of symbols serving as symbolic indices for the injections.

18.3 Some Uses of Sum Types

Sum types have numerous uses, several of which we outline here. More
interesting examples arise once we also have recursive types, which are
introduced in Part VI.
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18.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often con-
fused with one another. The type unit has exactly one element, triv,
whereas the type void has no elements at all. Consequently, if e : unit,
then if e evaluates to a value, it must be unit — in other words, e has no
interesting value (but it could diverge). On the other hand, if e : void, then e
must not yield a value; if it were to have a value, it would have to be a value
of type void, of which there are none. This shows that what is called the
void type in many languages is really the type unit because it indicates
that an expression has no interesting value, not that it has no value at all!

18.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans,
whose syntax is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= bool bool
Expr e ::= tt tt

| ff ff
| if(e; e1; e2) if e then e1 else e2

The values of type bool are tt and ff. The expression if(e; e1; e2) branches
on the value of e : bool. We leave a precise formulation of the static and
dynamic semantics of this type as an exercise for the reader.

The type bool is definable in terms of binary sums and nullary prod-
ucts:

bool = sum(unit; unit) (18.5a)
tt = in[l][bool](triv) (18.5b)
ff = in[r][bool](triv) (18.5c)

if(e; e1; e2) = case(e; x1.e1; x2.e2) (18.5d)

In the last equation above the variables x1 and x2 are chosen arbitrarily such
that x1 # e1 and x2 # e2. (We often write an underscore in place of a variable
to stand for a variable that does not occur within its scope.) It is a simple
matter to check that the evident static and dynamic semantics of the type
bool is engendered by these definitions.
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18.3.3 Enumerations

More generally, sum types may be used to define finite enumeration types,
those whose values are one of an explicitly given finite set, and whose elim-
ination form is a case analysis on the elements of that set. For example, the
type suit, whose elements are ♣, ♦, ♥, and ♠, has as elimination form the
case analysis

case e {♣ ⇒ e0 |♦ ⇒ e1 |♥ ⇒ e2 |♠ ⇒ e3},

which distinguishes among the four suits. Such finite enumerations are
easily representable as sums. For example, we may define suit = ∑ ∈I unit,
where I = {♣,♦,♥,♠} and the type family is constant over this set. The
case analysis form for a labelled sum is almost literally the desired case
analysis for the given enumeration, the only difference being the binding
for the uninteresting value associated with each summand, which we may
ignore.

18.3.4 Options

Another use of sums is to define the option types, which have the following
syntax:

Category Item Abstract Concrete
Type τ ::= opt(τ) τ opt
Expr e ::= null null

| just(e) just(e)
| ifnull[τ](e; e1; x.e2) check e{null⇒ e1 | just(x)⇒ e2}

The type opt(τ) represents the type of “optional” values of type τ. The
introductory forms are null, corresponding to “no value”, and just(e),
corresponding to a specified value of type τ. The elimination form dis-
criminates between the two possibilities.

The option type is definable from sums and nullary products according
to the following equations:

opt(τ) = sum(unit; τ) (18.6a)
null = in[l][opt(τ)](triv) (18.6b)

just(e) = in[r][opt(τ)](e) (18.6c)
ifnull[τ](e; e1; x2.e2) = case(e; .e1; x2.e2) (18.6d)
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We leave it to the reader to examine the static and dynamic semantics im-
plied by these definitions.

The option type is the key to understanding a common misconception,
the null pointer fallacy. This fallacy, which is particularly common in object-
oriented languages, is based on two related errors. The first error is to deem
the values of certain types to be mysterious entities called pointers, based
on suppositions about how these values might be represented at run-time,
rather than on the semantics of the type itself. The second error compounds
the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not designate a
value of that type at all, but rather rejects all attempts to use it as such.

To help avoid such failures, such languages usually include a function,
say null : τ → bool, that yields tt if its argument is null, and ff otherwise.
This allows the programmer to take steps to avoid using null as a value of
the type it purports to inhabit. Consequently, programs are riddled with
conditionals of the form

if null(e) then . . . error . . . else . . . proceed . . . . (18.7)

Despite this, “null pointer” exceptions at run-time are rampant, in part be-
cause it is quite easy to overlook the need for such a test, and in part be-
cause detection of a null pointer leaves little recourse other than abortion
of the program.

The underlying problem may be traced to the failure to distinguish the
type τ from the type opt(τ). Rather than think of the elements of type τ
as pointers, and thereby have to worry about the null pointer, one instead
distinguishes between a genuine value of type τ and an optional value of
type τ. An optional value of type τ may or may not be present, but, if it
is, the underlying value is truly a value of type τ (and cannot be null). The
elimination form for the option type,

ifnull[τ](e; eerror; x.eok) (18.8)

propagates the information that e is present into the non-null branch by
binding a genuine value of type τ to the variable x. The case analysis ef-
fects a change of type from “optional value of type τ” to “genuine value of
type τ”, so that within the non-null branch no further null checks, explicit
or implicit, are required. Observe that such a change of type is not achieved
by the simple Boolean-valued test exemplified by expression (18.7); the ad-
vantage of option types is precisely that it does so.
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18.4 Exercises

1. Formulate general n-ary sums in terms of nullary and binary sums.

2. Explain why is makes little sense to consider self-referential sum types.
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Chapter 19

Pattern Matching

Pattern matching is a natural and convenient generalization of the elimina-
tion forms for product and sum types. For example, rather than write

let x be e in fst(x)+snd(x)

to add the components of a pair, e, of natural numbers, we may instead
write

match e {〈x, y〉 ⇒ x+y},

using pattern matching to name the components of the pair and refer to
them directly. The first argument to the match expression is called the match
value and the second argument consist of a finite sequence of rules, sepa-
rated by vertical bars. In this example there is only one rule, but as we shall
see shortly there is, in general, more than one rule in a given match expres-
sion. Each rule consists of a pattern, possibly involving variables, and an
expression that may involve those variables (as well as any others currently
in scope). The value of the match is determined by considering each rule
in the order given to determine the first rule whose pattern matches the
match value. If such a rule is found, the value of the match is the value of
the expression part of the matching rule, with the variables of the pattern
replaced by the corresponding components of the match value.

Pattern matching becomes more interesting, and useful, when com-
bined with sums. The patterns in[l](x) and in[r](x) match the corre-
sponding values of sum type. These may be used in combination with
other patterns to express complex decisions about the structure of a value.
For example, the following match expresses the computation that, when
given a pair of type (unit + unit)× nat, either doubles or squares its sec-
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ond component depending on the form of its first component:

match e {〈in[l](〈〉), x〉 ⇒ x+x | 〈in[r](〈〉), y〉 ⇒ y*y}. (19.1)

It is an instructive exercise to express the same computation using only the
primitives for sums and products given in Chapters 17 and 18.

19.1 A Pattern Language

The main challenge in formalizing pattern matching is to manage the bind-
ing and scope of variables. The key observation is that a rule, p⇒ e, binds
variables in both the pattern, p, and the expression, e, simultaneously. Each
rule in a sequence may bind any number of variables, independently of
any preceding or succeeding rules. This gives rise to a somewhat unusual
abstract syntax for sequences of rules that permits each rule to have a dif-
ferent, in general non-zero, valence. For example, the abstract syntax for
expression (19.1) is given by

match(e; rules[2](r1; r2)),

where r1 is the rule

x.rule(pair(in[l](triv); x); plus(x; x))

and r2 is the rule

y.rule(pair(in[r](triv); y); times(y; y)).

The salient point is that Each rule binds its own variables, in both the pat-
tern and the expression.

The abstract syntax of pattern matching is formalized by the following
grammar:

Category Item Abstract Concrete
Expr e ::= match(e; rs) match e {rs}
Rules rs ::= rules[n](r1; . . . ; rn) r1 | . . . | rn
Rule r ::= x1, . . . , xk.rule(p; e) p⇒ e
Pattern p ::= wild

| x x
| triv 〈〉
| pair(p1; p2) 〈p1, p2〉
| in[l](p) in[l](p)
| in[r](p) in[r](p)
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The operator rules[n] has arity (k1, . . . , kn), where n ≥ 0 and, for each 1 ≤
i ≤ n, the ith rule has valence ki ≥ 0. Correspondingly, each rule consists
of an abstractor binding k ≥ 0 variables in a pattern and an expression. A
pattern is either a variable, a wild card pattern, a unit pattern matching only
the trivial element of the unit type, a pair pattern, or a choice pattern.

To specify the static semantics of pattern matching, we define several
parametric judgements governing patterns and rules. In what follows the
variable γ ranges over finite mappings from variables to types.

The judgement form
X | p : τ > γ

states that the pattern, p, is of type τ and has variables among those in X ,
with the types assigned by the mapping γ. This judgement is parametric
in X , and that the three-place categorical judgment, p : τ > γ, is intended
to have mode (∀, ∀, ∃).

The judgement form
X | Γ ` γ > e : τ

states that the expression e, whose free variables are among those in X , has
type τ, provided that its variables have the types assigned by γ as well as
those declared in Γ. The judgement γ > e : τ is also intended to have mode
(∀, ∀, ∃).

The judgement form

X | Γ ` r : τ > τ′

states that the rule r transforms the type τ to the type τ′. The judgement
form

X | Γ ` rs : τ > τ′

states the same property of a finite sequence of rules.

The judgement X | p : τ > γ is inductively defined by the following
rules:

X , x | x : τ > 〈x : τ〉 (19.2a)

X | wild : τ > ∅ (19.2b)

X | triv : unit > ∅ (19.2c)

X1 | p1 : τ1 > γ1 X2 | p2 : τ2 > γ2 dom(γ1) ∩ dom(γ2) = ∅
X1 X2 | pair(p1; p2) : prod(τ1; τ2) > γ1 ⊗ γ2

(19.2d)
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X2 | p : τ1 > γ1

X1 | in[l](p) : sum(τ1; τ2) > γ1
(19.2e)

X2 | p : τ2 > γ2

X2 | in[r](p) : sum(τ1; τ2) > γ2
(19.2f)

The most interesting rule is Rule (19.2d), which expresses the formation
of pair patterns. The disjointness requirement on γ1 and γ2 imposes the
linearity condition on patterns: no variable may appear more than once in
a pattern.

The parametric hypothetical judgement X | Γ ` γ > e : τ is defined by
the following rules:

X | Γ ` e′ : τ′

X | Γ ` ∅ > e′ : τ′
(19.3a)

X , x | Γ, x : τ ` γ > e′ : τ′

X | Γ ` 〈x : τ〉 ⊗ γ > e′ : τ′
(19.3b)

The hypotheses Γ determine the types of the variables in scope at the point
of the inference, and the mapping γ determines the types of the variables
in the pattern. These rules traverse γ, introducing typing hypotheses x : τ
for each variable x such that γ(x) = τ, then checking that e′ : τ′ once all
such hypotheses have been introduced.

The typing judgements for rules are defined as follows:

x1, . . . , xn | p : τ > γ X x1, . . . , xn | Γ ` γ > e : τ′

X | Γ ` x1, . . . , xk.rule(p; e) : τ > τ′
(19.4a)

X | Γ ` r1 : τ > τ′ . . . X | Γ ` rn : τ > τ′

X | Γ ` rules[n](r1; . . . ; rn) : τ > τ′
(19.4b)

In Rule (19.4a) we see that the association γ mediates between the pattern
and the expression parts of a rule. The variables in the pattern must be
among the abstracted variables, x1, . . . , xk, which we require to be disjoint
from X . As usual, this condition may always be met by renaming the
bound variables of the rule at the point of the inference. Note that if n
is zero in Rule (19.4b), then there are no premises, and the indicated typing
holds outright: if there are no rules, then the sequence may be considered
to transform a value of type τ to a value of any type whatsoever, precisely
because pattern matching will fail (as we shall see in the next section).

Finally, the typing rule for the match expression is given as follows:

X | Γ ` e : τ X | Γ ` rs : τ > τ′

X | Γ ` match(e; rs) : τ′
(19.5)
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The match expression has type τ′ if the rules transform any value of type τ,
the type of the match expression, to a value of type τ′.

19.2 Pattern Matching

The dynamic semantics of pattern matching is defined using substitution
to “guess” the bindings of the pattern variables. The dynamic semantics is
given by the judgements e 7→ e′, representing a step of computation, and
e err, representing the checked condition of pattern matching failure.

e 7→ e′

match(e; rs) 7→ match(e′; rs)
(19.6a)

match(e; rules[z]()) err (19.6b)

e val [e1, . . . , ek/x1, . . . , xk]p0 = e [e1, . . . , ek/x1, . . . , xk]e0 = e′

match(e; rules[s(n)](x1, . . . , xk.rule(p0; e0); rs)) 7→ e′
(19.6c)

¬∃e1, . . . , ek.[e1, . . . , ek/x1, . . . , xk]p0 = e
e val match(e; rules[n](rs)) 7→ e′

match(e; rules[s(n)](x1, . . . , xk.rule(p0; e0); rs)) 7→ e′
(19.6d)

Rule (19.6b) specifies that evaluation results in a checked error once all rules
are exhausted. Rules (19.6c) specifies that the rules are to be considered in
order. If the match value, e, matches the pattern, p0 of the first rule, then the
result is the corresponding instance of e0; otherwise, the matching process
continues with the remaining rules.

Theorem 19.1 (Preservation). If e 7→ e′ and e : τ, then e′ : τ.

Proof. By a straightforward induction on the derivation of e 7→ e′, making
use of the evident substitution lemma for the static semantics.

While it is possible to state and prove a progress theorem, it does not
have much force, because it is possible for matching to fail, a checked er-
ror. The static semantics given in Section 19.1 on page 148 does not guard
against match failure, since it does not guarantee that every match value
matches some rule.

We say that a sequence, rs, of rules such that rs : τ > τ′ is exhaustive
iff for every e : τ such that e val there is some rule pi ⇒ ei in rs such
that e matches the pattern pi (with respect to the variables x1, . . . , xk). If
a sequence of rules, rs, is not exhaustive, then there is a value, e, of the
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domain type such that match e {rs} fails at run-time. Exhaustiveness can be
checked statically by examining the patterns in the rules, but we shall not
go into this here.

It is also useful to check that a sequence of rules is irredundant, meaning
that no rule is completely subsumed by a preceding rule. We say that the
ith rule in a sequence is redundant iff any value matching pi must match the
pattern pj of some preceding rule in the sequence. Such a rule can never
be considered in the dynamic semantics, because the rules are considered
in order. It is also possible to ensure that all rule sequences are free of
redundant rules, but we shall not go into this here.

19.3 Exercises

11:12PM DRAFT JULY 8, 2008



Part VI

Recursive Types





Chapter 20

∗Inductive and Co-Inductive
Types

The inductive and the coinductive types are two important classes of recur-
sive types. Inductive types correspond to least, or initial, solutions of certain
type isomorphism equations, and coinductive types correspond to their
greatest, or final, solutions. Intuitively, inductive types are considered to
be the “smallest” types containing their introduction forms; the elimina-
tion form is then a form of recursion over the introduction forms. Dually,
coinductive types are considered to be the “greatest” types consistent with
their elimination forms; the introduction forms are a means of presenting
elements as required by the elimination forms.

The motivating example of an inductive type is the type of natural num-
bers. It is the least type containing the introductory forms z and s(e),
where e is again an introductory form. To compute with a number we de-
fine a recursive procedure that returns a specified value on z, and, for s(e),
returns a value defined in terms of the recursive call to itself on e. Other
examples of inductive types are strings, lists, trees, and any other type that
may be thought of as finitely generated from its introductory forms.

The motivating example of a coinductive type is the type of streams
of natural numbers. Every stream may be thought of as being in the pro-
cess of generation of pairs consisting of a natural number (its head) and
another stream (its tail). To create a stream we define a generator that,
when prompted, produces such a natural number and a co-recursive call
to the generator. Other examples of coinductive types include infinite reg-
ular trees, and the so-called lazy natural numbers, which include a “point
at infinity” consisting of an infinite stack of successors.
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20.1 Static Semantics

20.1.1 Types and Operators

The syntax of inductive and coinductive types involves type variables, which
are, of course, variables ranging over the class of types. The abstract syntax
of inductive and coinductive types is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= t t

| ind(t.τ) µi(t.τ)
| coi(t.τ) µf(t.τ)

The subscripts on the inductive and coinductive types are intended to indi-
cate “initial” and “final”, respectively, with the meaning that the inductive
types determine least solutions to certain type equations, and the coinduc-
tive types determine greatest solutions.

We will consider type formation judgements of the form

t1 type, . . . , tn type | τ type,

where t1, . . . , tn are type names. We let ∆ range over finite sets of hypothe-
ses of the form t type, where t name is a type name. The type formation
judgement is inductively defined by the following rules:

∆, t type | t type (20.1a)

∆, t type | τ type ∆ | t.τ pos

∆ | ind(t.τ) type
(20.1b)

∆, t type | τ type ∆ | t.τ pos

∆ | coi(t.τ) type
(20.2)

The premises on Rules (20.1b) and (20.2) involve a judgement of the form
t.τ pos, which will be explained in Section 20.2 on the facing page.

A type operator is an abstractor of the form t.τ such that t type | τ type.
Thus a type operator may be thought of as a type, τ, with a distinguished
free variable, t, possibly occurring in it. It follows from the meaning of
the hypothetical judgement that if t.τ is a well-formed type operator, and
σ type, then [σ/t]τ type. Thus, a type operator may also be thought of as a
mapping from types to types given by substitution.

As an example of a type operator, consider the abstractor t.unit + t,
which will be used in the definition of the natural numbers as an induc-
tive type. Other examples include t.unit + (nat× t), which underlies the
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definition of the inductive type of lists of natural numbers, and t.nat× t,
which underlies the coinductive type of streams of natural numbers.

20.1.2 Expressions

The abstract syntax of expressions for inductive and coinductive types is
given by the following grammar:

Category Item Abstract Concrete
Expr e ::= in[t.τ](e) in(e)

| rec[t.τ](x.e; e′) rec(x.e; e′)
| out[t.τ](e) out(e)
| gen[t.τ](x.e; e′) gen(x.e; e′)

There is a pleasing symmetry between inductive and coinductive types that
arises from the underlying duality of their semantics.

The static semantics for inductive and coinductive types is given by the
following typing rules:

Γ ` e : [ind(t.τ)/t]τ
Γ ` in[t.τ](e) : ind(t.τ)

(20.3a)

Γ ` e′ : ind(t.τ) Γ, x : [ρ/t]τ ` e : ρ

Γ ` rec[t.τ](x.e; e′) : ρ
(20.3b)

Γ ` e : coi(t.τ)
Γ ` out[t.τ](e) : [coi(t.τ)/t]τ (20.3c)

Γ ` e′ : ρ Γ, x : ρ ` e : [ρ/t]τ
Γ ` gen[t.τ](x.e; e′) : coi(t.τ)

(20.3d)

The dynamic semantics of these constructs is given in terms of the ac-
tion of a positive type operator, which we now define.

20.2 Positive Type Operators

The formation of inductive and coinductive types is restricted to a special
class of type operators, called the (strictly) positive type operators.1 These are
type operators of the form t.τ in which t is restricted so that its occurrences
within τ do not lie within the domain of a function type. The prototypical

1A more permissive notion of positive type operator is sometimes considered, but we shall
only have need of the strict notion.
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example of a type operator that is not positive is the operator t.t→ t, in
which t occurs in both the domain and the range of a function type. On the
other hand, the type operator t.nat→ t is positive, as is t.u→ t, where
u type is some type variable other than t. Thus, the positivity restriction
applies only to the bound type variable of the abstractor, and not to any
other type variable.

The judgement ∆ | t.τ pos is inductively defined by the following rules:

∆ | t.t pos (20.4a)

∆ | τ type

∆ | t.τ pos
(20.4b)

∆ | τ1 type ∆ | t.τ2 pos

∆ | t.τ1 → τ2 pos
(20.4c)

∆, u type | t.τ pos

∆ | t.µi(u.τ) pos
(20.4d)

∆, u type | t.τ pos

∆ | t.µf(u.τ) pos
(20.4e)

In the latter two rules we assume that u # t, which is always achievable
up to α-equivalence. Notice that in Rule (20.4c), the type variable t is not
permitted to occur in τ1, the domain type of the function type.

Positivity is preserved under substitution.

Lemma 20.1. If t.σ pos and t.τ pos, then t.[σ/u]τ pos.

The reason to consider strictly positive type operators is that they admit
a covariant action on types and abstractions. The action on types is given by
substitution: (t.τ)∗(σ) := [σ/t]τ. The action on abstractions x.e, where
x : σ ` e : σ′, is to transform a value of type [σ/t]τ into a value of type
[σ′/t]τ. This is achieved by replacing each value v of type σ at a position
corresponding to an occurrences of t in τ by the expression [v/x]e of type
σ′. For example, if t.τ = t.unit + (nat× t), then the action of x.e is the
abstractor x′.e′ such that

x′ : unit + (nat× σ) ` e′ : unit + (nat× σ′).

On input in[l](〈〉) the action yields in[l](〈〉), and on input in[r](〈e1, e2〉)
it yields in[r](〈e1, [e2/x]e〉). Observe that the action t.τ′ = t.unit + (σ× t)
is the same, even though [σ/t]τ′ has two occurrences of σ within it, because
only one corresponds to an occurrence of t in τ′.
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We define the action of a strictly positive type operator on an abstraction
by the judgement

(t.τ)∗(x.e) = x′.e′,

where x : σ ` e : σ′, by the following rules:

(t.t)∗(x.e) = x.e (20.5a)

(t.τ)∗(x.e) = x.x (20.5b)

(t.τ2)∗(x.e) = x2.e2

(t.τ1 → τ2)∗(x.e) = x′.λ(x1:τ1. [x′(x1)/x2]e2)
(20.5c)

(t.[µi(u.[σ′/t]τ)/u]τ)∗(x.e) = x′.e′

(t.µi(u.τ))∗(x.e) = y.rec(x′.in(e′); y)
(20.5d)

(t.[µf(u.[σ/t]τ)/u]τ)∗(x.e) = x′.e′

(t.µf(u.τ))∗(x.e) = y.gen(x′.[out(x′)/x′]e′; y)
(20.5e)

The covariant action on abstractors is type-consistent with its action on
types in the following sense.

Lemma 20.2. If x : σ ` e : σ′, and (t.τ)∗(x.e) = x′.e′, then x′ : (t.τ)∗(σ) `
e′ : (t.τ)∗(σ′).

20.3 Dynamic Semantics

The dynamic semantics of inductive and coinductive types is given in terms
of the covariant action of the associated type operator. Specifically, we take
the following axioms as the primitive steps of our semantics:

(t.τ)∗(x′.rec(x.e; x′)) = x′′.e′′

rec(x.e; in(e′)) 7→ [[e′/x′′]e′′/x]e
(20.6a)

(t.τ)∗(x′.gen(x.e; x′)) = x′′.e′′

out(gen(x.e; e′)) 7→ [[e′/x]e/x′′]e′′
(20.6b)

Rule (20.6a) states that to evaluate the iterator on a value of recursive type,
we inductively apply the recursor as guided by the type operator to the
value, and then perform the inductive step on the result. Rule (20.6b) is
simply the dual of this rule for coinductive types.

The remaining rules of the dynamic semantics are specified as follows:

{e val}
in(e) val

(20.7a)
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{e′ val}
gen(x.e; e′) val

(20.7b){
e 7→ e′

in(e) 7→ in(e′)

}
(20.7c)

e′ 7→ e′′

rec(x.e; e′) 7→ rec(x.e; e′′)
(20.7d)

e 7→ e′

out(e) 7→ out(e′)
(20.7e){

e′ 7→ e′′

gen(x.e; e′) 7→ gen(x.e; e′′)

}
(20.7f)

As usual, the bracketed premises and rules are to be omitted for the lazy
variant, and included for the eager variant.

Lemma 20.3. If e : τ and e 7→ e′, then e′ : τ.

Lemma 20.4. If e : τ, then either e val or there exists e′ such that e 7→ e′.

Although we shall not give the proof here, the language L{µiµf→} is
terminating, and all functions defined within it are total.

Theorem 20.5. If e : τ in L{µiµf→}, then there exists v val such that e 7→∗ v.

20.4 Fixed Point Properties

Inductive and coinductive types enjoy an important property that will play
a prominent role in Chapter 21, called a fixed point property, that character-
izes them as solutions to recursive type equations. Specifically, the induc-
tive type µi(t.τ) is isomorphic to its unrolling,

µi(t.τ) ∼= [µi(t.τ)/t]τ,

and, dually, the coinductive type is isomorphic to its unrolling,

µf(t.τ) ∼= [µf(t.τ)/t]τ

The isomorphism arises from the invertibility of in(−) in the inductive
case and of out(−) in the coinductive case, with the required inverses
given as follows:

x.in−1
t.τ(x) = x.rect.τ((t.τ)∗(y.in(y)); x) (20.8)

x.out−1
t.τ(x) = x.gent.τ((t.τ)∗(y.out(y)); x) (20.9)
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(We are not yet in a position to prove that these are, respectively, inverses to
in(−) and out(−), but see Chapter 52 for more on equational reasoning.)

Thus, both the inductive and the coinductive type are solutions (in X)
to the type isomorphism

X ∼= (t.τ)∗(X) = [X/t]τ.

What distinguishes the two solutions, in general, is that the inductive type
is the initial, or least, solution, whereas the coinductive type is the final, or
greatest, solution to the isomorphism equation. This implies, in particular,
that there is an abstractor x.e such that

x : µi(t.τ) ` e : µf(t.τ).

In general there is not an abstractor mapping in the opposite direction.
For the sake of comparison, let nati be the type of inductive natural

numbers, µi(t.unit + t), and let natf be the type of coinductive natural
numbers, µf(t.unit + t). Intuitively, nati is the smallest (most restrictive)
type containing zero, which is represented by

in(in[l](〈〉)),

and, if e is of type nati, its successor, which is represented by

in(in[r](e)).

Dually, natf is the largest (most permissive) type of expressions e such that
out(e) is either equivalent to zero, which is represented by in[l](〈〉),
or to the successor of some expression e′ : natf , which is represented by
in[r](e′).

It is not hard to embed the inductive natural numbers into the coin-
ductive natural numbers, but the converse is impossible. However, the
expression

ω = gen(x.in[r](x); 〈〉)
is a coinductive natural number that is greater than the embedding of all
inductive natural numbers. This is because

out(ω) 7→∗ in[r](ω),

and hence is essentially an infinite composition of successors. Any embed-
ding of the coinductive into the inductive natural numbers would place ω
among the finite natural numbers, making it larger than some and smaller
than others, which is impossible.
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20.5 Exercises

1. Extend the covariant action to nullary and binary products and sums.

2. Prove progress and preservation.

3. Show that the required abstractor mapping the inductive to the coin-
ductive type associated with a type operator is given by the equation

x.gen(y.in−1
t.τ(y); x).

Characterize the behavior of this term when x is replaced by an ele-
ment of the inductive type.
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Chapter 21

Recursive Types

Recursive types are solutions to systems of type equations, much as recur-
sive functions are solutions to systems of recursion equations. For example,
the type of lists of natural numbers may be thought of as a solution to the
type equation t ∼= unit + (nat× t), and the type of binary trees may be
thought of as a solution to the type equation t ∼= unit + (t× t). The solu-
tion to a system of type equations is determined up to isomorphism, which
means that there is a mutually inverse pair of functions between the two
sides of the equation. Thus, a solution, τ, to the type equation for lists
consists of two mutually inverse functions

fold : unit + (nat× τ)→ τ

and
unfold : τ → unit + (nat× τ)

that witness the relationship between the solution and its defining condi-
tion(s).

Just as the solution to a system of recursion equations may be seen as
a fixed point of an associated functional, the solution to a system of type
equations is a fixed point (up to isomorphism) of an associated type opera-
tor. For example, the type operator associated to the defining equation for
lists is

φlist(t) = unit + (nat× t).

The type, τ, we seek is an isomorphism τ ∼= φlist(τ). Similarly, the type
operator associated with the type of binary trees is

φtree(t) = unit + (t× t),
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and we once again seek a solution τ ∼= φtree(τ). In each case we seek a fixed
point of a type operator, fix(φlist) in the case of lists, and fix(φtree) in the case
of binary trees.

A central problem in the theory of recursive types is to classify which
operators admit fixed points, or, in other words, which systems of type
equations have solutions? The short answer, which we shall not justify
here, is that we may solve all type equations involving product, sum, and
partial function types. The restriction to partial functions is essential, for a
solution to an equation such as t = t→ bool is, at the very least, suspicious
since it would establish an isomorphism between a type and its “power
type” (i.e., the type of its characteristic functions).

Recursive types have numerous uses in programming languages, in-
cluding these:

1. Representing data structures, such as lists and trees, of unbounded
size.

2. Representing circular data structures, such as cyclic graphs.

3. Defining recursive functions and self-referential objects.

4. Supporting dynamic typing and dynamic type dispatch.

5. Supporting co-routines and similar control-flow constructs.

In this chapter we will study recursive types in their own right, and later
use them to model more sophisticated language features.

21.1 Solving Type Equations

A recursive type has the form µt.τ, where t.τ is any type operator, without
restriction. It denotes the fixed point (up to isomorphism) of the given type
operator, and hence provides a solution to the isomorphism equation t ∼= τ.
The isomorphism is witnessed by the terms fold(e) and unfold(e) that
mediate between the recursive type, µt.τ, and its unfolding, [µt.τ/t]τ. In
this sense the parameter, t, of the type operator is self-referential in that it
may be considered to stand for the recursive type itself.

11:12PM DRAFT JULY 8, 2008



21.1. SOLVING TYPE EQUATIONS 165

Recursive types are formalized by the following abstract syntax:

Category Item Abstract Concrete
Type τ ::= t t

| rec(t.τ) µt.τ
Expr e ::= fold[t.τ](e) fold(e)

| unfold(e) unfold(e)

The meta-variable t ranges over a class of type names, which serve as names
for types. The unfolding of rec(t.τ) is the type [rec(t.τ)/t]τ obtained by
substituting the recursive type for t in τ.

The introduction form, fold[t.τ](e), introduces a value of recursive
type in terms of an element of its unfolding, and the elimination form,
unfold(e), evaluates to a value of the unfolding from an element of the
recursive type. In implementation terms the operation fold[t.τ](e) may
be thought of as an abstract “pointer” to a value of the unfolded type, and
the operation unfold(e) “chases” the pointer to obtain that value from a
value of the corresponding folded type.

The static semantics of L{µ⇀} consists of two forms of judgement,
τ type, and e : τ. The type formation judgement is inductively defined
by a set of rules for deriving general judgements of the form

∆ | τ type,

where ∆ is a finite set of assumptions of the form ti type for some type
variable ti.

∆, t type | t type (21.1a)

∆ | τ1 type ∆ | τ2 type

∆ | arr(τ1; τ2) type
(21.1b)

∆, t type | τ type

∆ | rec(t.τ) type
(21.1c)

Note that, in contrast to Chapter 20, there is no positivity restriction on the
formation of a recursive type.

Typing judgements have the form

Γ ` e : τ

where τ type and Γ consists of hypotheses of the form xi : τi such that
τi type for each 1 ≤ i ≤ n. The typing rules for L{µ⇀} are as follows:

Γ ` e : [rec(t.τ)/t]τ
Γ ` fold[t.τ](e) : rec(t.τ)

(21.2a)
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Γ ` e : rec(t.τ)
Γ ` unfold(e) : [rec(t.τ)/t]τ (21.2b)

These rules express an inverse relationship stating that a recursive type is
isomorphic to its unfolding, with the operations fold and unfold being the
witnesses to the isomorphism.

Operationally, this is expressed by the following dynamic semantics
rules:

{e val}
fold[t.τ](e) val

(21.3a){
e 7→ e′

fold[t.τ](e) 7→ fold[t.τ](e′)

}
(21.3b)

e 7→ e′

unfold(e) 7→ unfold(e′)
(21.3c)

{e val}
unfold(fold[t.τ](e)) 7→ e

(21.3d)

As usual, the bracketed rules and premises are to be omitted for a lazy
semantics, and included for an eager semantics.

It is straightforward to prove the safety of L{µ⇀}.

Theorem 21.1 (Safety). 1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or there exists e′ such that e 7→ e′.

21.2 Recursive Data Structures

One important application of recursive types is to the representation of data
structures such as lists and trees whose size and content is determined dur-
ing the course of execution of a program.

One example is the type of natural numbers, which we have taken as
primitive in Chapter 16. We may instead treat nat as a recursive type
by thinking of it as a solution (up to isomorphism) of the type equation
t ∼= 1 + t, which is to say that every natural number is either zero or the
successor of another natural number. More formally, we may define nat to
be the recursive type

µt.[z : unit, s : t], (21.4)

which specifies that
nat ∼= [z : unit, s : nat].
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The zero and successor operations are correspondingly defined by the fol-
lowing equations:

z = fold(in[z](〈〉))
s(e) = fold(in[s](e)).

The conditional branch on zero is defined by the following equation:

ifz e {z⇒e0 | s(x)⇒e1} =
case unfold(e) {in[z]( )⇒ e0 | in[s](x)⇒ e1},

where the “underscore” indicates a variable that lies apart from e0. It is
easy to check that these definitions exhibit the expected behavior in that
they correctly simulate the dynamic semantics given in Chapter 16.

As another example, the type nat list of lists of natural numbers may
be represented by the recursive type

µt.[n : unit, c : nat× t]

so that we have the isomorphism

nat list ∼= [n : unit, c : nat× nat list].

The list formation operations are represented by the following equations:

nil = fold(in[n](〈〉))
cons(e1; e2) = fold(in[c](〈e1, e2〉)).

A conditional branch on the form of the list may be defined by the follow-
ing equation:

listcase e {nil⇒ e0 | cons(x; y)⇒ e1} =
case unfold(e) {in[n]( )⇒ e0, | in[c](〈x, y〉)⇒ e1},

where we have used an underscore for a “don’t care” variable, and used
pattern-matching syntax to bind the components of a pair.

There is a natural correspondence between this representation of lists
and the conventional “blackboard notation” for linked lists. We may think
of fold as an abstract heap-allocated pointer to a tagged cell consisting of
either (a) the tag n with no associated data, or (b) the tag c attached to a pair
consisting of a natural number and another list, which must be an abstract
pointer of the same sort.
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21.3 Self-Reference

In Chapters 16 and 17 we used self-reference to implement recursion. In
each case self-reference is achieved by introducing a bound variable that
stands for the expression itself during its evaluation. In the case of recur-
sive functions, the semantics of application is responsible for ensuring that
the self-referential variable is replaced by the function itself before it is ap-
plied to an argument. Similarly, in the case of objects, method selection en-
sures that the self-referential variable is replaced by the object itself when a
method is selected. General recursion, on the other hand, takes care of itself
in that it unfolds the recursion implicitly whenever it is evaluated. Though
the details differ in each case, they are all based on the same basic idea of
self-application. When a self-referential expression is used, all references to
“itself” are replaced by the expression itself in order to “tie the knot” of re-
cursion. In this section we will isolate the general concept of self-reference
as an application of recursive types.

The goal is to define a type of self-referential expressions of type τ. To
implement self-reference, such an expression will be represented as a func-
tion that will be applied to the self-referential expression itself to effect self-
reference. Thus the type we seek must have the form t ⇀ τ for some type
t, where the domain represents the implicit self-referential argument. This
means that t must be the very type in question, which is to say that we seek
a solution to the type equation

t ∼= t ⇀ τ.

The recursive type
τ self = µt.t ⇀ τ,

is, by definition, a solution to this type equation. It establishes the isomor-
phism

τ self ∼= τ self⇀ τ,

capturing the self-referential natural of values of this type.
The introductory form for the type τ self is the self-referential expres-

sion self y is e, where y : τ self ` e : τ. It is defined to be the expression

fold(λ(y:τ self. e)),

which we note is a value, regardless of whether fold is eager or lazy. Ac-
cording to this definition, the following typing rule is derivable:

Γ, y : τ self ` e : τ

Γ ` self y is e : τ self
.

11:12PM DRAFT JULY 8, 2008



21.3. SELF-REFERENCE 169

This expression has the property that

unfold(self y is e)(self y is e) 7→ [self y is e/y]e.

Therefore let us define the eliminatory form, unroll(e), where e : τ self,
to be the expression

unfold(e)(e).

This definition gives rise to the dynamic semantics

unroll(self y is e) 7→∗ [self y is e/y]e,

which implements self-reference by self-application.
We may use self-reference to represent basic objects (without method

override, extension, or deletion) self-referential records:

〈〈l1 : τ1, . . . , ln : τn〉〉 := 〈l1 : τ1, . . . , ln : τn〉 self.

Correspondingly, we use self-reference to model mutual recursion among
methods:

〈〈l1 = x1.e1, . . . , ln = xn.en〉〉 := self x is 〈l1 = e′1, . . . , ln = e′n〉,

where for each 1 ≤ i ≤ n we define e′i = [x/xi]ei. Method selection unfolds
the self-reference and selects the appropriate record field:

e · li := unroll(e) · li.

It is a good exercise to check that the static and dynamic semantics of ob-
jects are derivable from these definitions.

We may also use self-reference to implement general recursion as de-
fined in Chapter 16. Specifically, we may define fix x:τ is e to be the ex-
pression

unroll(self y is [unroll(y)/x]e).

Observe that this expression has type τ, given that x : τ ` e : τ. The
dynamic semantics of general recursion is derivable from this definition:

fix x:τ is e = unroll(self y is [unroll(y)/x]e)
7→∗ [unroll(self y is [unroll(y)/x]e)/x]e
= [fix x:τ is e/x]e.

This construction shows that in the presence of recursive types we have
general recursion at every type. Consequently, adding recursive types has
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a global effect on the language, in contrast to adding, say, list types, which
do not affect the meanings of any other types. In particular, in the pres-
ence of recursive types, there is a non-terminating expression of every type.
Consequently, function types are inherently partial; there is no analogue of
System T with recursive types. Put in other terms, recursive types are a
non-conservative extension of a language with total function types, because
they disrupt the meaning of types that were present before the extension,
as well as adding new types that were not present beforehand.

21.4 Exercises
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Chapter 22

Untyped Languages

It is customary to distinguish between typed and untyped languages, as
though they were incompatible alternatives. But we shall argue that well-
defined, or safe, type-free languages are, in fact, just a particular mode of
use of types.

22.1 Untyped λ-Calculus

The premier example of an untyped programming language is the lan-
guage L{λ}, or the untyped λ-calculus, an elegant formalism devised by
Alonzo Church in the 1930’s. Its chief characteristic is that it consists of
nothing but functions; there are no other forms of data in the language!
Functions take functions as arguments and yield functions as results, and
all data structures must be represented as functions. Surprisingly, this tiny
language is sufficiently powerful to express any computable function.

The abstract syntax of L{λ} is given by the following grammar:

Category Item Abstract Concrete
Term u ::= x x

| λ(x.u) λx. u
| uap(u1; u2) u1(e2)

The second form of expression is called a λ-abstraction, and the third is
called application.

The static semantics of L{λ} is defined by hypothetical judgements of
the form x1 ok, . . . , xn ok ` u ok, stating that u is a well-formed expression
involving the variables x1, . . . , xn. This relation is inductively defined by
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the following rules:
Γ, x ok ` x ok (22.1a)

Γ ` u1 ok Γ ` u2 ok

Γ ` uap(u1; u2) ok
(22.1b)

Γ, x ok ` u ok

Γ ` λ(x.u) ok
(22.1c)

The dynamic semantics is given by the following transition rules:

uap(λ(x.u1); u2) 7→ [u2/x]u1 (22.2a)

u1 7→ u′1
uap(u1; u2) 7→ uap(u′1; u2)

(22.2b)

In the λ-calculus literature this judgement is called head reduction. The first
rule is called β-reduction; it defines the meaning of function application in
terms of substitution.

The dynamic semantics induces a notion of observational equivalence,
written u1

∼= u2 [Γ], stating that u1 and u2 are indistinguishable in the
following sense. First, we define the Church booleans, tt = λx. λy. x and
ff = λx. λy. y, which satisfy tt(u1)(u2) 7→∗ u1 and ff(u1)(u2) 7→∗ u2. We
then define Kleene equivalence, u1 ' u2, of two closed expressions to mean
that u1 7→∗ tt iff u2 7→∗ tt and u1 7→∗ ff iff u2 7→∗ ff. Finally, two terms
are observationally equivalent iff whenever they are embedded in a larger
expression computing a Church boolean, they either both evaluate to tt or
to ff, or both diverge.

The only properties of observational equivalence that we shall need are
these:

1. It is consistent: tt 6∼= ff.

2. It is a congruence: we may replace equals by equals to obtain equals.

3. It contains β-equivalence: (λx. u2)(u1) ∼= [u1/x]u2 [Γ].

22.2 Definability

Interest in the untyped λ-calculus stems from its surprising expressive power:
it is a Turing-complete language in the sense that it has the same capabil-
ity to expression computations on the natural numbers as does any other
known programming language. Church’s Law states that any conceivable
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notion of computable function on the natural numbers is equivalent to the
λ-calculus. This is certainly true for all known means of defining com-
putable functions on the natural numbers. The force of Church’s Law is
that it postulates that all future notions of computation will be equivalent
in expressive power (measured by definability of functions on the natural
numbers) to the λ-calculus. As the name implies, Church’s Law is a scien-
tific law in the same sense as, say, Newton’s Law of Universal Gravitation
makes a prediction about all future measurements of the acceleration due
to the gravitational field of a massive object.1

We will sketch a proof that the untyped λ-calculus is as powerful as the
language PCF described in Chapter 16. The main idea is to show that the
PCF primitives for manipulating the natural numbers are definable in the
untyped λ-calculus. This means, in particular, that we must show that the
natural numbers are definable as λ-terms in such a way that case analysis,
which discriminates between zero and non-zero numbers, is definable. The
principal difficulty is with computing the predecessor of a number, which
requires a bit of cleverness. Finally, we show how to represent general
recursion, completing the proof.

The first task is to represent the natural numbers as certain λ-terms,
called the Church numerals.

0 = λb. λs. b (22.3a)

n + 1 = λb. λs. s(n(b)(s)) (22.3b)

It follows that

n(u1)(u2) ∼= u2(. . . (u2(u1))),

the n-fold application of u2 to u1. That is, n iterates its second argument
(the induction step) n times, starting with its first argument (the basis).

Using this definition it is not difficult to define the basic functions of
arithmetic. For example, successor, addition, and multiplication are de-

1Unfortunately, it is common in Computer Science to put forth as “laws” assertions that
are not scientific laws at all. For example, Moore’s Law is merely an observation about a
near-term trend in microprocessor fabrication that is certainly not valid over the long term,
and Amdahl’s Law is but a simple truth of arithmetic. Worse, Church’s Law, which is a
true scientific law, is usually called Church’s Thesis, which, to the author’s ear, suggests
something less than the full force of a scientific law.
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fined by the following untyped λ-terms:

succ = λx. λb. λs. s(x(b)(s)) (22.4)
plus = λx. λy. y(x)(succ) (22.5)

times = λx. λy. y(0)((plus(x))) (22.6)

It is easy to check that succ(n) ∼= n + 1, and that similar correctness con-
ditions hold for the representations of addition and multiplication.

We may readily define ifz(u; u0; u1) to be the application u(u0)((λx. u1)),
where x is chosen arbitrarily such that x # u1. We can use this to define
ifz(u; u0; x.u1), provided that we can compute the predecessor of a nat-
ural number. Doing so requires a bit of ingenuity. We wish to find a term
pred such that

pred(0) ∼= 0 (22.7)

pred(n + 1) ∼= n. (22.8)

To compute the predecessor using Church numerals, we must show how to
compute the result for n + 1 as a function of its value for n. At first glance
this seems straightforward—just take the successor—until we consider the
base case, in which we define the predecessor of 0 to be 0. This invalidates
the obvious strategy of taking successors at inductive steps, and necessi-
tates some other approach.

What to do? A useful intuition is to think of the computation in terms
of a pair of “shift registers” satisfying the invariant that on the nth iteration
the registers contain the predecessor of n and n itself, respectively. Given
the result for n, namely the pair (n− 1, n), we pass to the result for n + 1
by shifting left and incrementing to obtain (n, n + 1). For the base case, we
initialize the registers with (0, 0), reflecting the stipulation that the prede-
cessor of zero be zero. To compute the predecessor of n we compute the
pair (n− 1, n) by this method, and return the first component.

To make this precise, we must first define a Church-style representation
of ordered pairs.

〈u1, u2〉 = λ f . f(u1)(u2) (22.9)
fst(u) = u((λx. λy. x)) (22.10)
snd(u) = u((λx. λy. y)) (22.11)

It is easy to check that under this encoding fst(〈u1, u2〉) ∼= u1, and sim-
ilarly for the second projection. We may now define the required term u
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representing the predecessor:

u′p = λx. x(〈0, 0〉)(λy. 〈snd(y), s(snd(y))〉) (22.12)

up = λx. fst(u(x)) (22.13)

It is then easy to check that this gives us the required behavior.
This gives us all the apparatus of PCF, apart from general recursion. But

this is also definable using a fixed point combinator. There are many choices
of fixed point combinator, of which the best known is the Y combinator:

Y = λF. (λ f . F( f( f)))(λ f . F( f( f))). (22.14)

Observe that
Y(F) ∼= F(Y(F)).

For this reason, the term Y is called a fixed point combinator.

22.3 Untyped Means Uni-Typed

The untyped λ-calculus may be faithfully embedded in the typed language
L{µ⇀}, enriched with recursive types. This means that every untyped λ-
term has a representation as an expression in L{µ⇀} in such a way that
execution of the representation of a λ-term corresponds to execution of the
term itself. If the execution model of the λ-calculus is call-by-name, this
correspondence holds for the call-by-name variant of L{µ⇀}, and simi-
larly for call-by-value.

It is important to understand that this form of embedding is not a mat-
ter of writing an interpreter for the λ-calculus in L{µ⇀} (which we could
surely do), but rather a direct representation of untyped λ-terms as certain
typed expressions of L{µ⇀}. It is for this reason that we say that untyped
languages are just a special case of typed languages, provided that we have
recursive types at our disposal.

The key observation is that the untyped λ-calculus is really the uni-typed
λ-calculus! It is not the absence of types that gives it its power, but rather
that it has only one type, namely the recursive type

D = rec(t.arr(t; t)).

A value of type D is of the form fold[D](e) where e is a value of type
arr(D; D) — a function whose domain and range are both D. Any such
function can be regarded as a value of type D by “rolling”, and any value of
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type D can be turned into a function by “unrolling”. As usual, a recursive
type may be seen as a solution to a type isomorphism equation, which in
the present case is the equation

D ∼= arr(D; D).

This specifies that D is a type that is isomorphic to the space of functions
on D itself, something that is impossible in conventional set theory, but is
feasible in the computationally-based setting of the λ-calculus.

This isomorphism leads to the following embedding, u†, of u intoL{µ⇀}:

x† = x (22.15a)

λ(x.u)† = fold[D](lam[D](x.u†)) (22.15b)

uap(u1; u2)
† = ap(unfold(u†

1); u†
2) (22.15c)

Observe that the embedding of a λ-abstraction is a value, and that the
embedding of an application exposes the function being applied by un-
rolling the recursive type. Consequently,

uap(λ(x.u1); u2)
† = ap(unfold(fold[D](lam[D](x.u†

1))); u†
2)

∼= ap(lam[D](x.u†
1); u†

2)

∼= [u†
2/x]u†

1

= ([u2/x]u1)†.

The last step, stating that the embedding commutes with substitution, is
easily proved by induction on the structure of u1. Thus β-reduction is faith-
fully implemented by evaluation of the embedded terms. It is also easy to
show that if u†

1
∼= v†

1, then uap(u1; u2)
† ∼= uap(v1; u2)

†.
Thus we see that the canonical untyped language, L{λ}, which by dint

of terminology stands in opposition to typed languages, turns out to be but
a special case of these! Rather than eliminating types, an untyped language
suppresses them by consolidation into a single recursive type. In Chap-
ter 23 we will take this observation a step further and show that so-called
dynamically typed languages, which admit multiple types of values but
defer type checking until run-time, are also but modes of use of static typ-
ing.

22.4 Exercises
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Chapter 23

Dynamic Typing

We saw in Chapter 22 that an untyped language may be viewed as a uni-
typed language in which the so-called untyped terms are terms of a distin-
guished recursive type. In the case of the untyped λ-calculus this recursive
type has a particularly simple form, expressing that every term is isomor-
phic to a function. Consequently, no run-time errors can occur due to the
misuse of a value—the only elimination form is application, and its first ar-
gument can only be a function. Obviously this property breaks down once
more than one class of value is permitted into the language. For example, if
we add natural numbers as a primitive concept to the untyped λ-calculus
(i.e., rather than defining them via Church encodings), then it is possible
to incur a run-time error arising from attempting to apply a number to an
argument, or to add a function to a number.

One school of thought in language design is to turn this vice into a
virtue by embracing a model of computation that has multiple classes of
value of a single type. Such languages are said to be dynamically typed, in
supposed opposition to the statically typed languages we have studied thus
far. In this chapter we show that the supposed opposition between static
and dynamic languages is fallacious: dynamic typing is but a mode of use
of static typing, and, moreover, it is profitably seen as such. Dynamic typ-
ing can hardly be in opposition to that of which it is a special case!

23.1 Dynamically Typed PCF

To illustrate dynamic typing we formulate a dynamically typed version of
L{nat⇀}, called L{dyn}. The abstract syntax of L{dyn} is given by the
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following grammar:

Category Item Abstract Concrete
Expr d ::= x x

| num(n) n
| s(d) s(d)
| ifz(d; d0; x.d1) ifz d {z⇒d0 | s(x)⇒d1}
| fun(λ(x.d)) λx. d
| dap(d1; d2) d1(d2)
| fix(x.d) fix x is d

The syntax is similar to that of L{nat⇀}, the chief difference being that
each value is labelled with its class, either num or fun. Numerals are labelled
with the class num to mark them as numbers. The successor operation is
now an elimination form acting on values of class num, rather than an intro-
duction form for numbers. Untyped λ-abstractions are explicitly labelled
with the class fun to mark them as functions.

Apart from formatting, the concrete syntax avoids mentioning the classes
attached to values of the language. This means that they must be inserted
by the parser on passage from concrete to abstract syntax. Unfortunately
this invites the misapprehension that the expressions of L{dyn} are the
same as those of L{nat⇀}, but without the types. This is not the case!
The classes must be present in order to define the dynamic semantics of
L{dyn}, but are entirely unnecessary for L{nat⇀}.

The static semantics of L{dyn} is essentially the same as for L{λ} given
in Chapter 22; it merely checks that there are no free variables in the expres-
sion. The judgement

x1 ok, . . . xn ok ` d ok

states that d is a well-formed expression with free variables among those in
the hypothesis list.

The dynamic semantics for L{dyn} checks for errors that would never
arise in a safe statically typed language. For example, function application
must ensure that its first argument is a function, signaling an error in the
case that it is not, and similarly the case analysis construct must ensure
that its first argument is a number, signaling an error if not. The reason for
having classes labelling values is precisely to make this run-time check pos-
sible. One could argue that the required check may be made by inspection
of the unlabelled value itself, but this is unrealistic. At run-time both num-
bers and functions might be represented by machine words, the former a
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two’s complement number, the latter an address in memory. But given an
arbitrary word, one cannot determine whether it is a number or an address!

The value judgement, d val, states that d is a fully evaluated (closed)
expression:

num(n) val (23.1a)

fun(λ(x.d)) val (23.1b)

The dynamic semantics makes use of judgements that check the class of
a value, and recover the underlying λ-abstraction in the case of a function.

num(n) is num n (23.2a)

fun(λ(x.d)) is fun λ(x.d) (23.2b)

The second argument of each of these judgements has a special status—it is
not an expression of L{dyn}, but rather just a special piece of syntax used
internally to the transition rules given below.

We also will need the “negations” of the class-checking judgements in
order to detect run-time type errors.

num( ) isnt fun (23.3a)

fun( ) isnt num (23.3b)

The transition judgement, d 7→ d′, and the error judgement, d err, are
defined simultaneously by the following rules.

d 7→ d′

s(d) 7→ s(d′)
(23.4a)

d is num n
s(d) 7→ num(s(n))

(23.4b)

d isnt num
s(d) err

(23.4c)

d 7→ d′

ifz(d; d0; x.d1) 7→ ifz(d′; d0; x.d1)
(23.4d)

d is num z
ifz(d; d0; x.d1) 7→ d0

(23.4e)

d is num s(n)
ifz(d; d0; x.d1) 7→ [num(n)/x]d1

(23.4f)

d isnt num
ifz(d; d0; x.d1) err

(23.4g)
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d1 7→ d′1
dap(d1; d2) 7→ dap(d′1; d2)

(23.4h)

d1 val d2 7→ d′2
dap(d1; d2) 7→ dap(d1; d′2)

(23.4i)

d1 is fun λ(x.d) d2 val

dap(d1; d2) 7→ [d2/x]d
(23.4j)

d1 isnt fun

dap(d1; d2) err
(23.4k)

fix(x.d) 7→ [fix(x.d)/x]d (23.4l)

Note that in Rule (23.4f) the labelled numeral num(n) is bound to x to main-
tain the invariant that variables are bound to forms of expression.

The language L{dyn} enjoys essentially the same safety properties as
L{nat⇀}, except that there are more opportunities for errors to arise at
run-time.

Theorem 23.1. If d ok, then either d val, or d err, or there exists d′ such that
d 7→ d′.

Proof. By rule induction on Rules (23.4). The rules are designed so that
if d ok, then some rule, possibly an error rule, applies, ensuring progress.
Since well-formedness is closed under substitution, the result of a transition
is always well-formed.

This result is often promoted as an advantage of dynamic over static
typing. Unlike static languages, essentially every piece of abstract syntax
(apart from those with unbound variables) has a well-defined dynamic se-
mantics. But this can also be seen as a disadvantage: errors that would be
ruled out at compile time in a static language are not signalled until run
time in a dynamic language.

23.2 Critique of Dynamic Typing

The dynamic semantics of L{dyn} exhibits considerable run-time overhead
compared to that of L{nat⇀}. Suppose that we define addition by the
L{dyn} expression

λx. (fix p isλy. ifz y {z⇒x | s(y′)⇒s(p(y′))}).
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By carefully examining the dynamics semantics, we may observe some of
the hidden costs of dynamic typing.

First, observe that the body of the fixed point expression is a λ-abstraction,
which is labelled by the parser with class fun. The semantics of the fixed
point construct binds p to this (labelled) λ-abstraction, so the dynamic class
check incurred by the recursive call is guaranteed to succeed. The check is
redundant, but there is no way to avoid it.

Second, the result of applying the inner λ-abstraction is either x, the
parameter of the outer λ-abstraction, or the result of a recursive call. The
semantics of the successor operation ensures that the result of the recursive
call is labelled with class num, so the only way the class check performed
by the successor operation could fail is if x is not bound to a number at
the initial call. In other words, it is a loop invariant that the result is of
class num, so there is no need for this check within the loop, only at its entry
point. But there is no way to avoid the check on each iteration.

Third, the argument, y, to the inner λ-abstraction arises either at the
initial call, or as a result of a recursive call. But if the initial call binds y to
a number, then so must the recursive call, because the dynamic semantics
ensures that the predecessor of a number is also a number. Once again we
have an unnecessary dynamic check in the inner loop of the function, but
there is no way to avoid it.

Class checking and labelling is not free—storage is required for the label
itself, and the marking of a value with a class takes time as well as space.
While the overhead is not asymptotically significant (it slows down the
program only by a constant factor), it is nevertheless non-negligible, and
should be eliminated whenever possible. But within L{dyn} itself there is
no way to avoid the overhead, because there are no “unchecked” opera-
tions in the language—for these to be safe requires a static type system!

23.3 Hybrid Typing

Let us consider the language L{nat dyn⇀}, whose syntax extends that of
the language L{nat⇀} defined in Chapter 16 with the following addi-
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tional constructs:

Category Item Abstract Concrete
Type τ ::= dyn dyn
Expr e ::= new[l](e) l ! e

| cast[l](e) e ? l
Class l ::= num num

| fun fun

The type dyn represents the type of labelled values. Here we have only
two classes of data object, numbers and functions. Observe that the cast
operation takes as argument a class, not a type! That is, casting is concerned
with an object’s class, which is indicated by a label, not with its type, which
is always dyn.

The static semantics forL{nat dyn⇀} is the extension of that ofL{nat⇀}
with the following rules governing the type dyn.

Γ ` e : nat
Γ ` new[num](e) : dyn (23.5a)

Γ ` e : parr(dyn; dyn)
Γ ` new[fun](e) : dyn

(23.5b)

Γ ` e : dyn
Γ ` cast[num](e) : nat

(23.5c)

Γ ` e : dyn
Γ ` cast[fun](e) : parr(dyn; dyn)

(23.5d)

The static semantics ensures that class labels are applied to objects of the
appropriate type, namely num for natural numbers, and fun for functions
defined over labelled values.

The dynamic semantics ofL{nat dyn⇀} is given by the following rules:

e val
new[l](e) val

(23.6a)

e 7→ e′

new[l](e) 7→ new[l](e′)
(23.6b)

e 7→ e′

cast[l](e) 7→ cast[l](e′)
(23.6c)

new[l](e) val
cast[l](new[l](e)) 7→ e

(23.6d)

new[l′](e) val l 6= l′

cast[l](new[l′](e)) err
(23.6e)
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Casting compares the class of the object to the required class, returning the
underlying object if these coincide, and signalling an error otherwise.

Lemma 23.2 (Canonical Forms). If e : dyn and e val, then e = new[l](e′) for
some class l and some e′ val. If l = num, then e′ : nat, and if l = fun, then
e′ : parr(dyn; dyn).

Proof. By a straightforward rule induction on static semantics ofL{nat dyn⇀}.

Theorem 23.3 (Safety). The language L{nat dyn⇀} is safe:

1. If e : τ and e 7→ e′, then e′ : τ.

2. If e : τ, then either e val, or e err, or e 7→ e′ for some e′.

Proof. Preservation is proved by rule induction on the dynamic semantics,
and progress is proved by rule induction on the static semantics, making
use of the canonical forms lemma. The opportunities for run-time errors
are the same as those for L{dyn}—a well-typed cast might fail at run-time
if the class of the case does not match the class of the value.

23.4 Optimization of Dynamic Typing

The type dyn—whether primitive or derived—supports the smooth inte-
gration of dynamic with static typing. This means that we can take full ad-
vantage of the expressive power of static types whenever possible, while
permitting the flexibility of dynamic typing whenever desirable.

One application of the hybrid framework is that it permits the opti-
mization of dynamically typed programs by taking advantage of statically
evident typing constraints. Let us examine how this plays out in the case
of the addition function, which is rendered in L{nat dyn⇀} by the expres-
sion

fun !λ(x:dyn. fix p:dyn is fun !λ(y:dyn. ex,p,y)),

where
x : dyn, p : dyn, y : dyn ` ex,p,y : dyn

is defined to be the expression

ifz (y ? num) {z⇒x | s(y′)⇒num ! (s(((p ? fun)((num ! y′))) ? num))}.

This is essentially an explicit form of the dynamically typed addition func-
tion given in Section 23.2 on page 182. This formulation makes explicit the
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checking of classes that is implicit in L{dyn}. We will now show how to ex-
ploit the static type system of L{nat dyn⇀} to optimize this dynamically
typed implementation of addition, whose result is of interest only in the
case that the arguments are of class num.

First, note that that the body of the fix expression is an explicitly la-
belled function. This means that when the recursion is unwound, the vari-
able p is bound to this value of type dyn. Consequently, the check that
p is labelled with class fun is redundant, and can be eliminated. This is
achieved by re-writing the function as follows:

fun !λ(x:dyn. fun ! fix p:dyn⇀ dyn isλ(y:dyn. e′x,p,y)),

where e′x,p,y is the expression

ifz (y ? num) {z⇒x | s(y′)⇒num ! (s((p((num ! y′))) ? num))}.

We have “hoisted” the function class label out of the loop, and suppressed
the cast inside the loop. Correspondingly, the type of p has changed to
dyn⇀ dyn, reflecting that the body is now a “bare function”, rather than a
labelled function value of type dyn.

Next, observe that the parameter y of type dyn is cast to a number on
each iteration of the loop before it is tested for zero. Since this function
is recursive, the bindings of y arise in one of two ways, at the initial call
to the addition function, and on each recursive call. But the recursive call
is made on the predecessor of y, which is a true natural number that is
labelled with num at the call site, only to be removed by the class check at
the conditional on the next iteration. This suggests that we hoist the check
on y outside of the loop, and avoid labelling the argument to the recursive
call. Doing so changes the type of the function, however, from dyn⇀ dyn to
nat⇀ dyn. Consequently, further changes are required to ensure that the
entire function remains well-typed.

Before doing so, let us make another observation. The result of the re-
cursive call is checked to ensure that it has class num, and, if so, the un-
derlying value is incremented and labelled with class num. If the result
of the recursive call came from an earlier use of this branch of the condi-
tional, then obviously the class check is redundant, because we know that
it must have class num. But what if the result came from the other branch
of the conditional? In that case the function returns x, which need not be
of class num! However, one might reasonably insist that this is only a theo-
retical possibility—after all, we are defining the addition function, and its
arguments might reasonably be restricted to have class num. This can be
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achieved by replacing x by x ? num, which checks that x is of class num, and
returns the underlying number.

Combining these optimizations we obtain the inner loop e′′x defined as
follows:

fix p:nat⇀ nat isλ(y:nat. ifz y {z⇒x ? num | s(y′)⇒s(p(y′))}).

This function has type nat⇀ nat, and runs at full speed when applied to a
natural number—all checks have been hoisted out of the inner loop.

Finally, recall that the overall goal is to define a version of addition that
works on values of type dyn. Thus we require a value of type dyn⇀ dyn,
but what we have at hand is a function of type nat⇀ nat. This can be
converted to the required form by pre-composing with a cast to num and
post-composing with a coercion to num:

fun !λ(x:dyn. fun !λ(y:dyn. num ! (e′′x(y ? num)))).

The innermost λ-abstraction converts the function e′′x from type nat⇀ nat
to type dyn⇀ dyn by composing it with a class check that ensures that y is
a natural number at the initial call site, and applies a label to the result to
restore it to type dyn.

23.5 Static “Versus” Dynamic Typing

There have been many attempts to explain the distinction between dynamic
and static typing, most of which are misleading or wrong. For example,
it is often said that static type systems associate types with variables, but
dynamic type systems associate types with values. This oft-repeated char-
acterization appears to be justified by the absence of type annotations on λ-
abstractions, and the presence of classes on values. But it is based on a con-
fusion of classes with types—the class of a value (num or fun) is not its type.
Moreover, a static type system assigns types to values just as surely as it
does to variables, so the description fails on this account as well. Thus, this
supposed distinction between dynamic and static typing makes no sense,
and is best disregarded.

A related characterization of the difference between static and dynamic
languages is to say that the former check types at run-time, whereas the
latter check types at compile-time. To say that static languages check types
statically is a tautology; to say that dynamic languages check types at run-
time is a falsehood. Dynamic languages perform class checking, not type
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checking, at run-time. For example, application checks that its first argu-
ment is labelled with fun; it does not type check the body of the function.
Indeed, at no point does the dynamic semantics compute the type of a value,
rather it checks its class against its expectations before proceeding. Here
again, a supposed contrast between static and dynamic languages evapo-
rates under careful analysis.

Another characterization is to assert that dynamic languages admit het-
erogeneous lists, whereas static languages admit only homogeneous lists. (The
distinction applies to other collections as well.) To see why this description
is wrong, let us consider briefly how one might add lists to L{dyn}. One
would add two constructs, nil, representing the empty list, and cons(d1; d2),
representing the non-empty list with head d1 and tail d2. The origin of the
supposed distinction lies in the observation that each element of a list rep-
resented in this manner might have a different class. For example, one
might form the list

cons(s(z); cons(λx. x; nil)),

whose first element is a number, and whose second element is a function.
Such a list is said to be heterogeneous. In contrast static languages com-
mit to a single type for each element of the list, and hence are said to be
homogeneous. But here again the supposed distinction breaks down on
close inspection, because it is based on the confusion of the type of a value
with its class. Every labelled value has type dyn, so that the lists are type
homogeneous. But since values of type dyn may have different classes, lists
are class heterogenoues—regardless of whether the language is statically or
dynamically typed!

What, then, are we to make of the traditional distinction between dy-
namic and static languages? Rather than being in opposition to each other,
we see that dynamic languages are a mode of use of static languages. If we have
a type dyn in the language, then we have all of the apparatus of dynamic
languages at our disposal, so there is no loss of expressive power. But there
is a very significant gain from embedding dynamic typing within a static
type discipline! We can avoid much of the overhead of dynamic typing by
simply limiting our use of the type dyn in our programs, as was illustrated
in Section 23.4 on page 185.
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23.6 Dynamic Typing From Recursive Types

The type dyn codifies the use of dynamic typing within a static language. Its
introduction form labels an object of the appropriate type, and its elimina-
tion form is a (possibly undefined) casting operation. Rather than treating
dyn as primitive, we may derive it as a particular use of recursive types,
according to the following definitions:1

dyn = µt.[num : nat, fun : t ⇀ t] (23.7)
new[num](e) = fold(in[num](e)) (23.8)
new[fun](e) = fold(in[fun](e)) (23.9)
cast[num](e) = case unfold(e) {in[num](x)⇒ x | in[fun](x)⇒ error}

(23.10)

cast[fun](e) = case unfold(e) {in[num](x)⇒ error | in[fun](x)⇒ x}
(23.11)

One may readily check that the static and dynamic semantics for the type
dyn are derivable according to these definitions.

This observation strengthens the argument that dynamic typing is but
a mode of use of static typing. This encoding shows that we need not in-
clude a special-purpose type dyn in a statically typed language in order to
admit dynamic typing. Instead, one may use the general concepts of re-
cursive types and sum types to define special-purpose dynamically typed
sub-languages on a per-program basis. For example, if we wish to admit
strings into our dynamic sub-language, then we may simply expand the
type definition above to admit a third summand for strings, and so on for
any type we may wish to consider. Classes emerge as labels of the sum-
mands of a sum type, and recursive types ensure that we can represent
class-heterogeneous aggregates. Thus, not only is dynamic typing a spe-
cial case of static typing, but we need make no special provision for it in
a statically typed language, since we already have need of recursive types
independently of this particular application.

23.7 Exercises

1Here we have made use of a special expression error to signal an error condition. In a
richer language we would use exceptions, which are introduced in Chapter 30.
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Chapter 25

Girard’s System F

The languages L{nat→} and L{nat⇀}, and their various extensions,
have the property that every expression has at most one type. In partic-
ular, a function has uniquely determined domain and range types. Conse-
quently, there is a distinct identity function for each type, idτ = λ(x:τ. x),
and a distinct composition function for each triple of types,

◦τ1,τ2,τ3 = λ( f:τ2 → τ3. λ(g:τ1 → τ2. λ(x:τ1. f(g(x))))).

And yet every identity function and every composition function “works
the same way”, regardless of the choice of types! It quickly gets tedious to
write the “same” program over and over, with the sole difference being the
types involved. It would clearly be advantageous to capture the underlying
computation once and for all, with specific instances arising by specifying
the types involved.

What is needed is a way to capture the pattern of a computation in a
way that is generic, or parametric, in the types involved. This is called poly-
morphism. In this chapter we will study a language introduced by Girard
under the name System F and by Reynolds under the name polymorphic
typed λ-calculus.

25.1 System F

System F, or the polymorphic λ-calculus, or L{→∀}, is a minimal functional
language that illustrates the core concepts of polymorphic typing, and per-
mits us to examine its surprising expressive power in isolation from other
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language features. The syntax of System F is given by the following gram-
mar:

Category Item Abstract Concrete
Type τ ::= t t

| arr(τ1; τ2) τ1 → τ2
| all(t.τ) ∀(t.τ)

Expr e ::= x x
| lam[τ](x.e) λ(x:τ. e)
| ap(e1; e2) e1(e2)
| Lam(t.e) Λ(t.e)
| App[τ](e) e[τ]

The meta-variable t ranges over a class of type variables, and x ranges over a
class of expression variables. The type abstraction, Lam(t.e), defines a generic,
or polymorphic, function with type parameter t standing for an unspecified
type within e. The type application, or instantiation, App[τ](e), applies a
polymorphic function to a specified type, which is then plugged in for the
type parameter to obtain the result. Polymorphic functions are classified
by the universal type, all(t.τ), that determines the type, τ, of the result as
a function of the argument, t.

The static semantics of L{→∀} consists of two judgement forms, τ type,
stating that τ is a well-formed type, and e : τ, stating that e is a well-formed
expression of type τ. The definitions of these judgements make use of para-
metric hypothetical judgements of the form

T | ∆ ` τ type

and
T X | ∆ Γ ` e : τ.

Here T consists of a finite set of type constructor variable declarations of the
form t cons and X consists of a finite set of expression variable declarations of
the form x exp. The finite set of hypotheses ∆ consists of assumptions of the
form t type such that T ` t cons, and the finite set Γ consists of hypotheses
of the form x : τ, where X ` x exp and T | ∆ ` τ type. As usual, we drop
explicit mention of the parameters T and X , since they can be recovered
from the hypotheses ∆ and Γ.

The type formation rules are given as follows:

∆, t type ` t type (25.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` arr(τ1; τ2) type
(25.1b)
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∆, t type ` τ type

∆ ` all(t.τ) type
(25.1c)

The rules for typing expressions are as follows:

∆ Γ, x : τ ` x : τ (25.2a)

∆ ` τ1 type ∆ Γ, x : τ1 ` e : τ2

∆ Γ ` lam[τ1](x.e) : arr(τ1; τ2)
(25.2b)

∆ Γ ` e1 : arr(τ2; τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(25.2c)

∆, t type Γ ` e : τ

∆ Γ ` Lam(t.e) : all(t.τ)
(25.2d)

∆ Γ ` e : all(t.τ′) ∆ ` τ type

∆ Γ ` App[τ](e) : [τ/t]τ′
(25.2e)

For example, the polymorphic composition function is written as fol-
lows:

Λ(t1.Λ(t2.Λ(t3.λ( f:t2 → t3. λ(g:t1 → t2. λ(x:t1. f(g(x)))))))).

This expression has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3)→ (t1 → t2)→ (t1 → t3)))).

The static semantics validates the expected structural rules, including
substitution for both type and expression variables.

Lemma 25.1 (Substitution). 1. If ∆, t type ` τ′ type and ∆ ` τ type, then
∆ ` [τ/t]τ′ type.

2. If ∆, t type Γ ` e′ : τ′ and ∆ ` τ type, then ∆ [τ/t]Γ ` [τ/t]e′ : [τ/t]τ′.

3. If ∆ Γ, x : τ ` e′ : τ′ and ∆ Γ ` e : τ, then ∆ Γ ` [e/x]e′ : τ′.

The second part of the lemma requires substitution into the context, Γ,
as well as into the term and its type, because the type variable t may occur
freely in any of these positions.
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Dynamic Semantics

The dynamic semantics of L{→∀} is given as follows:

lam[τ](x.e) val (25.3a)

Lam(t.e) val (25.3b)

{e2 val}
ap(lam[τ1](x.e); e2) 7→ [e2/x]e

(25.3c)

e1 7→ e′1
ap(e1; e2) 7→ ap(e′1; e2)

(25.3d)

{
e1 val e2 7→ e′2

ap(e1; e2) 7→ ap(e1; e′2)

}
(25.3e)

App[τ](Lam(t.e)) 7→ [τ/t]e (25.3f)

e 7→ e′

App[τ](e) 7→ App[τ](e′)
(25.3g)

The bracketed premises are rules are to be omitted for the call-by-name
semantics, and included for the call-by-value semantics. (There is no by-
name vs by-value distinction for type applications.)

It is then a simple matter to prove safety for this language, using by-
now familiar methods.

Lemma 25.2 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam[τ1](x.e2) with x : τ1 ` e2 : τ2.

2. If τ = all(t.τ′), then e = Lam(t.e′) with t type ` e′ : τ′.

Proof. By rule induction on the static semantics.

Theorem 25.3 (Preservation). If e : σ and e 7→ e′, then e′ : σ.

Proof. By rule induction on the dynamic semantics.

Theorem 25.4 (Progress). If e : σ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on the static semantics.
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25.2 Polymorphic Definability

It will be proved in Chapter 54 that every well-typed expression in L{→∀}
evaluates to a value—there is no possibility of an infinite loop. This may
seem obvious, at first glance, because there is no looping or recursion con-
struct in L{→∀}. But appearances can be deceiving! A rich class of types,
including the natural numbers, are definable in the language. This means
that primitive recursion is implicitly present in the language, even though
it is not an explicit construct.

To begin with we show that lazy product and sum types are definable in
the lazy variant of L{→∀}. We then show that the natural numbers, under
the lazy semantics, are definable as well.

25.2.1 Products and Sums

To show that binary products are definable means that we may fill in the
following equations in such a way that the static semantics and the dy-
namic semantics are derivable in L{→∀}:

prod(σ; τ) = . . .
pair(e1; e2) = . . .

fst(e) = . . .
snd(e) = . . .

The required definitions are derived from the conservation principle of
Chapter 13, according to which the eliminatory forms are inverse to the
introductory forms. Applying this principle to the present case, we reason
that to compute an element of some type ρ from an element of type σ× τ, it
suffices to compute that element from an element of type σ and an element
of type τ. This leads to the following definitions:

σ× τ = ∀(r.(σ→ τ → r)→ r)
〈e1, e2〉 = Λ(r.λ(x:σ→ τ → r. x(e1)(e2)))

fst(e) = e[σ](λ(x:σ. λ(y:τ. x)))
snd(e) = e[τ](λ(x:σ. λ(y:τ. y)))

These encodings correspond to the lazy semantics for product types, so that
fst(〈e1, e2〉) 7→∗ e1 is derivable according to the lazy semantics of L{→∀}.
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The nullary product, or unit, type is similarly definable:

unit = ∀(r.r → r)
〈〉 = Λ(r.λ(x:r. x))

Observe that these definitions are formally consistent with those for binary
products, the difference being only in the number of components (zero,
instead of two) of an element of the type.

The definition of binary sums proceeds by a similar analysis. To com-
pute a element of type ρ from an element of type σ + τ, it is enough to be
able to compute that element from a value of type σ and from a value of
type τ.

σ + τ = ∀(r.(σ→ r)→ (τ → r)→ r)
in[l](e) = Λ(r.λ(x:σ→ r. λ(y:τ → r. x(e))))
in[r](e) = Λ(r.λ(x:σ→ r. λ(y:τ → r. y(e))))

case e {in[l](x1)⇒ e1 | in[r](x2)⇒ e2} =
e[ρ](λ(x1:σ. e1))(λ(x2:τ. e2))

In the last equation the type ρ is the type of the case expression. It is a
good exercise to check that the lazy dynamic semantics of sums is derivable
under the lazy semantics for L{→∀}.

The nullary sum, or empty, type is defined similarly:

void = ∀(r.r)
abort(e) = e[ρ]

Once again, observe that this is formally consistent with the binary case,
albeit for a sum of no types.

25.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation)
are also definable in L{→∀}. The key is the representation of the iterator,
whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ ` e2 : τ

iter[τ](e0; e1; x.e2) : τ
.

Since the result type τ is arbitrary, this means that if we have an iterator,
then it can be used to define a function of type

nat→ ∀(t.t→ (t→ t)→ t).
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This function, when applied to an argument n, yields a polymorphic func-
tion that, for any result type, t, if given the initial result for z, and if given
a function transforming the result for x into the result for s(x), then it re-
turns the result of iterating the transformer n times starting with the initial
result.

Since the only operation we can perform on a natural number is to it-
erate up to it in this manner, we may simply identify a natural number, n,
with the polymorphic iterate-up-to-n function just described. This means
that the above chart may be completed as follows:

nat = ∀(t.t→ (t→ t)→ t)
z = Λ(t.λ(z:t. λ(s:t→ t. z)))

s(e) = Λ(t.λ(z:t. λ(s:t→ t. s(e[t](z)(s)))))
iter[τ](e0; e1; x.e2) = e0[τ](e1)(λ(x:τ. e2))

It is a straightforward exercise to check that the static semantics of these
constructs is correctly derived from these definitions.

Observe that if we ignore the type abstractions, type applications, and
the types ascribed to variables, then the definitions of z and s(e) in L{→∀}
are just the same as the untyped Church numerals (Definition 22.3 on page 175).
Correspondingly, the definition of iteration is the same as in the untyped
case, provided that we ignore the types. The computational content is the
same; the only difference here is that we are also taking care to keep track of
the types of the computations performed using the natural numbers. From
this point of view, the polymorphic abstraction in the Church numerals is
essential, since we may use the same number to iterate several different
operations at several different types. (Indeed, it is for the lack of polymor-
phism that there is no useful analogue of the Church numerals in System
T, and hence the natural numbers must be taken as a primitive notion in
that calculus.)

25.2.3 Expressive Power

The definability of the natural numbers implies that L{→∀} is at least as
expressive as L{nat→}. But is it more expressive? Yes, and by a wide
margin! It is possible to show that the universal evaluation function, E, for
L{nat→} (introduced in Chapter 15) is definable in L{→∀}. That is, one
may define an interpreter for L{nat→} in L{→∀}. As a consequence, the
diagonal function, D, which is defined in terms of the universal function,
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E, is definable in L{→∀}, but not in L{nat→}—it diagonalizes out of the
restricted language, but is definable within the richer one.

Put in other terms, the language L{→∀} is able to prove the termina-
tion of all expressions in L{nat→}. But it cannot do this for L{→∀} itself,
by a diagonal argument analogous to the one given in Chapter 15. Thus
we see the beginnings of a hierarchy of expressiveness, with L{nat→} at
the bottom, L{→∀} above it, and some other language, as yet to be spec-
ified, above it, and so forth. Each language in this hierarchy is total (all
functions terminate), and so we may diagonalize to obtain a total function
not definable within it, leading to a new language within which it may be
defined, and so on ad infinitum. Each step increases expressive power, but
nevertheless omits some functions that are only definable at higher levels
of the hierarchy.

25.3 Exercises

1. Show that primitive recursion is definable in L{→∀} by exploiting
the definability of iteration and binary products.

2. Investigate the representation of eager products and sums in eager
and lazy variants of L{→∀}.

3. Show how to write an interpreter for L{nat→} in L{→∀}.
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Chapter 26

Abstract Types

Data abstraction is perhaps the most fundamental technique for structuring
programs. The fundamental idea of data abstraction is to separate a client
from the implementor of an abstraction by an interface. The interface forms a
“contract” between the client and implementor that specifies those proper-
ties of the abstraction on which the client may rely, and, correspondingly,
those properties that the implementor must satisfy. This ensures that the
client is insulated from the details of the implementation of an abstraction
so that the implementation can be modified, without changing the client’s
behavior, provided only that the interface remains the same. This property
is called representation independence for abstract types.

Data abstraction may be formalized by extending the language L{→∀}
with existential types. Interfaces are modelled as existential types that pro-
vide a collection of operations acting on an unspecified, or abstract, type.
Implementations are modelled as packages, the introductory form for exis-
tentials, and clients are modelled as uses of the corresponding elimination
form. It is remarkable that the programming concept of data abstraction is
modelled so naturally and directly by the logical concept of existential type
quantification.

Existential types are closely connected with universal types, and hence
are often treated together. The superficial reason is that both are forms
of type quantification, and hence both require the machinery of type vari-
ables. The deeper reason is that existentials are definable from universals —
surprisingly, data abstraction is actually just a form of polymorphism!
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26.1 Existential Types

The syntax of L{→∀∃} is the extension of L{→∀} with the following con-
structs:

Category Item Abstract Concrete
Types τ ::= some(t.τ) ∃(t.τ)
Expr e ::= pack[t.τ; ρ](e) pack ρ with e as ∃(t.τ)

| open[t.τ](e1; t, x.e2) open e1 as t with x:τ in e2

The introductory form for the existential type σ = ∃(t.τ) is a package of
the form pack ρ with e as ∃(t.τ), where ρ is a type and e is an expression of
type [ρ/t]τ. The type ρ is called the representation type of the package, and
the expression e is called the implementation of the package. The elimina-
tory form for existentials is the expression open e1 as t with x:τ in e2, which
opens the package e1 for use within the client e2 by binding its representa-
tion type to t and its implementation to x for use within e2. Crucially, the
typing rules ensure that the client is type-correct independently of the ac-
tual representation type used by the implementor, so that it may be varied
without affecting the type correctness of the client.

The abstract syntax of the open construct specifies that the type variable,
t, and the expression variable, x, are bound within the client. They may be
renamed at will by α-equivalence without affecting the meaning of the con-
struct, provided, of course, that the names are chosen so as not to conflict
with any others that may be in scope. In other words the type, t, may be
thought of as a “new” type, one that is distinct from all other types, when
it is introduced. This is sometimes called generativity of abstract types: the
use of an abstract type by a client “generates” a “new” type within that
client. This behavior is simply a consequence of identifying terms up to
α-equivalence, and is not particularly tied to data abstraction.

26.1.1 Static Semantics

The static semantics of existential types is specified by rules defining when
an existential is well-formed, and by giving typing rules for the associated
introductory and eliminatory forms.

∆, t type ` τ type

∆ ` some(t.τ) type
(26.1a)

∆ ρ type ∆, t type ` τ type ∆ Γ ` e : [ρ/t]τ
∆ Γ ` pack[t.τ; ρ](e) : some(t.τ)

(26.1b)
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∆ Γ ` e1 : some(t.τ) ∆, t type Γ, x : τ ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[t.τ](e1; t, x.e2) : τ2
(26.1c)

Rule (26.1c) is complex, so study it carefully! There are two important
things to notice:

1. The type of the client, τ2, must not involve the abstract type t. This
restriction prevents the client from attempting to export a value of the
abstract type outside of the scope of its definition.

2. The body of the client, e2, is type checked without knowledge of the
representation type, t. The client is, in effect, polymorphic in the type
variable t.

26.1.2 Dynamic Semantics

The dynamic semantics of existential types is specified as follows:

{e val}
pack[t.τ; ρ](e) val

(26.2a)

{
e 7→ e′

pack[t.τ; ρ](e) 7→ pack[t.τ; ρ](e′)

}
(26.2b)

e1 7→ e′1
open[t.τ](e1; t, x.e2) 7→ open[t.τ](e′1; t, x.e2)

(26.2c)

e val
open[t.τ](pack[t.τ; ρ](e); t, x.e2) 7→ [ρ, e/t, x]e2

(26.2d)

The bracketed premises and rules are to be omitted for a lazy semantics,
and included for an eager semantics.

Observe that there are no abstract types at run time! The representation
type is fully exposed to the client during evaluation. Data abstraction is a
compile-time discipline that imposes no run-time overhead.

26.1.3 Safety

The safety of the extension is stated and proved as usual. The argument is
a simple extension of that used for L{→∀} to the new constructs.

Theorem 26.1 (Preservation). If e : τ and e 7→ e′, then e′ : τ.

Proof. By rule induction on e 7→ e′, making use of substitution for both
expression- and type variables.
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Lemma 26.2 (Canonical Forms). If e : some(t.τ) and e val, then e = pack[t.τ; ρ](e′)
for some type ρ and some e′ val such that e′ : [ρ/t]τ.

Proof. By rule induction on the static semantics, making use of the defini-
tion of closed values.

Theorem 26.3 (Progress). If e : τ then either e val or there exists e′ such that
e 7→ e′.

Proof. By rule induction on e : τ, making use of the canonical forms lemma.

26.2 Data Abstraction Via Existentials

To illustrate the use of existentials for data abstraction, we consider an ab-
stract type of (persistent) queues supporting three operations:

1. Formation of the empty queue.

2. Inserting an element at the tail of the queue.

3. Remove the head of the queue.

This is clearly a bare-bones interface, but is sufficient to illustrate the main
ideas of data abstraction. Queue elements may be taken to be of any type,
τ, of our choosing; we will not be specific about this choice, since nothing
depends on it.

The crucial property of this description is that nowhere do we specify
what queues actually are, only what we can do with them. This is captured
by the following existential type, ∃(t.σ), which serves as the interface of
the queue abstraction:1

∃(t.〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉).

The representation type, t, of queues is abstract — all that is specified about
it is that it supports the operations emp, ins, and rem, with the specified
types.

An implementation of queues consists of a package specifying the rep-
resentation type, together with the implementation of the associated op-
erations in terms of that representation. Internally to the implementation,

1For the sake of illustration, we assume that type constructors such as products, records,
and lists are also available in the language.
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the representation of queues is known and relied upon by the operations.
Here is a very simple implementation, el , in which queues are represented
as lists:

pack τ list with 〈emp = nil, ins = ei, rem = er〉 as ∃(t.σ),

where
ei : τ × τ list→ τ list = λ(x:τ × τ list. e′i),

and
er : τ list→ τ × τ list = λ(x:τ list. e′r).

Here the expression e′i conses the first component of x, the element, onto the
second component of x, the queue. Correspondingly, the expression e′r re-
verses its argument, and returns the head element paired with the reversal
of the tail. These operations “know” that queues are represented as values
of type τ list, and are programmed accordingly.

It is also possible to give another implementation, ep, of the same inter-
face, ∃(t.σ), but in which queues are represented as pairs of lists, consist-
ing of the “back half” of the queue paired with the reversal of the “front
half”. This representation avoids the need for reversals on each call, and,
as a result, achieves amortized constant-time behavior:

pack τ list× τ list with 〈emp = 〈nil, nil〉, ins = ei, rem = er〉 as ∃(t.σ).

In this case ei has type

τ × (τ list× τ list)→ (τ list× τ list),

and er has type

(τ list× τ list)→ τ × (τ list× τ list).

These operations “know” that queues are represented as values of type

τ list× τ list,

and are implemented accordingly.
Clients of the queue abstraction are shielded from the implementation

details by the open construct. If e is any implementation of ∃(t.σ), then a
client of the abstraction has the form

open e as t with x:σ in e′ : τ′,
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where the type, τ′, of e′ does not involve the abstract type t. Within e′ the
variable x has type

〈emp : t, ins : τ × t→ t, rem : t→ τ × t〉,

in which t is unspecified — or, as is often said, held abstract.
Observe that only the type information specified in ∃(t.σ) is propa-

gated to the client, e′, and nothing more. Consequently, the open expression
above type checks properly regardless of whether e is el (the implementa-
tion of ∃(t.σ) in terms of lists) or ep (the implementation in terms of pairs
of lists), or, for that matter, any other implementation of the same inter-
face. This property is called representation independence, because the client is
guaranteed to be independent of the representation of the abstraction.

26.3 Definability of Existentials in System F

Strictly speaking, it is not necessary to extendL{→∀}with existential types
in order to model data abstraction, because they are definable in terms of
universals! Before giving the details, let us consider why this should be
possible. The key is to observe that the client of an abstract type is polymor-
phic in the representation type. The typing rule for

open e as t with x:τ in e′ : τ′,

where e : ∃(t.τ), specifies that e′ : τ′ under the assumptions t type and
x : τ. In essence, the client is a polymorphic function of type

∀(t.τ → τ′),

where t may occur in τ (the type of the operations), but not in τ′ (the type
of the result).

This suggests the following encoding of existential types:

∃(t.σ) = ∀(t′.∀(t.σ→ t′)→ t′)
pack ρ with e as ∃(t.τ) = Λ(t′.λ(x:∀(t.τ → t′). x[ρ](e)))
open e as t with x:τ in e′ = e[τ′](Λ(t.λ(x:τ. e′)))

An existential is encoded as a polymorphic function taking the overall re-
sult type, t′, as argument, followed by a polymorphic function representing
the client with result type t′, and yielding a value of type t′ as overall re-
sult. Consequently, the open construct simply packages the client as such a
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polymorphic function, instantiates the existential at the result type, τ′, and
applies it to the polymorphic client. (The translation therefore depends
on knowing the overall result type, τ′, of the open construct.) Finally, a
package consisting of a representation type τ and an implementation e is a
polymorphic function that, when given the result type, t′, and the client, x,
instantiates x with τ and passes to it the implementation e.

It is then a straightforward exercise to show that this translation cor-
rectly reflects the static and dynamic semantics of existential types.

26.4 Exercises
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Chapter 27

∗Constructors and Kinds

In Chapters 25 and 26 we used quantification over types to model gener-
icity and abstraction. While sufficient for many situations, type quantifica-
tion alone is not sufficient to model many programming situations of prac-
tical interest. For example, it is natural to consider abstract families of types,
such as τ list, in which we simultaneously introduce an infinite collection
of types sharing a common collection of operations on them. As another ex-
ample, it is natural to introduce simultaneously two abstract types, such as
a type of trees, whose nodes have a forest of children, and a type of forests
whose elements are trees.

Such situations may be modelled by permitting quantification over other
kinds than just types—for example, over type constructors, which are func-
tions mapping types to types, and type structures, which are essentially tu-
ples of types. To support such generalizations we enrich the structure of
our languages to include (higher) kinds classifying constructors, in a man-
ner reminiscent of the familiar use of types to classify expressions. In fact,
types themselves emerge as certain forms of constructor, namely those of
kind Type. We then generalize universal and existential quantification to
quantify over an arbitrary kind, recovering the original forms as quantify-
ing over the kind Type.

This two-layer architecture models the phase distinction discussed in Chap-
ter 13: the constructor and kind level form the static layer, whereas the ex-
pression and type level form the dynamic layer. The role of the static layer
is to provide the apparatus required to define the static semantics of the
language, the premier example being the class of types, which here arise
as certain forms of constructor. The role of the dynamic layer is, as before,
to define the facilities of the language, such as functions or data structures,



212 27.1. STATIC SEMANTICS

that we compute with at run-time. From this point of view, constructors
are the static data of the language, whereas expressions are the dynamic data.

We will exploit this interpretation in Chapter 28, wherein we introduce
families of types indexed by kinds other than Type. For the present we will
study the extension, L{→, ∀κ, ∃κ}, or L{→∀∃} with higher kinds.

27.1 Static Semantics

The abstract syntax of L{→, ∀κ, ∃κ} is given by the following grammar:

Category Item Abstract Concrete
Kind κ ::= Type Type

| Prod(κ1; κ2) κ1× κ2
| Arr(κ1; κ2) κ1→ κ2

Cons c ::= t t
| arr →
| all[κ] ∀κ

| some[κ] ∃κ

| pair(c1; c2) 〈c1, c2〉
| fst(c) fst(c)
| snd(c) snd(c)
| lambda[κ](t.c) λ(t::κ. c)
| app(c1; c2) c1[c2]

Type τ ::= c c
Expr e ::= x x

| lam[τ](x.e) λ(x:τ. e)
| ap(e1; e2) e1(e2)
| Lam[κ](t.e) Λ(t::κ.e)
| App[c](e) e[c]
| pack[κ; c; c′](e) pack c′ with e as ∃κ[c]
| open[κ; c](e1; t, x.e2) open e1 as t::κ with x:c[t] in e2

The first two categories constitute the static layer of the language, and the
second two constitute the dynamic layer. Observe that types are just cer-
tain constructors, namely those of kind Type. The representations of arrow
types and quantified types arises from the interpretation of the function
type constructor and the two quantifiers as constants of higher kind, as
will become clear shortly. In Section 27.3 on page 215 we will consider
a formulation in which types in their role as classifiers of expressions are
distinguished from types in their role as constructors of kind Type.
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The static semantics of L{→, ∀κ, ∃κ} consists of rules for deriving the
following forms of judgement:

T | ∆ ` c :: κ constructor formation
T | ∆ ` c1 ≡ c2 :: κ definitional equality of constructors
T | ∆ ` τ type type formation
T X | ∆ Γ ` e : τ expression formation

The parameter set T specifies the type constructor variables, and X specifies
the expression variables, in each judgement. The hypotheses in ∆ have the
form t :: κ, where T ` t cons, and the hypotheses in Γ have the form x : τ
where X ` x exp and T | ∆ ` τ type. We omit explicit mention of T and X
to avoid notational clutter.

The constructor formation judgement is analogous to the formation judge-
ment for expression. The judgement ∆ ` c :: κ states that, under hypotheses
∆, the constructor c is well-formed with kind κ. The expression formation
judgement is standard, differing from L{→∀∃} in that the forms of hy-
pothesis in ∆ is richer. Type formation is now subsumed by constructor
formation; the judgement ∆ ` τ type is synonymous with the judgement
∆ ` τ :: Type.

The judgement form of definitional equality is novel, and is character-
istic of languages with higher kinds. Definitional equality specifies that
two constructors are indistinguishable by virtue of the definitions of the
concepts involved. As a case in point, it will turn out that the constructor
fst(〈c1, c2〉) is definitionally equivalent c1, because it expresses directly
the meaning of the first projection operation. The expression formation
judgement respects definitional equality in the sense that if e : τ and τ is
definitionaly equivalent to τ′, then e : τ′.

27.1.1 Constructor Formation

The constructor formation judgement, ∆ ` c :: κ, is inductively defined by
the following rules:

∆, t :: κ ` t :: κ (27.1a)

∆ ` arr :: Arr(Type; Arr(Type; Type)) (27.1b)

∆ ` all[κ] :: Arr(Arr(κ; Type); Type) (27.1c)

∆ ` some[κ] :: Arr(Arr(κ; Type); Type) (27.1d)

∆ ` c1 :: κ1 ∆ ` c2 :: κ2

∆ ` pair(c1; c2) :: Prod(κ1; κ2)
(27.1e)
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∆ ` c :: Prod(κ1; κ2)

∆ ` fst(c) :: κ1
(27.1f)

∆ ` c :: Prod(κ1; κ2)

∆ ` snd(c) :: κ2
(27.1g)

∆, t :: κ1 ` c2 :: κ2

∆ ` lambda[κ1](t.c2) :: Arr(κ1; κ2)
(27.1h)

∆ ` c1 :: Arr(κ2; κ) ∆ ` c2 :: κ2

∆ ` app(c1; c2) :: κ
(27.1i)

There is an evident correspondence between these rules and the rules for
functions and products given in Chapters 15 and 17, except that we are
working at the static level of constructors and kinds, rather than the dy-
namic level of expressions and types.

The constants arr, all[κ], and some[κ] all have functional kinds. The
kind of arr is a curried function kind that specifies that the function type
constructor takes two types as arguments, yielding a type. The kind of the
quantifiers, Arr(Arr(κ; Type); Type), specifies that the body of a quantifi-
cation over kind κ is a constructor-level function from κ to Type.

27.1.2 Definitional Equality

Definitional equality of well-formed constructors is defined to be the least
congruence closed under the following rules:

∆ ` pair(c1; c2) :: Prod(κ1; κ2)

∆ ` fst(pair(c1; c2)) ≡ c1 :: κ1
(27.2a)

∆ ` pair(c1; c2) :: Prod(κ1; κ2)

∆ ` snd(pair(c1; c2)) ≡ c2 :: κ2
(27.2b)

∆ ` c :: Prod(κ1; κ2)

∆ ` pair(fst(c); snd(c)) ≡ c :: Prod(κ1; κ2)
(27.2c)

∆, t :: κ1 ` c2 :: κ2 ∆ ` c2 :: κ2

∆ ` app(lambda[κ](t.c1); c2) ≡ [c2/t]c1 :: κ2
(27.2d)

∆ ` c2 :: Arr(κ1; κ2) t # ∆
∆ ` lambda[κ1](t.app(c2; t)) ≡ c2 :: Arr(κ1; κ2)

(27.2e)

Rules (27.2a) and (27.2b) specify the meaning of the projection constructors
when acting on a pair. Rule (27.2c) specifies that every constructor of prod-
uct kind arises as a pair of projections. Rule (27.2d) specifies that the mean-
ing of a function constructor is given by substitution of an argument into
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the function body. Rule (27.2e) specifies, moreover, that every constructor
of function kind arises in this way.

The role of definitional equality is captured by the following rule of
kind equivalence:

∆ Γ ` e : τ′ ∆ ` τ ≡ τ′ :: Type
∆ Γ ` e : τ

(27.3)

In words, equivalent types (i.e., constructors of kind Type) classify the same
expressions.

27.2 Expression Formation

The rules for typing expressions are a straightforward generalization of
those given in Chapters 25 and 26.

∆ Γ, x : τ ` x : τ (27.4a)

∆ Γ, x : τ1 ` e2 : τ2

∆ Γ ` lam[τ1](x.e2) : app(app(arr; τ1); τ2)
(27.4b)

∆ Γ ` e1 : app(app(arr; τ2); τ) ∆ Γ ` e2 : τ2

∆ Γ ` ap(e1; e2) : τ
(27.4c)

∆, t :: κ Γ ` e : τ

∆ Γ ` Lam[κ](t.e) : app(all[κ]; lambda[κ](t.τ))
(27.4d)

∆ Γ ` e : app(all[κ]; c′) ∆ ` c :: κ

∆ Γ ` App[c](e) : app(c′; c)
(27.4e)

∆ ` c′ :: Arr(κ; Type) ∆ ` c :: κ ∆ Γ ` e : app(c′; c)
∆ Γ ` pack[κ; c′; c](e) : app(some[κ]; c′)

(27.4f)

∆ Γ ` e1 : app(some[κ]; c) ∆, t :: κ Γ, x : app(c; t) ` e2 : τ2 ∆ ` τ2 type

∆ Γ ` open[κ; c](e1; t, x.e2) : τ2
(27.4g)

27.3 Distinguishing Constructors from Types

The formulation of L{→, ∀κ, ∃κ} identifies types with constructors of kind
Type. Consequently, constructors of kind Type have a dual role:

1. As static data values that may be passed as arguments to polymor-
phic functions or bound into packages of existential type.
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2. As classifiers of dynamic data values according to the typing rules for
expressions.

The dual role of such constructors is apparent in our use of the meta-variables
c and τ for constructors of kind Type in the static semantics.

These two roles can be separated in the syntax by making explicit the
inclusion of constructors of kind Type into the class of types. The syntax of
this variant, called L{typ,→, ∀κ, ∃κ}, is as follows:

Category Item Abstract Concrete
Cons c ::= t t

| arr arr
| all[κ] all[κ]
| some[κ] some[κ]
| pair(c1; c2) 〈c1, c2〉
| fst(c) fst(c)
| snd(c) snd(c)
| lambda[κ](t.c) λ(t::κ. c)
| app(c1; c2) c1[c2]

Type τ ::= typ(c) ĉ
| arr(τ1; τ2) τ1 → τ2
| all[κ](t.τ) ∀κ[t::κ.τ]
| some[κ](t.τ) ∃κ[t::κ.τ]

There is a degree of redundancy in distinguishing constructors of kind Type
from types, but the payoff is a clear separation of the two roles of types in
L{→, ∀κ, ∃κ}: as classifiers of expressions and as arguments to polymor-
phic functions and as components of packages. The former is a purely static
role, the latter two are dynamic.

The correspondence between the two roles of types is stated using the
following axioms of definitional equality, stated with implicit contexts for
brevity:

typ(app(app(arr; c1); c2)) ≡ arr(typ(c1); typ(c2)) :: Type (27.5a)

typ(app(all[κ]; c)) ≡ all[κ](t.typ(app(c; t))) :: Type (27.5b)

typ(app(some[κ]; c)) ≡ some[κ](t.typ(app(c; t))) :: Type (27.5c)

These equivalences specify which types are designated by which construc-
tors. For example, Rule (27.5a) specifies that the constant arr, when ap-
plied to constructors c1 and c2 of kind Type, designates the function space
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type between the types designated by c1 and c2, respectively. The other
rules provide definitions for the constants designating the universal and
existential quantifiers.

An advantage of L{typ,→, ∀κ, ∃κ} is that it sheds light on the distinc-
tion between predicative and impredicative type quantification discussed
in Chapter 25. The universal and existential quantifiers range over con-
structors of a specified kind. In L{→, ∀κ, ∃κ} the kind Type includes all
types-as-classifiers, and hence quantification is impredicative. InL{typ,→, ∀κ, ∃κ}
we have a choice. We may either include representatives of the quantified
types as constructors, in which case we obtain the impredicative fragment,
or we may not include such representatives, in which case quantification
is predicative. Put another way, the impredicative variant is a special case
of the predicative fragment in which we ensure that quantified types have
representatives as constructors.

27.4 Dynamic Semantics

Many languages admit a type erasure interpretation for which the transition
relation of the dynamic semantics is insensitive to type information. For
example, the dynamic semantics of L{nat⇀} given in Chapter 16 enjoys
such an interpretation. If we “erase” all the type information on an ex-
pression, we obtain the same sequence of transitions as if we had not done
so. From the point of view of the dynamic semantics, the only role of the
type annotations is to ensure that the original expression, as well as all of
those expressions derived from it by the transition relation, are well-typed
in the original source language. From an implementation point of view,
these annotations may be erased, since we do not expect to type check the
derivatives of an expression, only its original form as written by the pro-
grammer.

When type quantification is introduced, it appears that a type erasure
interpretation interpretation is not available. For example, types appear
as arguments to polymorphic functions and as components of packages,
and during evaluation types are substituted for type variables within an
expression. Consequently, it would appear that types play an essential role
in the dynamic semantics, and hence cannot be erased prior to execution.
However, we also notice that some occurrences of types are clearly negli-
gible, such as the types attached to binding occurrences of variables. The
distinction between these two forms of occurrences of types amounts to the
distinction between types-as-data and types-as-classifiers. Constructors of
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any kind are a form of data that must be maintained and manipulated at
execution time. Classifiers, on the other hand, never play a computation-
ally significant role. Consequently, we may always erase classifiers from
expressions prior to execution, but we may not always erase constructors,
nor may we erase constructor abstractions or applications, nor packages or
openings of packages. In short, constructors are a form of data that is ma-
nipulated at run-time, and hence cannot be eliminated from consideration.

On the other hand, a characteristic feature of L{→, ∀κ, ∃κ} is that con-
structors play a passive role in the dynamic semantics. This property, which
is related to parametricity (see Chapter 54), means that constructors are
merely passed around as data items, but are never subject to any compu-
tational analysis such as dispatching on their form. In such languages it
is feasible to identify all constructors of a kind at execution time, using a
single token to serve as a dynamic for all elements of the kind. Some lan-
guages, however, permit non-parametric forms of computation on types,
operations that distinguish types from one another based on their form
(see, for example, Chapter 24). Such languages require a more sophisti-
cated form of dynamic semantics to support run-time dispatch on the form
of a type.

27.5 Exercises
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Indexed Families of Types

28.1 Type Families

28.2 Exercises



220 28.2. EXERCISES

11:12PM DRAFT JULY 8, 2008



Part IX

Control Flow





Chapter 29

Abstract Machine for Control

The technique of specifying the dynamic semantics as a transition system is
very useful for theoretical purposes, such as proving type safety, but is too
high level to be directly usable in an implementation. One reason is that
the use of “search rules” requires the traversal and reconstruction of an ex-
pression in order to simplify one small part of it. In an implementation
we would prefer to use some mechanism to record “where we are” in the
expression so that we may “resume” from that point after a simplification.
This can be achieved by introducing an explicit mechanism, called a con-
trol stack, that keeps track of the context of an instruction step for just this
purpose. By making the control stack explicit the transition rules avoid the
need for any premises — every rule is an axiom! This is the formal expres-
sion of the informal idea that no traversals or reconstructions are required
to implement it.

In this chapter we introduce an abstract machine, K{nat⇀}, for the
language L{nat⇀}. The purpose of this machine is to make control flow
explicit by introducing a control stack that maintains a record of the pend-
ing sub-computations of a computation. We then prove the equivalence of
K{nat⇀} with the structural operational semantics of L{nat⇀}.

29.1 Machine Definition

A state, s, ofK{nat⇀} consists of a control stack, k, and a closed expression,
e. States may take one of two forms:

1. An evaluation state of the form k . e corresponds to the evaluation of
a closed expression, e, relative to a control stack, k.
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2. A return state of the form k / e, where e val, corresponds to the evalu-
ation of a stack, k, relative to a closed value, e.

As an aid to memory, note that the separator “points to” the focal entity
of the state, the expression in an evaluation state and the stack in a return
state.

The control stack represents the context of evaluation. It records the
“current location” of evaluation, the context into which the value of the
current expression is to be returned. Formally, a control stack is a list of
frames:

ε stack (29.1a)

f frame k stack

f;k stack
(29.1b)

The definition of frame depends on the language we are evaluating. The
frames of K{nat⇀} are inductively defined by the following rules:

s(−) frame (29.2a)

ifz(−; e1; x.e2) frame (29.2b)

ap(−; e2) frame (29.2c)

e1 val

ap(e1;−) frame
(29.2d)

The frames correspond to rules with transition premises in the dynamic se-
mantics of L{nat⇀}. Thus, instead of relying on the structure of the tran-
sition derivation to maintain a record of pending computations, we make
an explicit record of them in the form of a frame on the control stack.

The transition judgement between states of theK{nat⇀} is inductively
defined by a set of inference rules. We begin with the rules for natural
numbers.

k . z 7→ k / z (29.3a)

k . s(e) 7→ s(−);k . e (29.3b)

s(−);k / e 7→ k / s(e) (29.3c)

To evaluate z we simply return it. To evaluate s(e), we push a frame on
the stack to record the pending successor, and evaluate e; when that returns
with e′, we return s(e′) to the stack.

Next, we consider the rules for case analysis.

k . ifz(e; e1; x.e2) 7→ ifz(−; e1; x.e2);k . e (29.4a)
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ifz(−; e1; x.e2);k / z 7→ k . e1 (29.4b)

ifz(−; e1; x.e2);k / s(e) 7→ k . [e/x]e2 (29.4c)

First, the test expression is evaluated, recording the pending case analysis
on the stack. Once the value of the test expression has been determined,
we branch to the appropriate arm of the conditional, substituting the pre-
decessor in the case of a positive number.

Finally, we consider the rules for functions and recursion.

k . lam[τ](x.e) 7→ k / lam[τ](x.e) (29.5a)

k . ap(e1; e2) 7→ ap(−; e2);k . e1 (29.5b)

ap(−; e2);k / e1 7→ ap(e1;−);k . e2 (29.5c)

e1 = lam[τ](x.e)
ap(e1;−);k / e2 7→ k . [e2/x]e

(29.5d)

k . fix[τ](x.e) 7→ k . [fix[τ](x.e)/x]e (29.5e)

These rules ensure that the function is evaluated before the argument, ap-
plying the function when both have been evaluated. Note that evaluation
of general recursion requires no stack space! (But see Chapter 44 for more
on evaluation of general recursion.)

The initial and final states of theK{nat⇀} are defined by the following
rules:

ε . e initial (29.6a)

e val
ε / e final

(29.6b)

29.2 Safety

To define and prove safety for K{nat⇀} requires that we introduce a new
typing judgement, k : τ, stating that the stack k expects a value of type τ.
This judgement is inductively defined by the following rules:

ε : τ (29.7a)

k : τ′ f : τ ⇒ τ′

f;k : τ
(29.7b)
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This definition makes use of an auxiliary judgement, f : τ ⇒ τ′, stating
that a frame f transforms a value of type τ to a value of type τ′.

s(−) : nat⇒ nat (29.8a)

e1 : τ x : nat ` e2 : τ

ifz(−; e1; x.e2) : nat⇒ τ
(29.8b)

e2 : τ2
ap(−; e2) : arr(τ2; τ)⇒ τ

(29.8c)

e1 : arr(τ2; τ) e1 val

ap(e1;−) : τ2 ⇒ τ
(29.8d)

The two forms of K{nat⇀} state are well-formed provided that their
stack and expression components match.

k : τ e : τ
k . e ok

(29.9a)

k : τ e : τ e val
k / e ok

(29.9b)

We leave the proof of safety of K{nat⇀} as an exercise.

Theorem 29.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

29.3 Correctness of the Control Machine

It is natural to ask whether K{nat⇀} correctly implements L{nat⇀}. If
we evaluate a given expression, e, using K{nat⇀}, do we get the same
result as would be given by L{nat⇀}, and vice versa?

Answering this question decomposes into two conditions relatingK{nat⇀}
to L{nat⇀}:

Completeness If e 7→∗ e′, where e′ val, then ε . e 7→∗ ε / e′.

Soundness If ε . e 7→∗ ε / e′, then e 7→∗ e′ with e′ val.

Let us consider, in turn, what is involved in the proof of each part.
For completeness it is natural to consider a proof by induction on the

definition of multistep transition, which reduces the theorem to the follow-
ing two lemmas:

1. If e val, then ε . e 7→∗ ε / e.

11:12PM DRAFT JULY 8, 2008



29.3. CORRECTNESS OF THE CONTROL . . . 227

2. If e 7→ e′, then, for every v val, if ε . e′ 7→∗ ε / v, then ε . e 7→∗ ε / v.

The first can be proved easily by induction on the structure of e. The second
requires an inductive analysis of the derivation of e 7→ e′, giving rise to two
complications that must be accounted for in the proof. The first complica-
tion is that we cannot restrict attention to the empty stack, for if e is, say,
ap(e1; e2), then the first step of the machine is

ε . ap(e1; e2) 7→ ap(−; e2);ε . e1,

and so we must consider evaluation of e1 on a non-empty stack.
A natural generalization is to prove that if e 7→ e′ and k . e′ 7→∗ k / v,

then k . e 7→∗ k / v. Consider again the case e = ap(e1; e2), e′ = ap(e′1; e2),
with e1 7→ e′1. We are given that k . ap(e′1; e2) 7→∗ k / v, and we are to
show that k . ap(e1; e2) 7→∗ k / v. It is easy to show that the first step of
the former derivation is

k . ap(e′1; e2) 7→ ap(−; e2);k . e′1.

We would like to apply induction to the derivation of e1 7→ e′1, but to do so
we must have a v1 such that e′1 7→∗ v1, which is not immediately at hand.

This means that we must consider the ultimate value of each sub-expression
of an expression in order to complete the proof. This information is pro-
vided by the evaluation semantics described in Chapter 12, which has the
property that e ⇓ e′ iff e 7→∗ e′ and e′ val.

Lemma 29.2. If e ⇓ v, then for every k stack, k . e 7→∗ k / v.

The desired result follows by the analogue of Theorem 12.2 on page 86
for L{nat⇀}, which states that e ⇓ v iff e 7→∗ v.

For the proof of soundness, it is awkward to reason inductively about
the multistep transition from ε . e 7→∗ ε / v, because the intervening
steps may involve alternations of evaluation and return states. Instead we
regard each K{nat⇀}machine state as encoding an expression, and show
that K{nat⇀} transitions are simulated by L{nat⇀} transitions under
this encoding.

Specifically, we define a judgement, s# e, stating that state s “unravels
to” expression e. It will turn out that for initial states, s = ε . e, and final
states, s = ε / e, we have s # e. Then we show that if s 7→∗ s′, where
s′ final, s # e, and s′ # e′, then e′ val and e 7→∗ e′. For this it is enough to
show the following two facts:
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1. If s# e and s final, then e val.

2. If s 7→ s′, s# e, s′ # e′, and e′ 7→∗ v, where v val, then e 7→∗ v.

The first is quite simple, we need only observe that the unravelling of a
final state is a value. For the second, it is enough to show the following
lemma.

Lemma 29.3. If s 7→ s′, s# e, and s′ # e′, then e 7→∗ e′.

The remainder of this section is devoted to the proofs of these lemmas.

29.3.1 Completeness

Proof of Lemma 29.2 on the preceding page. The proof is by induction on an
evaluation semantics for L{nat⇀}.

Consider the evaluation rule

e1 ⇓ lam[τ2](x.e) e2 ⇓ v2 [v2/x]e ⇓ v
ap(e1; e2) ⇓ v

(29.10)

For an arbitrary control stack, k, we are to show that k . ap(e1; e2) 7→∗ k / v.
Applying each of the three inductive hypotheses in succession, interleaved
with steps of the abstract machine, we obtain

k . ap(e1; e2) 7→ ap(−; e2);k . e1 (29.11)
7→∗ ap(−; e2);k / lam[τ2](x.e) (29.12)
7→ ap(lam[τ2](x.e);−);k . e2 (29.13)
7→∗ ap(lam[τ2](x.e);−);k / v2 (29.14)
7→ k . [v2/x]e (29.15)
7→∗ k / v. (29.16)

The other cases of the proof are handled similarly.

29.3.2 Soundness

The judgement s# e′, where s is either k . e or k / e, is defined in terms of
the auxiliary judgement k ./ e = e′ by the following rules:

k ./ e = e′

k . e# e′
(29.17a)

k ./ e = e′

k / e# e′
(29.17b)
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In words, to unravel a state we wrap the stack around the expression. The
latter relation is inductively defined by the following rules:

ε ./ e = e (29.18a)

k ./ s(e) = e′

s(−);k ./ e = e′
(29.18b)

k ./ ifz(e1; e2; x.e3) = e′

ifz(−; e2; x.e3);k ./ e1 = e′
(29.18c)

k ./ ap(e1; e2) = e
ap(−; e2);k ./ e1 = e

(29.18d)

k ./ ap(e1; e2) = e
ap(e1;−);k ./ e2 = e

(29.18e)

These judgements both define total functions.

Lemma 29.4. The judgement s# e has mode (∀, ∃!), and the judgement k ./ e =
e′ has mode (∀, ∀, ∃!).

That is, each state unravels to a unique expression, and the result of
wrapping a stack around an expression is uniquely determined. We are
therefore justified in writing k ./ e for the unique e′ such that k ./ e = e′.

The following lemma is crucial. It states that unravelling preserves the
transition relation.

Lemma 29.5. If e 7→ e′, k ./ e = d, k ./ e′ = d′, then d 7→ d′.

Proof. The proof is by rule induction on the transition e 7→ e′. The inductive
cases, in which the transition rule has a premise, follow easily by induction.
The base cases, in which the transition is an axiom, are proved by an induc-
tive analysis of the stack, k.

For an example of an inductive case, suppose that e = ap(e1; e2), e′ =
ap(e′1; e2), and e1 7→ e′1. We have k ./ e = d and k ./ e′ = d′. It follows from
Rules (29.18) that ap(−; e2);k ./ e1 = d and ap(−; e2);k ./ e′1 = d′. So by
induction d 7→ d′, as desired.

For an example of a base case, suppose that e = ap(lam[τ2](x.e); e2)
and e′ = [e2/x]e with e 7→ e′ directly. Assume that k ./ e = d and k ./ e′ = d′;
we are to show that d 7→ d′. We proceed by an inner induction on the
structure of k. If k = ε, the result follows immediately. Consider, say, the
stack k = ap(−; c2);k′. It follows from Rules (29.18) that k′ ./ ap(e; c2) = d
and k′ ./ ap(e′; c2) = d′. But by the SOS rules ap(e; c2) 7→ ap(e′; c2), so by
the inner inductive hypothesis we have d 7→ d′, as desired.
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We are now in a position to complete the proof of Lemma 29.3 on page 228.

Proof of Lemma 29.3 on page 228. The proof is by case analysis on the transi-
tions of K{nat⇀}. In each case after unravelling the transition will corre-
spond to zero or one transitions of L{nat⇀}.

Suppose that s = k . s(e) and s′ = s(−) . e. Note that k ./ s(e) = e′

iff s(−);k ./ e = e′, from which the result follows immediately.
Suppose that s = ap(lam[τ](x.e1);−);k / e2 and s′ = k . [e2/x]e1.

Let e′ be such that ap(lam[τ](x.e1);−);k ./ e2 = e′ and let e′′ be such that
k ./ [e2/x]e1 = e′′. Observe that k ./ ap(lam[τ](x.e1); e2) = e′. The result
follows from Lemma 29.5 on the previous page.

29.4 Exercises
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Chapter 30

Exceptions

Exceptions effects a non-local transfer of control from the point at which
the exception is raised to a dynamically enclosing handler for that excep-
tion. This transfer interrupts the normal flow of control in a program in
response to unusual conditions. For example, exceptions can be used to
signal an error condition, or to indicate the need for special handling in
certain circumstances that arise only rarely. To be sure, one could use ex-
plicit conditionals to check for and process errors or unusual conditions,
but using exceptions is often more convenient, particularly since the trans-
fer to the handler is direct and immediate, rather than indirect via a series
of explicit checks. All too often explicit checks are omitted (by design or
neglect), whereas exceptions cannot be ignored.

30.1 Failures

To begin with let us consider a simple control mechanism, which permits
the evaluation of an expression to fail by passing control to the nearest en-
closing handler, which is said to catch the failure. Failures are a simplified
form of exception in which no value is associated with the failure. This
allows us to concentrate on the control flow aspects, and to treat the asso-
ciated value separately.

The following grammar describes an extension to L{→} to include fail-
ures:

Category Item Abstract Concrete
Expr e ::= fail[τ] fail

| catch(e1; e2) try e1 ow e2

The expression fail[τ] aborts the current evaluation. The expression catch(e1; e2)
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evaluates e1. If it terminates normally, its value is returned; if it fails, its
value is the value of e2.

The static semantics of failures is quite straightforward:

Γ ` fail[τ] : τ (30.1a)

Γ ` e1 : τ Γ ` e2 : τ

Γ ` catch(e1; e2) : τ
(30.1b)

Observe that a failure can have any type, because it never returns to the site
of the failure. Both clauses of a handler must have the same type, to allow
for either possible outcome of evaluation.

The dynamic semantics of failures uses a technique called stack unwind-
ing. Evaluation of a catch installs a handler on the control stack. Evalua-
tion of a fail unwinds the control stack by popping frames until it reaches
the nearest enclosing handler, to which control is passed. The handler is
evaluated in the context of the surrounding control stack, so that failures
within it propagate further up the stack.

This behavior is naturally specified using the abstract machineK{nat⇀}
from Chapter 29, because it makes the control stack explicit. We introduce
a new form of state, k J , which passes a failure to the stack, k, in search of
the nearest enclosing handler. A state of the form ε J is considered final,
rather than stuck; it corresponds to an “uncaught failure” making its way
to the topic of the stack.

The set of frames is extended with the following additional rule:

e2 exp

catch(−; e2) frame
(30.2)

The transition rules of K{nat⇀} are extended with the following addi-
tional rules:

k . fail[τ] 7→ k J (30.3a)

k . catch(e1; e2) 7→ catch(−; e2);k . e1 (30.3b)

catch(−; e2);k / v 7→ k / v (30.3c)

catch(−; e2);k J 7→ k . e2 (30.3d)

( f 6= catch(−; e2))
f;k J 7→ k J

(30.3e)

Evaluating fail[τ] propagates a failure up the stack. Evaluating catch(e1; e2)
consists of pushing the handler onto the control stack and evaluating e1. If
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a value is propagated to the handler, the handler is removed and the value
continues to propagate upwards. If a failure is propagated to the handler,
the stored expression is evaluated with the handler removed from the con-
trol stack. All other frames propagate failures.

The definition of initial state remains the same as for K{nat⇀}, but we
change the definition of final state to include these two forms:

e val
ε / e final

(30.4a)

ε J final (30.4b)

The first of these is as before, corresponding to a normal result with the
specified value. The second is new, corresponding to an uncaught excep-
tion propagating through the entire program.

It is a straightforward exercise the extend the definition of stack typ-
ing given in Chapter 29 to account for the new forms of frame. Using this,
safety can be proved by standard means. Note, however, that the meaning
of the progress theorem is now significantly different: a well-typed pro-
gram does not get stuck . . . but it may well result in an uncaught failure!

Theorem 30.1 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.

30.2 Exceptions

Let us now consider enhancing the simple failures mechanism of the pre-
ceding section with an exception mechanism that permits a value to be as-
sociated with the failure, which is then passed to the handler as part of the
control transfer. The syntax of exceptions is given by the following gram-
mar:

Category Item Abstract Concrete
Expr e ::= raise[τ](e) raise(τ)e

| handle(e1; x.e2) try e1 ow x ⇒ e2

The argument to raise is evaluated to determine the value passed to the
handler. The expression handle(e1; x.e2) binds a variable, x, in the han-
dler, e2, to which the associated value of the exception is bound, should an
exception be raised during the execution of e1.

The dynamic semantics of exceptions is a mild generalization of that
of failures given in Section 30.1 on page 231. The failure state, k J , is
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extended to permit passing a value along with the failure, k J e, where
e val. Stack frames include these two forms:

raise[τ](−) frame (30.5a)

handle(−; x.e2) frame (30.5b)

The rules for evaluating exceptions are as follows:

k . raise[τ](e) 7→ raise[τ](−);k . e (30.6a)

raise[τ](−);k / e 7→ k J e (30.6b)

raise[τ](−);k J e 7→ k J e (30.6c)

k . handle(e1; x.e2) 7→ handle(−; x.e2);k . e1 (30.6d)

handle(−; x.e2);k / e 7→ k / e (30.6e)

handle(−; x.e2);k J e 7→ k . [e/x]e2 (30.6f)

( f 6= handle(−; x.e2))
f;k J e 7→ k J e

(30.6g)

The static semantics of exceptions generalizes that of failures.

Γ ` e : τexn
Γ ` raise[τ](e) : τ

(30.7a)

Γ ` e1 : τ Γ, x : τexn ` e2 : τ

Γ ` handle(e1; x.e2) : τ
(30.7b)

These rules are parameterized by the type of values associated with excep-
tions, τexn. But what should be the type τexn?

The first thing to observe is that all exceptions should be of the same
type, otherwise we cannot guarantee type safety. The reason is that a han-
dler might be invoked by any raise expression occurring during the exe-
cution of the expression that it guards. If different exceptions could have
different associated values, the handler could not predict (statically) what
type of value to expect, and hence could not dispatch on it without violat-
ing type safety.

Since the data associated with an exception is intended to indicate the
reason for the failure, it may seem reasonable to choose τexn to be str. Then
the value associated with an exception is a string that the reason for the
failure. For example, one might write
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raise "Division by zero error."

to signal the obvious arithmetic fault. While this might be reasonable for
uncaught exceptions, it is unreasonable for those that may be handled. The
handler would have to parse the associated string to determine what hap-
pened and how to respond! Another well-known approach is to choose τexn
to be nat, with the associated value being an “error number” according to
some convention. This, too, is obviously rather primitive and error-prone,
and does not support associating exception-specific data with the failure.

A more practical choice would be to distinguish a labelled sum type of
the form

τexn = [div : unit, fnf : string, . . .].

Each variant of the sum specifies the type of data associated with that vari-
ant. The handler may perform a case analysis on the tag of the variant,
thereby recovering the underlying data value of the appropriate type. For
example,

try e1 ow x ⇒
case x {
div 〈〉 ⇒ ediv

| fnf s ⇒ efnf
| . . . }

This code closely resembles the exception mechanisms found in many lan-
guages.

A significant complication remains. The type τexn must be specified on
a per-language basis to ensure that program fragments may be combined
sensibly with one another. But having to choose a single, fixed labelled
sum type to serve as the type of exceptions for all possible programs is
clearly absurd! Although certain low-level exceptions, such as division by
zero, might reasonably be included in any program, we expect in general
that the choice of exceptions is specific to the task at hand, and ought to be
chosen by the programmer. This is something of a dilemma, because we
must choose τexn once for all programs written in the language, yet we also
expect that programmers may declare their own exceptions.

The way out of this dilemma is to define τexn to be an extensible labelled
sum type, rather than a fixed labelled sum type. An extensible sum is one
that permits new tags to be created dynamically so that the collection of
possible tags on values of the type is not fixed statically, but only at run-
time. The concept of extensible sum has applications beyond their use as
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the type of values associated with exceptions. We will discuss this type in
detail in Chapter 38.

30.3 Exercises
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Chapter 31

Continuations

The semantics of many control constructs (such as exceptions and co-routines)
can be expressed in terms of reified control stacks, a representation of a con-
trol stack as an ordinary value. This is achieved by allowing a stack to be
passed as a value within a program and to be restored at a later point, even if
control has long since returned past the point of reification. Reified control
stacks of this kind are called first-class continuations, where the qualifica-
tion “first class” stresses that they are ordinary values with an indefinite
lifetime that can be passed and returned at will in a computation. First-
class continuations never “expire”, and it is always sensible to reinstate a
continuation without compromising safety. Thus first-class continuations
support unlimited “time travel” — we can go back to a previous point in
the computation and then return to some point in its future, at will.

How is this achieved? The key to implementing first-class continua-
tions is to arrange that control stacks are persistent data structures, just like
any other data structure in ML that does not involve mutable references.
By a persistent data structure we mean one for which operations on it yield
a “new” version of the data structure without disturbing the old version.
For example, lists in ML are persistent in the sense that if we cons an ele-
ment to the front of a list we do not thereby destroy the original list, but
rather yield a new list with an additional element at the front, retaining the
possibility of using the old list for other purposes. In this sense persistent
data structures allow time travel — we can easily switch between several
versions of a data structure without regard to the temporal order in which
they were created. This is in sharp contrast to more familiar ephemeral data
structures for which operations such as insertion of an element irrevocably
mutate the data structure, preventing any form of time travel.
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Returning to the case in point, the standard implementation of a control
stack is as an ephemeral data structure, a pointer to a region of mutable
storage that is overwritten whenever we push a frame. This makes it im-
possible to maintain an “old” and a “new” copy of the control stack at the
same time, making time travel impossible. If, however, we represent the
control stack as a persistent data structure, then we can easily reify a con-
trol stack by simply binding it to a variable, and continue working. If we
wish we can easily return to that control stack by referring to the variable
that is bound to it. This is achieved in practice by representing the control
stack as a list of frames in the heap so that the persistence of lists can be
extended to control stacks. While we will not be specific about implemen-
tation strategies in this note, it should be born in mind when considering
the semantics outlined below.

Why are first-class continuations useful? Fundamentally, they are rep-
resentations of the control state of a computation at a given point in time.
Using first-class continuations we can “checkpoint” the control state of a
program, save it in a data structure, and return to it later. In fact this is
precisely what is necessary to implement threads (concurrently executing
programs) — the thread scheduler must be able to checkpoint a program
and save it for later execution, perhaps after a pending event occurs or an-
other thread yields the processor.

31.1 Informal Overview

We will extend L{→} with the type cont(τ) of continuations accepting
values of type τ. The introduction form for cont(τ) is letcc[τ](x.e),
which binds the current continuation (i.e., the current control stack) to the
variable x, and evaluates the expression e. The corresponding elimination
form is throw[τ](e1; e2), which restores the value of e1 to the control stack
that is the value of e2.1

To illustrate the use of these primitives, consider the problem of mul-
tiplying the first n elements of an infinite sequence q of natural numbers,
where q is represented by a function of type nat → nat. If zero occurs
among the first n elements, we would like to effect an “early return” with
the value zero, rather than perform the remaining multiplications. This
problem can be solved using exceptions (we leave this as an exercise), but

1Close relatives of these primitives are available in SML/NJ in the following forms: for
letcc[τ](x.e), write SMLofNJ.Cont.callcc (fn x => e), and for throw[τ](e1; e2), write
SMLofNJ.Cont.throw e2 e1.
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we will give a solution that uses continuations in preparation for what fol-
lows.

Here is the solution in L{nat⇀}, without short-cutting:

fix ms is
λ q : nat ⇀ nat.

λ n : nat.
case n {

z ⇒ s(z)
| s(n’) ⇒ (q z) × (ms (q ◦ succ) n’)
}

The recursive call composes q with the successor function to shift the se-
quence by one step.

Here is the version with short-cutting:

λ q : nat ⇀ nat.
λ n : nat.
letcc ret : nat cont in
let ms be

fix ms is
λ q : nat ⇀ nat.

λ n : nat.
case n {
z ⇒ s(z)

| s(n’) ⇒
case q z {

z ⇒ throw z to ret
| s(n’) ⇒ (q z) × (ms (q ◦ succ) n’)
}

}
in

ms q n

The letcc binds the return point of the function to the variable ret for use
within the main loop of the computation. If zero is encountered, control is
thrown to ret, effecting an early return with the value zero.

Let’s look at another example: given a continuation k of type τ cont and
a function f of type τ′ → τ, return a continuation k′ of type τ′ cont with
the following behavior: throwing a value v′ of type τ′ to k′ throws the value
f (v′) to k. This is called composition of a function with a continuation. We wish
to fill in the following template:
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fun compose(f:τ′ → τ,k:τ cont):τ′ cont = ....

The first problem is to obtain the continuation we wish to return. The
second problem is how to return it. The continuation we seek is the one in
effect at the point of the ellipsis in the expression throw f(...) to k. This
is the continuation that, when given a value v′, applies f to it, and throws
the result to k. We can seize this continuation using letcc, writing

throw f(letcc x:τ′ cont in ...) to k

At the point of the ellipsis the variable x is bound to the continuation we
wish to return. How can we return it? By using the same trick as we used
for short-circuiting evaluation above! We don’t want to actually throw a
value to this continuation (yet), instead we wish to abort it and return it as
the result. Here’s the final code:

fun compose (f:τ′ → τ, k:τ cont):τ′ cont =
letcc ret:τ′ cont cont in
throw (f (letcc r in throw r to ret)) to k

Notice that the type of ret is that of a continuation-expecting continuation!

31.2 Semantics of Continuations

We extend the language of L{→} expressions with these additional forms:

Category Item Abstract Concrete
Type τ ::= cont(τ) τ cont
Expr e ::= letcc[τ](x.e) letcc x in e

| throw[τ](e1; e2) throw e1 to e2
| cont(k)

The expression cont(k) is a reified control stack; they arise during evalua-
tion, but are not available as expressions to the programmer.

The static semantics of this extension is defined by the following rules:

Γ, x : cont(τ) ` e : τ

Γ ` letcc[τ](x.e) : τ
(31.1a)

Γ ` e1 : τ1 Γ ` e2 : cont(τ1)

Γ ` throw[τ′](e1; e2) : τ′
(31.1b)

The result type of a throw expression is arbitrary because it does not return
to the point of the call.
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The static semantics of continuation values is given by the following
rule:

k : τ
Γ ` cont(k) : cont(τ)

(31.2)

A continuation value cont(k) has type cont(τ) exactly if it is a stack ac-
cepting values of type τ.

To define the dynamic semantics, we extend K{nat⇀} stacks with two
new forms of frame: e2 exp

throw[τ](−; e2) frame
(31.3a)

e1 val

throw[τ](e1;−) frame
(31.3b)

Every reified control stack is a value:

k stack
cont(k) val

(31.4)

The transition rules for the continuation constructs are as follows:

k . letcc[τ](x.e) 7→ k . [cont(k)/x]e (31.5a)

throw[τ](v;−);k / cont(k′) 7→ k′ / v (31.5b)

k . throw[τ](e1; e2) 7→ throw[τ](−; e2);k . e1 (31.5c)

e1 val

throw[τ](−; e2);k / e1 7→ throw[τ](e1;−);k . e2
(31.5d)

Evaluation of a letcc expression duplicates the control stack; evaluation of
a throw expression destroys the current control stack.

The safety of this extension of L{→} may be established by a simple
extension to the safety proof for K{nat⇀} given in Chapter 29.

We need only add typing rules for the two new forms of frame, which
are as follows:

e2 : cont(τ)

throw[τ](−; e2) : τ ⇒ τ′
(31.6a)

e1 : τ e1 val

throw[τ](e1;−) : cont(τ)⇒ τ′
(31.6b)

The rest of the definitions remain as in Chapter 29.

Lemma 31.1 (Canonical Forms). If e : cont(τ) and e val, then e = cont(k)
for some k such that k : τ.

Theorem 31.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok, then either s final or there exists s′ such that s 7→ s′.
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31.3 Exercises

1. Study the short-circuit multiplication example carefully to be sure
you understand why it works!

2. Attempt to solve the problem of composing a continuation with a
function yourself, before reading the solution.

3. Simulate the evaluation of compose ( f, k) on the empty stack. Ob-
serve that the control stack substituted for x is

ap( f ;−);throw[τ](−; k);ε

This stack is returned from compose. Next, simulate the behavior of
throwing a value v′ to this continuation. Observe that the stack is
reinstated and that v′ is passed to it.
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Propositions and Types





Chapter 32

The Curry-Howard
Correspondence

The Curry-Howard Correspondence is a central organzing principle of type
theory. Roughly speaking, the Curry-Howard Correspondence states that
there is a correspondence between propositions and types such that proofs
correspond to programs. To each proposition, φ, there is an associated type,
τ, such that to each proof p of φ, there is a corresponding expression e of
type τ. Among other things, this correspondence tells us that proofs have
computational content and that programs are a form of proof. It also suggests
that programming language features may be expected to give rise to con-
cepts of logic, and conversely that concepts from logic give rise to program-
ming language features. It is a remarkable fact that this correspondence,
which began as a rather modest observation about types and logics, has
developed into a central principle of language design whose implications
are still being explored.

This informal discussion leaves open what we mean by proposition and
proof. The original correspondence observed by Curry and Howard per-
tains to a particular branch of logic called constructive logic, of which we will
have more to say in the next section. However, the observation has since
been extended to an impressive array of logics, all of which are, by virtue of
the correspondence, “constructive”, but which extend the interpretation to
richer notions of proposition and proof. Thus one might say that there are
many Curry-Howard Correspondences, of which the original is but one!

We will focus our attention on constructive propositional logic, which
involves a minimum of technical machinery to motivate and explain. We
will concentrate on the “big picture”, and make only glancing reference to



246 32.1. CONSTRUCTIVE LOGIC

the considerable technical details involved in fully working out the corre-
spondence between propositions and types.

32.1 Constructive Logic

32.1.1 Constructive Semantics

Constructive logic is concerned with two judgement forms, φ prop, stating
that φ expresses a proposition, and φ true, stating that φ is a true proposi-
tion. In constructive logic a proposition is a specification describing a problem
to be solved. The solution to the problem posed by a proposition is a proof. If a
proposition has a proof (i.e., it specifies a soluble problem), then the propo-
sition is said to be true. The characteristic feature of constructive logic is
that there is no other criterion of truth than the existence of a proof.

In a contructive setting the notion of falsity of a proposition is not prim-
itive. Rather, to say that a proposition is false is simply to say that the
assumption that it is true (i.e., that it has a proof) is contradictory. In other
words, for a proposition to be false, constructively, means that there is a
refutation of it, which consists of a proof that assuming it to be true is con-
tradictory. In this sense constructive logic is a logic of positive, or affirmative,
information — we must have explicit evidence in the form of a proof in order
to affirm the truth or falsity of a proposition.

One consequence is that a given proposition need not be either true or
false! While at first this might seem absurd (what else could it be, green?), a
moment’s reflection on the semantics of propositions reveals that this con-
sequence is quite natural. There are, and always will be, unsolved problems
that can be posed as propositions. For a problem to be unsolved means that
we are not in possession of a proof of it, nor do we have a refutation of it.
Therefore, in an affirmative sense, we cannot say that the proposition is ei-

ther true or false! As an example, the famous P ?= NP problem has neither
a proof nor a refutation at the time of this writing, so we cannot at present
affirm or deny its truth.

A proposition, φ, for which we possess either a proof or a refutation of
it is said to be decidable. Any proposition for which we have either a proof
or a refutation is, of course, decidable, because we have already “decided”
it by virtue of having that information! But we can also make general state-
ments about decidability of propositions. For example, if φ expresses an
inequality between natural numbers, then φ is decidable, because we can
always work out, for given natural numbers m and n, whether m ≤ n or
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m 6≤ n — we can either prove or refute the given inequality. Once we step
outside the realm of such immediately checkable conditions, it is not clear
whether a given proposition has a proof or a refutation. It’s a matter of
rolling up one’s sleeves and doing some work! And there’s no guarantee
of success! Life’s hard, but we muddle through somehow.

The judgements φ prop and φ true are basic, or categorical, judgements.
These are the building blocks of reason, but they are rarely of interest by
themselves. Rather, we are interested in the more general case of the hypo-
thetical judgement, or consequence relation, of the form

φ1 true, . . . , φn true ` φ true.

This judgement expresses that the proposition φ is true (i.e., has a proof),
under the assumptions that each of φ1, . . . , φn are also true (i.e., have proofs).
Of course, when n = 0 this is just the same as the categorical judgement
φ true. We let Γ range over finite sets of assumptions.

The hypothetical judgement satisfies the following structural properties,
which characterize what we mean by reasoning under hypotheses:

Γ, φ true ` φ true (32.1a)

Γ ` φ true Γ, φ true ` ψ true

Γ ` ψ true
(32.1b)

Γ ` ψ true

Γ, φ true ` ψ true
(32.1c)

Γ, φ true, φ true ` θ true

Γ, φ true ` θ true
(32.1d)

Γ, ψ true, φ true, Γ′ ` θ true

Γ, φ true, ψ true, Γ′ ` θ true
(32.1e)

The last two rules are implicit in that we regard Γ as a set of hypotheses, so
that two “copies” are as good as one, and the order of hypotheses does not
matter.
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32.1.2 Propositional Logic

The syntax of propositional logic is given by the following grammar:

Category Item Abstract Concrete
Prop φ ::= true >

| false ⊥
| and(φ1; φ2) φ1 ∧ φ2
| or(φ1; φ2) φ1 ∨ φ2
| imp(φ1; φ2) φ1 ⊃ φ2

The connectives of propositional logic (truth, falsehood, conjunction, dis-
junction, implication, and negation) are given meaning by rules that deter-
mine (a) what constitutes a “direct” proof of a proposition formed from a
given connective, and (b) how to exploit the existence of such a proof in
an “indirect” proof of another proposition. These are called the introduc-
tion and elimination rules for the connective. The principle of conservation
of proof states that these rules are inverse to one another — the elimination
rule cannot extract more information (in the form of a proof) than was put
into it by the introduction rule, and the introduction rules can be used to re-
construct a proof from the information extracted from it by the elimination
rules.

Truth Our first proposition is trivially true. No information goes into
proving it, and so no information can be obtained from it.

Γ ` > true (32.2a)

(no elimination rule)
(32.2b)

Conjunction Conjunction expresses the truth of both of its conjuncts.

Γ ` φ true Γ ` ψ true

Γ ` φ ∧ ψ true
(32.3a)

Γ ` φ ∧ ψ true

Γ ` φ true
(32.3b)

Γ ` φ ∧ ψ true

Γ ` ψ true
(32.3c)
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Implication Implication states the truth of a proposition under an as-
sumption.

Γ, φ true ` ψ true

Γ ` φ ⊃ ψ true
(32.4a)

Γ ` φ ⊃ ψ true Γ ` φ true

Γ ` ψ true
(32.4b)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule)
(32.5a)

Γ ` ⊥ true
Γ ` φ true

(32.5b)

Disjunction Disjunction expresses the truth of either (or both) of two
propositions.

Γ ` φ true

Γ ` φ ∨ ψ true
(32.6a)

Γ ` ψ true

Γ ` φ ∨ ψ true
(32.6b)

Γ ` φ ∨ ψ true Γ, φ true ` θ true Γ, ψ true ` θ true

Γ ` θ true
(32.6c)

32.1.3 Explicit Proofs

The key to the Curry-Howard Correspondence is to make explict the forms
of proof. The categorical judgement φ true, which states that φ has a proof,
is replaced by the judgement p : φ, stating that p is a proof of φ. The hy-
pothetical judgement is modified correspondingly, with variables standing
for the presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn ` p : φ.

We again let Γ range over such hypothesis lists, subject to the restriction
that no variable occurs more than once.

The rules of constructive propositional logic may be restated using proof
terms as follows.

Γ ` trueI :> (32.7a)
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Γ ` p : φ Γ ` q : ψ

Γ ` andI(p; q) : φ ∧ ψ
(32.7b)

Γ ` p : φ ∧ ψ

Γ ` andEl(p) : φ
(32.7c)

Γ ` p : φ ∧ ψ

Γ ` andEr(p) : ψ
(32.7d)

Γ, x : φ ` p : ψ

Γ ` impI[φ](x.p) : φ ⊃ ψ
(32.7e)

Γ ` p : φ ⊃ ψ Γ ` q : φ

Γ ` impE(p; q) : ψ
(32.7f)

Γ ` p :⊥
Γ ` falseE[φ](p) : φ

(32.7g)

Γ ` p : φ

Γ ` orIl[ψ](p) : φ ∨ ψ
(32.7h)

Γ ` p : ψ

Γ ` orIr[φ](p) : φ ∨ ψ
(32.7i)

Γ ` p : φ ∨ ψ Γ, x : φ ` q : θ Γ, y : ψ ` r : θ

Γ ` orE[φ; ψ](p; x.q; y.r) : θ
(32.7j)

32.2 Propositions as Types

The Curry-Howard Correspondence emphasizes the close relationship be-
tween propositions and their proofs on one hand, and types and programs
on the other. The following chart summarizes the correspondence between
propositions, φ, and types, φ∗:

Proposition Type
> unit
⊥ void
φ ∧ ψ φ∗ × ψ∗

φ ⊃ ψ φ∗ → ψ∗

φ ∨ ψ φ∗ +ψ∗
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The correspondence extends to proofs and programs as well:

Proof Program
trueI triv
falseE[φ](p) abort[φ∗](p∗)
andI(p; q) pair(p∗; q∗)
andEl(p) fst(p∗)
andEr(p) snd(p∗)
impI[φ](x.p) lam[φ∗](x.p∗)
impE(p; q) ap(p∗; q∗)
orIl[ψ](p) in[l][ψ∗](p∗)
orIr[φ](p) in[r][φ∗](p∗)
orE[φ; ψ](p; x.q; y.r) case(p∗; x.q∗; y.r∗)

The translations above preserve and reflect formation and membership
when viewed as a translation into a typed language with unit, product,
void, sum, and function types.

Theorem 32.1 (Curry-Howard Correspondence).

1. If φ prop, then φ∗ type

2. If Γ ` p : φ, then Γ∗ ` p∗ : φ∗.

The preceding theorem establishes a static correspondence between propo-
sitions and types and their associated proofs and programs. It also extends
to a dynamic correspondence, in which we see that the execution behavior
of programs arises from the cancellation of elimination and introduction
rules in the following manner:

andEl(andI(p; q)) 7→ p
andEr(andI(p; q)) 7→ q

impE(impI[φ](x.q); p) 7→ [p/x]q
orE[φ; ψ](orIl[ψ](p); x.q; y.r) 7→ [p/x]q
orE[φ; ψ](orIr[φ](p); x.q; y.r) 7→ [p/y]r

These are precisely the primitive instructions associated with the programs
corresponding to these proofs! Indeed, these rules may be understood as
the codification of the computational content of proofs — the precise sense in
which proofs in propositional logic correspond, both statically and dynam-
ically, to programs.
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The correspondence given here does not extend to general recursion,
which would correspond to admitting a circular proof, one whose justifi-
cation relies on its own presumed truth. Unsurprisingly, permitting circu-
lar proofs renders the logic inconsistent—one can derive a “proof” of any
proposition simply by appealing to itself! However, this does not mean
that there is no logical account of general recursion. Rather, it simply says
that self-reference cannot be permitted as evidence for the truth of a propo-
sition. But one could well imagine using self-reference in connection with a
relaxed notion of truth corresponding to the isolation of effects in a monad
in a programming language.

32.3 Exercises
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Chapter 33

Classical Proofs and Control
Operators

In Chapter 32 we saw that constructive logic is a logic of positive informa-
tion in that the meaning of the judgement φ true is that there exists a proof
of φ. A refutation of a proposition φ consists of a proof of the hypotheti-
cal judgement φ true ` ⊥ true, asserting that the assumption of φ leads to
a proof of logical falsehood (i.e., a contradiction). Since there are proposi-
tions, φ, for which we possess neither a proof nor a refutation, we cannot
assert, in general, φ ∨ ¬φ true.

By contrast classical logic (the one we all learned in school) maintains a
complete symmetry between truth and falsehood — that which is not true
is false and that which is not false is true. Obviously such an interpretation
conflicts with the constructive interpretation, for lack of a proof of a propo-
sition is not a refutation, nor is lack of a refutation a proof.1 In this sense
classical logic is a logic of perfect information, in which all mathematical
problems have a solution (though we may not know it), and for each one it
is clear whether it is true or false. One might consider this “god’s view” of
mathematics, in constrast to the “mortal’s view” we are stuck with.

Despite this absolutism, classical logic nevertheless has computational
content, albeit in a somewhat attenuated form compared to constructive
logic. Whereas in constructive logic truth is identified with the existence
of certain positive information, in classical logic it is identified with the ab-
sence of a refutation, a much weaker criterion. Dually, falsehood is identi-
fied with the absence of a proof, which is also much weaker than possession

1Or, in the words of the brilliant military strategist Donald von Rumsfeld, the absence
of evidence is not evidence of absence.
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of a refutation. This weaker interpretation is responsible for the pleasing
symmetries of classical logic. The drawback is that in classical logic propo-
sitions means much less than they do in constructive logic. For example, in
classical logic the proposition φ ∨ ¬φ does not state that we have either a
proof of φ or a refutation of it, rather just that it is impossible that we have
both a proof of it and a refutation of it.

33.1 Classical Logic

Classical logic is concerned with three categorical judgement forms:

1. φ true, stating that proposition φ is true;

2. φ false, stating that proposition φ is false;

3. #, stating that a contradiction has been derived.

We will consider hypothetical judgements in which hypotheses have either
of the first two forms; we will have no need of a hypothesis of the third
form. Up to permutation, then, hypothetical judgements have the form

φ1 false, . . . , φm false; ψ1 true, . . . , ψn true ` J,

where J is any of the three categorical judgement forms.
Rather than axiomatize classical logic directly in terms of these judge-

ment forms, we will instead give an axiomatization in which proof terms
are made explicit at the outset. The proof-explicit form of the three categor-
ical judgements of classical logic are as follows:

1. p : φ, stating that p is a proof of φ;

2. k÷ φ, stating that k is a refutation of φ;

3. k # p, stating that k and p are contradictory.

We will consider hypothetical judgements of the form (up to permutation
of hypotheses)

u1÷ φ1, . . . , um÷ φm︸ ︷︷ ︸
∆

; x1 : ψ1, . . . , xn : ψn︸ ︷︷ ︸
Γ

` J,

where J is any of the three categorical judgements in explicit form.
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Statics

A contradiction arises from the conflict between a proof and a refutation:

∆; Γ ` k÷ φ ∆; Γ ` p : φ

∆; Γ ` k # p
(33.1a)

The reflexivity rules capture the meaning of hypotheses:

∆, u÷ φ; Γ ` u÷ φ (33.1b)

∆; Γ, x : ψ ` x : φ (33.1c)

Truth and falsity are complementary:

∆, u÷ φ; Γ ` k # p
∆; Γ ` ccr(u÷ φ.k # p) : φ

(33.1d)

∆; Γ, x : φ ` k # p
∆; Γ ` ccp(x : φ.k # p)÷ φ

(33.1e)

In both of these rules the entire contradiction, k # p, lies within the scope of
the abstractor!

The rules for the connectives are organized as introductory rules for
truth and for falsity, the latter playing the role of eliminatory rules in con-
structive logic.

∆; Γ ` 〈〉 :> (33.1f)

∆; Γ ` abort÷⊥ (33.1g)

∆; Γ ` p : φ ∆; Γ ` q : ψ

∆; Γ ` 〈p, q〉 : φ ∧ ψ
(33.1h)

∆; Γ ` k÷ φ

∆; Γ ` fst;k÷ φ ∧ ψ
(33.1i)

∆; Γ ` k÷ψ

∆; Γ ` snd;k÷ φ ∧ ψ
(33.1j)

∆; Γ, x : φ ` p : ψ

∆; Γ ` λ(x:φ. p) : φ ⊃ ψ
(33.1k)

∆; Γ ` p : φ ∆; Γ ` k÷ψ

∆; Γ ` app(p);k÷ φ ⊃ ψ
(33.1l)

∆; Γ ` p : φ

∆; Γ ` inl(p) : φ ∨ ψ
(33.1m)
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∆; Γ ` p : ψ

∆; Γ ` inr(p) : φ ∨ ψ
(33.1n)

∆; Γ ` k÷ φ ∆; Γ ` l÷ψ

∆; Γ ` case(k; l)÷ φ ∨ ψ
(33.1o)

∆; Γ ` k÷ φ

∆; Γ ` not(k) :¬φ
(33.1p)

∆; Γ ` p : φ

∆; Γ ` not(p)÷¬φ
(33.1q)

Dynamics

The dynamic semantics of classical logic may be described as a process of
conflict resolution. The state of the abstract machine is a contradiction, k # p,
between a refutation, k, and a proof, p, of the same proposition. Execution
consists of “simplifying” the conflict based on the form of k and p. This
process is formalized by an inductive definition of a transition relation be-
tween contradictory states.

Here are the rules for each of the logical connectives, which all have the
form of resolving a conflict between a proof and a refutation of a proposi-
tion formed with that connective.

fst;k # 〈p, q〉 7→ k # p (33.2a)
snd;k # 〈p, q〉 7→ k # q (33.2b)

case(k; l) # inl(p) 7→ k # p (33.2c)
case(k; l) # inr(q) 7→ l # q (33.2d)

app(p);k # λ(x:φ. q) 7→ k # [p/x]q (33.2e)
not(p) # not(k) 7→ k # p (33.2f)

The symmetry of the transition rule for negation is particularly elegant.
Here are the rules for the generic primitives relating truth and falsity.

ccp(x : φ.k # p) # q 7→ [q/x]k # [q/x]p (33.2g)
k # ccr(u÷ φ.l # p) 7→ [k/u]l # [k/u]p (33.2h)

These rules explain the terminology: “ccp” means “call with current proof”,
and “ccr” means “call with current refutation”. The former is a refutation
that binds a variable to the current proof and installs the corresponding in-
stance of its constituent state as the current state. The latter is a proof that
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binds a variable to the current refutation and installs the corresponding
instance of its constituent state as the current state.

It is important to observe that the rules (33.2g) to (33.2h) overlap in the
sense that there are two possible transitions for a state of the form

ccp(x : φ.k # p) # ccr(u÷ φ.l # q).

This state may transition either to the state

[r/x]k # [r/x]p,

where r is ccr(u÷ φ.l # q), or to the state

[m/u]l # [m/u]q,

where m is ccp(x : φ.k # p), and these are not equivalent.
There are two possible attitudes about this. One is to simply accept that

classical logic has a non-deterministic dynamic semantics, and leave it at
that. But this means that it is difficult to predict the outcome of a computa-
tion, since it could be radically different in the case of the overlapping state
just described. The alternative is to impose an arbitrary priority ordering
among the two cases, either preferring the first transition to the second, or
vice versa. Preferring the first corresponds, very roughly, to a “lazy” seman-
tics for proofs, because we pass the unevaluated proof, r, to the refutation
on the left, which is thereby activated. Preferring the second corresponds
to an “eager” semantics for proofs, in which we pass the unevaluated refu-
tation, m, to the proof, which is thereby activated. Dually, these choices
correspond to an “eager” semantics for refutations in the first case, and a
“lazy” one for the second. Take your pick.

The final issue is the initial state: how is computation to be started?
Or, equivalently, when is it finished? The difficulty is that we need both a
proof and a refutation of the same proposition! While this can easily come
up in the “middle” of a proof, it would be impossible to have a finished
proof and a finished refutation of the same proposition! The solution for an
eager interpretation of proofs (and, correspondingly, a lazy interpretation
of refutations) is simply to postulate an initial (or final, depending on your
point of view) refutation, halt, and to deem a state of the form halt # p
to be initial, and also final, provided that p is not a “ccr” instruction. The
solution for a lazy interpretation of proofs (and an eager interpretation of
refutations) is dual, taking k # halt as initial, and also final, provided that
k is not a “ccp” instruction.
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33.2 Exercises
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Chapter 34

Subtyping

A subtype relation is a pre-order (reflexive and transitive relation) on types
that validates the subsumption principle:

if σ is a subtype of τ, then a value of type σ may be provided
whenever a value of type τ is required.

The subsumption principle relaxes the strictures of a type system to permit
values of one type to be treated as values of another.

Experience shows that the subsumption principle, while useful as a
general guide, can be tricky to apply correctly in practice. The key to get-
ting it right is the principle of introduction and elimination described in
Chapter 13. To determine whether a candidate subtyping relationship is
sensible, it suffices to consider whether every introductory form of the sub-
type can be safely manipulated by every eliminatory form of the supertype.
A subtyping principle makes sense only if it passes this test; the proof of
the type safety theorem for a given subtyping relation ensures that this is
the case.

A good way to get a subtyping principle wrong is to think of a type
merely as a set of values (generated by introductory forms), and to con-
sider whether every value of the subtype can also be considered to be a
value of the supertype. The intuition behind this approach is to think of
subtyping as akin to the subset relation in ordinary mathematics. But this
can lead to serious errors, because it fails to take account of the operations
(eliminatory forms) that one can perform on values of the supertype. It is
not enough to think only of the introductory forms; one must also think of
the eliminatory forms. Subtyping is a matter of behavior, which is a dynamic
criterion, rather than containment, which is a static criterion.
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34.1 Subsumption

A subtyping judgement has the form σ <: τ, and states that σ is a subtype of
τ. At a minimum we demand that the following structural rules of subtyp-
ing be admissible:

τ <: τ (34.1a)
ρ <: σ σ <: τ

ρ <: τ
(34.1b)

In practice we either tacitly include these rules as primitive, or prove that
they are admissible for a given set of subtyping rules.

The point of a subtyping relation is to enlarge the set of well-typed pro-
grams, which is achieved by the subsumption rule:

Γ ` e : σ σ <: τ
Γ ` e : τ

(34.2)

In contrast to most other typing rules, the rule of subsumption is not syntax-
directed, because it does not constrain the form of e. That is, the subsump-
tion rule may be applied to any form of expression. In particular, to show
that e : τ, we have two choices: either apply the rule appropriate to the
particular form of e, or apply the subsumption rule, checking that e : σ and
σ <: τ.

34.2 Varieties of Subtyping

In this section we will informally explore several different forms of subtyp-
ing for various extensions of L{⇀}. In Section 34.4 on page 268 we will
examine some of these in more detail from the point of view of type safety.

34.2.1 Numbers

For languages with numeric types, our mathematical experience suggests
subtyping relationships among them. For example, in a language with
types int, rat, and real, representing, respectively, the integers, the ratio-
nals, and the reals, it is tempting to postulate the subtyping relationships

int <: rat <: real

by analogy with the set containments

Z ⊆ Q ⊆ R
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familiar from mathematical experience.
But are these subtyping relationships sensible? The answer depends on

the representations and interpretations of these types! Even in mathemat-
ics, the containments just mentioned are usually not quite true—or are true
only in a somewhat generalized sense. For example, rational numbers are
often represented as ordered pairs (m, n) representing the ratio m/n, with
n 6= 0 and gcd(m, n) = 1. Strictly speaking, not every integer is an ordered
pair, rather Z may be isomorphically embedded within Q by the inclusion
mapping n ↪→ (n, 1). That is, the rationals contain an isomorphic copy of
the integers. Similarly, the real numbers are often represented as conver-
gent sequences of rationals, so that strictly speaking the rationals are not
a subset of the reals, but rather may be embedded in them by choosing
a canonical representative (i.e., a particular convergent sequence) of each
rational.

For mathematical purposes it is entirely reasonable to overlook fine dis-
tinctions such as that between Z and its embedding within Q. This is jus-
tified because the operations on rationals restrict to the embedding in the
expected manner: if we add two integers thought of as rationals in the
canonical way, then the result is the rational associated with their sum.
And similarly for the other operations, provided that we take some care
in defining them to ensure that it all works out properly. For the purposes
of computing, however, one cannot be quite so cavalier, because we must
also take account of algorithmic efficiency and the finiteness of machine
representations. Often what are called “real numbers” in a programming
language are, in fact, finite precision floating point numbers, a small subset
of the rational numbers. Not every rational can be exactly represented as a
floating point number, nor does floating point arithmetic restrict to rational
arithmetic even when its arguments are exactly represented.

There is a way to make sense of a subtype hierarchy such as the one
suggested above, but it comes at a considerable cost. Briefly, there are ex-
act representations of those real numbers that can be generated by a com-
puter program. (For example, one may use computable sequences of ra-
tionals equipped with a computable modulus of convergence, but other,
better-behaved, representations have also been considered.) To ensure that
the specified subtype relationships hold, we may simply represent integers
and rationals as real numbers in this sense (i.e., as their isomorphic embed-
dings), so that arithmetic on reals is, by definition, the same as arithmetic
on integers and rationals. In this manner we may validate the subtyping
relations suggested earlier, but at the expense of making the arithmetic op-
erations extremely inefficient compared to native machine arithmetic.
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34.2.2 Products

Product types give rise to a form of subtyping based on the subsumption
principle. The only elimination form applicable to a value of product type
is a projection. Under mild assumptions about the dynamic semantics of
projections, we may consider one product type to be a subtype of another
by considering whether the projections applicable to the supertype may be
validly applied to values of the subtype.

In the case of unlabelled tuple types this amounts to regarding a tuple
type to be a subtype of any prefix of it, as specified by the following rule:

n ≤ m
〈τ1, . . . , τm〉 <: 〈τ1, . . . , τn〉

. (34.3)

This principle is called width subtyping for tuples; it states that a wider tuple
is a subtype of a narrower one, provided that they agree on the types of their
fields. This principle is justified if we may project the ith component of a
record, where 1 ≤ i ≤ n, without knowing whether there are more than n
components in the record.

Width subtyping also extends to record (labelled tuple) types:

n ≤ m
〈l1 : τ1, . . . , lm : τm〉 <: 〈l1 : τ1, . . . , ln : τn〉

. (34.4)

This principle is justified if we may project the field labelled l from a record
without knowing what other fields the record may possess. This may seem
less easily justified than prefix subtyping. Prefix subtyping for unlabelled
ordered tuples is justified if we can extract the ith component by a simple
offset calculation from the front of the tuple, so that the presence or absence
of subsequent fields is immaterial. But for labelled unordered tuples, it is
not possible to calculate the position of the field labelled l without knowing
what other fields are present. This can be remedied in several ways.

The most obvious method is to associate a mapping from labels to po-
sitions with each value of record type so that it is always possible to de-
termine the offset of the field labelled l in any given record value. By a
careful choice of hash functions one can ensure constant-time access for
each field, because the labels are known in advance (new labels are not cre-
ated at run-time). Another, less obvious, method is to observe that if the
only elimination form is the projection, then we may coerce a record value
from the subtype to the supertype by copying the fields that are retained,
and dropping those that are omitted, in the supertype. In this way we en-
sure that the static type of a record accurately predicts its entire repertoire
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of fields so that offsets can be computed statically, rather than dynamically.
Note, however, that this method does not scale to mutable records (those
for which there is an assignment operation on each field), because copying
changes the semantics of the program (mutating the copy does not affect
the original). In such languages there is little recourse but to use a dynamic
lookup scheme to compute projections.

Summarizing, the principle of width subtyping for finite product types
is given by the following rule:

J ⊆ I
∏i∈I τi <: ∏j∈J τj

. (34.5)

This rule generalizes the preceding rules, using the represetation of tuples
and records as finite products described in Chapter 17.

34.2.3 Sums

The analogue of width subtyping for labelled sums states that a narrower
range of choices is a subtype of a wider range of choices:

m ≤ n
[l1 : τ1, . . . , lm : τm] <: [l1 : τ1, . . . , ln : τn]

(34.6)

This is justified by observing that a case analysis on the supertype accounts
for all of the cases that can arise from a value of the subtype, and then
some. The “extra” cases present no problems for safety, and hence we can
treat the narrower sum as being a subtype of the wider. One may also con-
sider a form of width subtyping for unlabelled n-ary sums, by considering
any prefix of an n-ary sum to be a subtype of that sum. Here again the elim-
ination form for the supertype, namely an n-ary case analysis, is prepared
to handle any value of the subtype, which is enough for safety.

Observe that for width subtyping to be sensible, the representation of
values of the subtype must be the same as their representation for the su-
pertype. In particular one may not “optimize” representations based on
the number of summands of the sum type, saying using only as many bits
as necessary to represent every possible label. For then if we are to regard
values of the subtype as being values of the supertype so that we may case
analyze them, the representation must be sensible in the context of a wider
array of options. Consequently, no optimization is possible, at least if the
values of the subtype are to be passed to the elimination forms of the su-
pertype unchanged.
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As a special case of width subtyping for sums, finite enumeration types
(finite sums of copies of the unit type) obey the expected subtyping rela-
tion corresponding to a naı̈ve interpretation of the enumeration as a finite
set of values. That is, a smaller enumeration is a subtype of a larger one,
so that the smallest enumeration in the subtype ordering is the empty enu-
meration. The justification is not the set interpretation, but rather that the
elimination form for a finite enumeration is a case analysis, which may be
safely applied as long as all cases are covered.

The principle of width subtyping for finite sum types is given by the
following rule:

I ⊆ J
∑i∈I τi <: ∑j∈J τj

. (34.7)

Note well the reversal of the containment as compared to Rule (34.5).

34.3 Variance

In addition to basic subtyping principles such as those considered in Sec-
tion 34.2 on page 262, it is also important to consider the effect of subtyping
on type constructors. For example, if corresponding fields of a tuple type
are subtypes of one another, then how do the tuple types themselves stand
in the subtyping relation? Similar questions arise for all type constructors.
A type constructor is said to be covariant in an argument if subtyping in
that argument is preserved by the constructor. It is said to be contravari-
ant if subtyping in that argument is reversed by the constructor. Finally,
the constructor is said to be invariant in an argument if subtyping for the
constructed type is not affected by subtyping in that argument.

34.3.1 Products

The tuple, record, and object type constructors are all covariant in that they
preserve subtyping in each argument position. Here is the covariance prin-
ciple for tuple types:

σ1 <: τ1 . . . σn <: τn

〈σ1, . . . , σn〉 <: 〈τ1, . . . , τn〉
. (34.8)

Covariance for tuple types is sometimes called depth subtyping, since it ap-
plies within the components of the tuple, in contrast to width subtyping,
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which applies across its components. A similar covariance principle gov-
erns record types:

σ1 <: τ1 . . . σn <: τn

〈l1 : σ1, . . . , ln : σn〉 <: 〈l1 : τ1, . . . , ln : τn〉
. (34.9)

Depth subtyping for products is justified by the subsumption principle.
The only elimination form for a tuple type is projection. If e is a value of
the subtype, then its ith component has type σi. If we regard e as a value of
the supertype, then we expect that t · i has type τi, which is justified because
σi <: τi. Thus it is valid to consider the entire tuple to be of the supertype,
since each component will have the component type specified there.

Summarizing, the principle of covariance for finite product types is
given by the following rule:

(∀i ∈ I) σi <: τi

∏i∈I σi <: ∏i∈I τi
(34.10)

34.3.2 Sums

Both unlabelled and labelled sum types are covariant in each position:

σ1 <: τ1 . . . σn <: τn

[l1 : σ1, . . . , ln : σn] <: [l1 : τ1, . . . , ln : τn]
. (34.11)

A case analysis on a value of the supertype is prepared, in the ith branch,
to accept a value of type τi. By the premises of the rule, it is sufficient to
provide a value of type σi instead.

The principle of covariance for finite sum types is given by the follow-
ing rule:

(∀i ∈ I) σi <: τi

∑i∈I σi <: ∑i∈I τi
(34.12)

34.3.3 Functions

The variance of the function type constructor is a bit more subtle. Let us
consider first the variance of the function type in its range. Suppose that
e : σ→ τ. This means that if e1 : σ, then e(e1) : τ. If τ <: τ′, then e(e1) : τ′

as well. This suggests the following covariance principle for function types:

τ <: τ′

σ→ τ <: σ→ τ′
(34.13)
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Every function that delivers a value of type τ must also deliver a value
of type τ′, provided that τ <: τ′. Thus the function type constructor is
covariant in its range.

Now let us consider the variance of the function type in its domain.
Suppose again that e : σ→ τ. This means that e may be applied to any
value of type σ, and hence, by the subsumption principle, it may be applied
to any value of any subtype, σ′, of σ. In either case it will deliver a value of
type τ. Consequently, we may just as well think of e as having type σ′ → τ.

σ′ <: σ
σ→ τ <: σ′ → τ

(34.14)

The function type is contravariant in its domain position. Note well the
reversal of the subtyping relation in the premise as compared to the con-
clusion of the rule!

34.4 Safety for Subtyping

Proving safety for a language with subtyping is considerably more delicate
than for languages without. The rule of subsumption means that the static
type of an expression reveals only partial information about the underlying
value. This changes the proof of the preservation and progress theorems,
and requires some care in stating and proving the auxiliary lemmas re-
quired for the proof. We will illustrate the issues that arise for record types
with width and depth subtyping studied in isolation from other language
features. We leave it to the reader to extend the proofs to a fuller language,
taking account of the effect of subtyping on the other language constructs.

For convenience, we consolidate (and simplify) the static semantics of
records as follows:

Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` 〈l1 = e1, . . . , ln = en〉 : 〈l1 : τ1, . . . , ln : τn〉
(34.15a)

Γ ` e : 〈l : τ〉
Γ ` e · l : τ

(34.15b)

Γ ` e : σ σ <: τ
Γ ` e : τ

(34.15c)

n ≤ m
〈l1 : τ1, . . . , lm : τm〉 <: 〈l1 : τ1, . . . , ln : τn〉

(34.15d)

σ1 <: τ1 . . . σn <: τn

〈l1 : σ1, . . . , ln : σn〉 <: 〈l1 : τ1, . . . , ln : τn〉
(34.15e)
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Rule (34.15b) is simplified compared to Rule (17.3b), because we can take
advantage of width subtyping to focus on the one field of interest.

We state several lemmas about the static semantics that will be of use in
the safety proof.

Lemma 34.1 (Structural). 1. The record subtyping relation is reflexive and
transitive.

2. The typing judgement Γ ` e : τ is closed under weakening and substitution.

Lemma 34.2 (Inversion). 1. If e · l : τ, then e : 〈l : τ〉.

2. If 〈l1 = e1, . . . , ln = en〉 : τ, then 〈l1 : σ1, . . . , ln : σn〉 <: τ for some σ1, . . . , σn,
such that, for each 1 ≤ i ≤ n, ei : σi.

3. If 〈l1 : σ1, . . . , ln : σn〉 <: 〈l1 : τ1, . . . , lm : τm〉, then m ≤ n and, for each
1 ≤ i ≤ m, we have σi <: τi.

Proof. By induction on the typing rules, paying special attention to the rule
of subsumption. For example, in the proof of the first inversion principle,
if e · l : τ is derived by subsumption, then we have e · l : σ for some σ <: τ,
and so by induction e : 〈l : σ〉, and hence by covariance, e : 〈l : τ〉. Similarly,
in the proof of the second property for the case of subsumption we rely on
the transitivity of the subtyping relation.

The dynamic semantics of records is repeated here for ease of reference:

e1 val . . . en val

〈l1 = e1, . . . , ln = en〉 val
(34.16a)

e1 val e′1 = e1 . . . ei−1 val e′i−1 = ei−1

ei 7→ e′i e′i+1 = ei+1 . . . e′n = en

〈l1 = e1, . . . , ln = en〉 7→ 〈l1 = e′1, . . . , ln = e′n〉
(34.16b)

e 7→ e′

e · l 7→ e′ · l
(34.16c)

e1 val . . . en val 1 ≤ i ≤ n
〈l1 = e1, . . . , ln = en〉 · li 7→ ei

(34.16d)

Theorem 34.3 (Preservation). If e : τ and e 7→ e′, then e′ : τ.
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Proof. By induction on Rules (34.16). For example, consider Rule (34.16d).
We have by assumption 〈l1 = e1, . . . , ln = en〉 · li : τ. By inversion of typ-
ing we have 〈l1 = e1, . . . , ln = en〉 : 〈li : τ〉, and hence by inversion of typing
〈l1 : σ1, . . . , ln : σn〉 <: 〈li : τ〉 with ej : σj for each 1 ≤ j ≤ n. Therefore by
inversion of subtyping there exists 1 ≤ j ≤ n such that lj = li and σj <: τ,
from which it follows that ei : τ.

Lemma 34.4 (Canonical Forms). If e val and e : 〈l1 : τ1, . . . , ln : τn〉, then e =
〈l1 = e1, . . . , lm = em〉 with m ≥ n and ej val for each 1 ≤ j ≤ m.

Proof. By induction on the static semantics, taking account of the definition
of values. Observe that a value of record type is, in general, larger than is
predicted by its type.

Theorem 34.5 (Progress). If e : τ, then either e val or there exists e′ such that
e 7→ e′.

Proof. By induction on typing. Consider, for example, Rule (34.15b), with
τ = 〈l : σ〉. By induction either e val or e 7→ e′ for some e′. In the latter
case we have by Rule (34.16c) e · l 7→ e′ · l. In the former case we have
by canonical forms that e = 〈l1 = e1, . . . , lm = em〉 where ei val for each 1 ≤
i ≤ m, and such that l = lj for some 1 ≤ j ≤ m. Therefore e · l 7→ ej, as
required.

34.5 Recursive Subtyping

Consider the types of labelled binary trees with natural numbers at each
node,

µt.[empty : unit, binode : 〈data : nat, lft : t, rht : t〉],

and of “bare” binary trees, without labels on the nodes,

µt.[empty : unit, binode : 〈lft : t, rht : t〉].

Is either a subtype of the other? Intuitively, one might expect the type of
labelled binary trees to be a subtype of the type of bare binary trees, since
any use of a bare binary tree can simply ignore the presence of the label.

Now consider the type of bare “two-three” trees with two sorts of nodes,
those with two children, and those with three:

µt.[empty : unit, binode : 〈lft : t, rht : t〉, trinode : 〈lft : t, mid : t, rht : t〉].
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What subtype relationships should hold between this type and the preced-
ing two tree types? Intuitively the type of bare two-three trees should be
a supertype of the type of bare binary trees, since any use of a two-three
tree must proceed by three-way case analysis, which covers both forms of
binary tree.

To capture the pattern illustrated by these examples, we must formulate
a subtyping rule for recursive types. It is tempting to consider the following
rule:

t | σ <: τ

µt.σ <: µt.τ ?? (34.17)

That is, to determine whether one recursive type is a subtype of the other,
we simply compare their bodies, with the bound variable treated as a pa-
rameter. Notice that by reflexivity of subtyping, we have t <: t, and hence
we may use this fact in the derivation of σ <: τ.

Rule (34.17) validates the intuitively plausible subtyping between la-
belled binary tree and bare binary trees just described. To derive this re-
duces to checking the subtyping relationship

〈data : nat, lft : t, rht : t〉 <: 〈lft : t, rht : t〉,

generically in t, which is evidently the case.

Unfortunately, Rule (34.17) also underwrites incorrect subtyping rela-
tionships, as well as some correct ones. As an example of what goes wrong,
consider the recursive types

σ = µt.〈a : t→ nat, b : t→ int〉

and
τ = µt.〈a : t→ int, b : t→ int〉.

We assume for the sake of the example that nat <: int, so that by using
Rule (34.17) we may derive σ <: τ, which we will show to be incorrect. Let
e : σ be the expression

fold(〈a =λ(x:σ. 4), b =λ(x:σ. q(unfold(x) · a(x)))〉),

where q : nat→ nat is the discrete square root function. Since σ <: τ, it
follows that e : τ as well, and hence

unfold(e) : 〈a : τ → nat, b : τ → int〉.
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Now let e′ : τ be the expression

fold(〈a =λ(x:τ. -4), b =λ(x:τ. 0)〉).

(The important point about e′ is that the a method returns a negative num-
ber; the b method is of no significance.) To finish the proof, observe that

unfold(e) · b(e′) 7→∗ q(-4),

which is a stuck state. We have derived a well-typed program that “gets
stuck”, refuting type safety!

Rule (34.17) is therefore incorrect. But what has gone wrong? The error
lies in the choice of a single parameter to stand for both recursive types,
which does not correctly model self-reference. In effect we are regarding
two distinct recursive types as equal while checking their bodies for a sub-
typing relationship. But this is clearly wrong! It fails to take account of
the self-referential nature of recursive types. On the left side the bound
variable stands for the subtype, whereas on the right the bound variable
stands for the super-type. Confusing them leads to the unsoundness just
illustrated.

As is often the case with self-reference, the solution is to assume what
we are trying to prove, and check that this assumption can be maintained
by examining the bodies of the recursive types. This leads to the following
correct rule of subsumption for recursive types:

µs.σ <: µt.τ ` [µs.σ/s]σ <: [µt.τ/t]τ
µs.σ <: µt.τ

. (34.18)

Using this rule we may verify the subtypings among the tree types sketched
above. Moreover, it is instructive to check that the unsound subtyping is
not derivable using this rule! The reason is that the assumption of the sub-
typing relation is at odds with the contravariance of the function type in its
domain.

An alternative formulation of Rule (34.18) makes use of parameters,
rather than substitution.

s, t | s <: t ` σ <: τ

µs.σ <: µt.τ
. (34.19)

It is easy to verify that each rule is admissible in the presence of the other.
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34.6 References1

Reference types interact poorly with subtyping. To see why, let us apply the
principle of subsumption to derive a sound subtyping rule for references.
Suppose that r has type σ ref. There are two elimination forms that may
be applied to r:

1. Retrieve its contents as a value of type σ.

2. Replace its contents with a value of type σ.

If σ <: τ, then retrieving the contents of r yields a value of type τ, by
subsumption. This suggests that reference types be considered covariant:

σ <: τ
σ ref <: τ ref ??

On the other hand, if τ <: σ, then we may store a value of type τ into r.
This suggests that reference types be considered contravariant:

τ <: σ
σ ref <: τ ref ??

Combining these two observations, we see that reference types are invari-
ant:

σ <: τ τ <: σ
σ ref <: τ ref

(34.20)

In practice the only mway to satisfy the premises of the rule is for σ and τ
to be identical.

Similar restrictions govern mutable array types, whose components are
mutable cells that can be assigned and retrieved just as for reference types.
A naı̈ve interpretation of array types would suggest that arrays be covari-
ant, since a sequence of values of type σ is also a sequence of values of type
τ, provided that σ <: τ. But this overlooks the possibility of assigning to
the elements of the array, which is inconsistent with covariance. The result
is that mutable array types must be regarded as invariant to ensure type
safety (pace well-known languages that stipulate otherwise).

34.7 Exercises

1. Consider the subtyping issues related to signed and unsigned, fixed
precision integer types.

1Please see Chapter 37 for discussion of reference types.
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2. Investigate “downcasting” for variant types. Makes the type of an ex-
pression of variant type more precise. When there is only one variant,
case analysis is just a safe “outjection.”

3. Labelled two-three trees and the associated pre-order among the four
types.

4. Investigate the incorrect subtyping rule for recursive types in which
the types are assumed equal.
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Chapter 35

Singleton and Dependent
Kinds

The expression let e1:τ be x in e2 is a form of abbreviation mechanism by
which we may bind e1 to the variable x for use within e2. In the presence of
function types this expression is definable as the application λ(x:τ. e2)(e1),
which accomplishes the same thing. It is natural to consider an analogous
form of let expression which permits a type expression to be bound to a type
variable within a specified scope. The expression let t be τ in e binds t to τ
within e, so that one may write expressions such as

let t be nat× nat inλ(x:t. s(fst(x))).

For this expression to be type-correct the type variable t must be synony-
mous with the type nat× nat, for otherwise the body of the λ-abstraction
is not type correct.

Following the pattern of the expression-level let, we might guess that
lettype is an abbreviation for the polymorphic instantiation Λ(t.e)[τ],
which binds t to τ within e. This does, indeed, capture the dynamic seman-
tics of type abbreviation, but it fails to validate the intended static seman-
tics. The difficulty is that, according to this interpretation of lettype, the
expression e is type-checked in the absence of any knowledge of the bind-
ing of t, rather than in the knowledge that t is synomous with τ. Thus, in
the above example, the expression s(fst(x)) fails to type check, unless the
binding of t were exposed.

The proposed definition of lettype in terms of type abstraction and
type application fails. Lacking any other idea, one might argue that type
abbreviation ought to be considered as a primitive concept, rather than a
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derived notion. The expression let t be τ in e would be taken as a primitive
form of expression whose static semantics is given by the following rule:

Γ ` [τ/t]e : τ′

Γ ` let t be τ in e : τ′
(35.1)

This would address the problem of supporting type abbreviations, but it
does so in a rather ad hoc manner. One might hope for a more principled
solution that arises naturally from the type structure of the language.

Our methodology of identifying language constructs with type struc-
ture suggests that we ask not how to support type abbreviations, but rather
what form of type structure gives rise to type abbreviations? And what else
does this type structure suggest? By following this methodology we are led
to the concept of singleton kinds, which not only account for type abbrevia-
tions but also play a crucial role in the design of module systems.

35.1 Informal Overview

The central organizing principle of type theory is compositionality. To en-
sure that a program may be decomposed into separable parts, we ensure
that the composition of a program from constituent parts is mediated by
the types of those parts. Put in other terms, the only thing that one portion
of a program “knows” about another is its type. For example, the formation
rule for addition of natural numbers depends only on the type of its argu-
ments (both must have type nat), and not on their specific form or value.
But in the case of a type abbreviation of the form let t be τ in e, the prin-
ciple of compositionality dictates that the only thing that e “knows” about
the type variable t is its kind, namely Type, and not its binding, namely τ.
This is accurately captured by the proposed representation of type abbre-
viation as the combination of type abstraction and type application, but, as
we have just seen, this is not the intended meaning of the construct!

We could, as suggested in the introduction, abandon the core princi-
ples of type theory, and introduce type abbreviations as a primitive notion.
But there is no need to do so. Instead we can simply note that what is
needed is for the kind of t to capture its identity. This may be achieved
through the notion of a singleton kind. Informally, the kind Eqv(τ) is the
kind of types that are definitionally equivalent to τ. That is, up to defini-
tional equality, this kind has only one inhabitant, namely τ. Consequently,
if u :: Eqv(τ) is a variable of singleton kind, then within its scope, the
variable u is synonymous with τ. Thus we may represent let t be τ in e by
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Λ(t::Eqv(τ).e)[τ], which correctly propagates the identity of t, namely
τ, to e during type checking.

A proper treatment of singleton kinds requires some additional machin-
ery at the constructor and kind level. First, we must capture the idea that
a constructor of singleton kind is a fortiori a constructor of kind Type, and
hence is a type. Otherwise, a variable, u, singleton kind cannot be used as
a type, even though it is explicitly defined to be one! This may be captured
by introducing a subkinding relation, κ1 :<: κ2, which is analogous to sub-
typing, exception at the kind level. The fundamental axiom of subkinding
is Eqv(τ) :<: Type, stating that every constructor of singleton kind is a
type.

Second, we must account for the occurrence of a constructor of kind
Type within the singleton kind Eqv(τ). This intermixing of the construc-
tor and kind level means that singletons are a form of dependent kind in
that a kind may depend on a constructor. Another way to say the same
thing is that Eqv(τ) represents a family of kinds indexed by constructors of
kind Type. This, in turn, implies that we must generalize the function and
product kinds to dependent functions and dependent products. The dependent
function kind, Π u::κ1.κ2 classifies functions that, when applied to a con-
structor c1 :: κ1, results in a constructor of kind [c1/u]κ2. The important
point is that the kind of the result is sensitive to the argument, and not
just to its kind.1 The dependent product kind, Σ u::κ1.κ2, classifies pairs
〈c1, c2〉 such that c1 :: κ1, as might be expected, and c2 :: [c1/u]κ2, in which
the kind of the second component is sensitive to the first component itself,
and not just its kind.

Third, it is useful to consider singletons not just of kind Type, but also
of higher kinds. To support this we introduce higher-kind singletons, written
Eqv(c::κ), where κ is a kind and c is a constructor of kind k. These are
definable in terms of the primitive form of singleton kind by making use of
dependent function and product kinds.

1As we shall see in the development, the propagation of information as sketched here is
managed through the use of singleton kinds.
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Chapter 36

Fluid Binding

In Chapter 14 we examined the concept of dynamic binding as a scoping
discipline for variables, and found it lacking in at least two respects:

• Bound variables may no longer be identified up to consistent renam-
ing. This does violence to the concept of scope, which is concerned
with associating usages of variables with their point of definition.

• Since the scopes of variables are resolved dynamically, it is not pos-
sible to ensure type safety. Different bindings of a variable, x, at dif-
ferent types may govern a given user of a variable, depending on the
dynamic flow of control in a program.

Nevertheless, binding does offer a useful capability that can be salvaged
from this wreckage.

Dynamic binding provides a separation between the scope of a variable
and its extent. The scope, as we have seen, is the static range of significance
of an identifier. In a statically scoped language a variable has meaning only
within a specified phrase. Within its scope the variabl serves as a reference
to its binding site. Outside of its scope, the variable has no meaning what-
soever. This is crucial for modularity, since it ensures that private variables
really are private, allowing a program unit to be treated as a “black box”
from an external perspective.

The extent of a variable is its dynamic range of significance, the “interval”
of execution during which the identifier has meaning. In a statically typed
language the scope and the extent coincide. Variables are given meaning
by substitution, which is defined syntactically over program phrases. What
dynamic binding offers is a separation between the scope and the extent of
a variable. The idea is that execution may enter the scope of a variable
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without associating a value to it. Later, at various points in the execution,
a value is associated to the variable for use within the execution of a spe-
cific, dynamically determined, expression, which is called the extent of the
association. Moreover, during execution the same variable may be asso-
ciated with another variable for use within the evaluation of a specified
expression. But once the specified expression has completed evaluation,
the association is dropped, reverting it to its previous value.

The advantage of separating scope from extent is precisely that it per-
mits evaluation within the scope of the identifier, while permitting some
other, dynamically determined expression to associate a value with it. To
avoid confusion, we use the term fluid binding for the ability to separate the
scope of a fluid-bound identifier from the extent of any binding it may be
given during execution. This involves two mechanisms. One is the con-
cept of a symbol, which is an identifier with an associated type. The other is
the concept of a fluid let, which associates a value of type appropriate to a
symbol for use within the execution of a specific expression.

We will study a language fragment, called L{fluid}, with fluid bind-
ing of symbols to values. In Section 36.1 we will consider the mechanisms
of fluid binding for a fixed collection of symbols. Then in Section 36.2 on
page 285 we will add the mechanisms required to create new symbols dur-
ing execution of a program.

36.1 Fluid Binding

The syntax of L{fluid} is given by the following grammar:

Category Item Abstract Concrete
Expr e ::= set[a](e1; e2) set a to e1 in e2

| get[a] get a

We assume given an infinite set of symbols, a, disjoint from the set of vari-
ables of the language. The expression set a to e1 in e2, called a fluid let,
binds the symbol a to the value e1 for the duration of the evaluation of
e2, at which point the binding of a reverts to what it was prior to the execu-
tion. The argument a is a symbol, not a variable, and it is not introduced as
a fresh variable by the fluid let. The expression get a evaluates to the value
of the current binding of a, if it has one, and is stuck otherwise.

The static semantics of L{fluid} is defined by judgements of the form
Σ Γ ` e : τ, where Γ is, as usual, a finite set of variable typing assumptions
of the form x : τ, and where Σ is a finite set of symbol typing assumptions
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of the form a : τ, where a sym. As usual, we insist that no variable be the
subject of more than one typing assumption. This is extended to symbols
as well, which has the effect of ensuring that each symbol has a unique type
of associated values.

As discussed in Chapter 3, the hypothetical judgement Σ Γ ` e : τ is,
officially, a parametric hypothetical judgement of the form

AX | Σ Γ ` e : τ,

where A and X are disjoint sets, the hypotheses Σ govern the symbols in
A, and the hypotheses Γ govern the variables in X . (This will become sig-
nificant in Section 36.2 on page 285, where we rely on the structural prop-
erty of permutation of variables to manage dynamic symbol generation.)
As usual we will suppress explicit mention of A and X when presenting
hypothetical typing judgements.

The rules defining the static semantics ofL{fluid} are given as follows:

Σ ` a : τ
Σ Γ ` get[a] : τ

(36.1a)

Σ ` a : τ1 Σ Γ ` e1 : τ1 Σ Γ ` e2 : τ2

Σ Γ ` set[a](e1; e2) : τ2
(36.1b)

Rule (36.1b) treats the symbol a as given by Σ, rather than introducing a
“new” bound symbol, as would be the case for a conventional let con-
struct. That is, neither Σ nor Γ are extended in the premise of Rule (36.1b).

The dynamic semantics of L{fluid} is given by a judgement of the
form e 7→θ e′, where θ is a finite function mapping symbols from Σ to a
closed (with respect to variables) value of the type determined by Σ. If
a ∈ dom(θ), then we may write θ = θ′ ⊗ 〈a : e〉. If a /∈ dom(θ), then we
shall, as a notational convenience, regard θ has having the form θ′ ⊗ 〈a : •〉
in which a is considered “bound” to a “black hole”, •. We will write 〈a : 〉
to stand ambiguously for either 〈a : •〉 or 〈a : e〉 for some expression e.

The dynamic semantics of L{fluid} is given by the following rules:

get[a] 7→θ⊗〈a : e〉 e (36.2a)

e1 7→θ e′1
set[a](e1; e2) 7→θ set[a](e′1; e2)

(36.2b)

e1 val e2 7→θ⊗〈a : e1〉 e′2
set[a](e1; e2) 7→θ⊗〈a : 〉 set[a](e1; e′2)

(36.2c)
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e1 val e2 val

set[a](e1; e2) 7→θ e2
(36.2d)

Rule (36.2a) specifies that get[a] evaluates to the current binding of a, if
any. Rule (36.2b) specifies that the binding for the symbol a is to be evalu-
ated before the binding is created. Rule (36.2c) evaluates e2 in an environ-
ment in which the symbol a is bound to the value e1, regardless of whether
or not a is already bound in the environment. Rule (36.2d) eliminates the
fluid binding for a once evaluation of the extent of the binding has com-
pleted. Observe that if e2 is, say, a λ-abstraction, then it may contain un-
evaluated occurrences of get[a], which will refer to the enclosing binding
for a, if any, or any subsequent binding within whose body the evaluation
of the body of the λ-abstraction occurs.

The dynamic semantics specifies that there is no transition of the form
get[a] 7→θ⊗〈a : •〉 e for any e. Since the static semantics does not rule out
such states, we define the judgement e unboundθ by the following rules:1

get[a] unboundθ⊗〈a : •〉 (36.3a)

e1 unboundθ

set[a](e1; e2) unboundθ
(36.3b)

e1 val e2 unboundθ

set[a](e1; e2) unboundθ
(36.3c)

The progress theorem is stated to admit stuck states of this form, indicating
that a well-typed program may incur a run-time error arising from attempt-
ing to obtain the binding of an unbound symbol.

We define θ : Σ by the following rules:

∅ : ∅ (36.4a)

Σ ` e : τ θ : Σ
θ ⊗ 〈a : e〉 : Σ, a : τ

(36.4b)

θ : Σ
θ ⊗ 〈a : •〉 : Σ, a : τ

(36.4c)

Thus we make no demands on the typing of unbound symbols, but de-
mand that the binding of a bound symbol be of the type specified by Σ.

Theorem 36.1 (Preservation). If e 7→θ e′, where θ : Σ and Σ ` e : τ, then
Σ ` e′ : τ.

1In the presence of other constructs, such as function application, stuck states would
have to be propagated through any evaluated arguments of any compound expression.
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Proof. By rule induction on Rules (36.2). Rule (36.2a) is handled by the defi-
nition of θ : Σ. Rule (36.2b) follows immediately by induction. Rule (36.2d)
is handled by inversion of Rules (36.1). Finally, Rule (36.2c) is handled by
inversion of Rules (36.1) and induction.

Theorem 36.2 (Progress). If Σ ` e : τ and θ : Σ, then either e val, or e unboundθ ,
or there exists e′ such that e 7→θ e′.

Proof. By induction on Rules (36.1). For Rule (36.1a), we have Σ ` a : τ
from the premise of the rule, and hence, since θ : Σ, we have either θ(a) = •
(i.e., is unbound) or θ(a) = e for some e such that Σ ` e : τ. In the former
case we have e unboundθ , and in the latter we have get[a] 7→θ e. For
Rule (36.1b), we have by induction that either e1 val or e1 unboundθ , or
e1 7→θ e′1. In the latter two cases we may apply Rule (36.2b) or Rule (36.3b),
respectively. If e1 val, we apply induction to obtain that either e2 val, in
which case Rule (36.2d) applies; e2 unboundθ , in which case Rule (36.3b)
applies; or e2 7→θ e′2, in which case Rule (36.2c) applies.

36.2 Symbol Generation

The language L{fluid gen} enriches L{fluid} with constructs for gener-
ating fresh symbols during execution. The syntax of this extension is given
by the following grammar:

Category Item Abstract Concrete
Type τ ::= sym(σ; τ) 〈σ〉τ
Expr e ::= new[σ](a.e) ν(a:σ.e)

| gen(e) gen(e)

The type sym(σ; τ) represents the type of expressions abstracted over an
unspecified symbol of type σ, yielding a value of type τ. The introduc-
tory form of type sym(σ; τ) is the symbol abstraction new[σ](a.e), and
the eliminatory form is gen(e), which, when e is new[σ](a.e), generates
a fresh symbol, a′, and replaces a by a′ within e. Since the only property
enjoyed by a symbol is its identity, the static semantics is the same for all
sufficiently fresh choices of symbols. This allows us to create new symbols
at run-time while still imposing a static type discipline on programs.

The static semantics of L{fluid gen} is given by the following rules:

Σ, a : σ Γ ` e : τ

Σ Γ ` new[σ](a.e) : sym(σ; τ)
(36.5a)
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Σ Γ ` e : sym(σ; τ)

Σ Γ ` gen(e) : τ
(36.5b)

Rule (36.5a) extends Σ with a new symbol whose uniqueness is guaranteed
by the convention on bound variables. If a already occurs as the subject
of some typing assumption in Σ, then we must rename a in new[σ](a.e)
prior to applying the rule. Rule (36.5b) generates a fresh symbol to be used
in place of the symbol introduced by e in accordance with Rule (36.5a).

The dynamic semantics ofL{fluid gen} is given by the following rules:

new[σ](a.e) val (36.6a)

e 7→θ e′

gen(e) 7→θ gen(e′)
(36.6b)

a′ fresh
gen(new[σ](a.e)) 7→θ [a′/a]e

(36.6c)

Rule (36.6c) makes use of an informal convention regarding freshness of
symbols. While intuitively clear (the symbol a′ should be chosen so as to
not otherwise occur in an evaluation), the dynamic semantics as given by
Rules (36.6) is not properly defined.

To make precise the freshness condition in Rule (36.6c), we define a
transition system on states of the form e @ ν, where ν is a finite set of symbols
and e is an expression involving at most the symbols in ν. The set ν is to be
thought of as the set of active symbols, so that a fresh symbol is one that lies
outside of this set.

The transition judgement, e @ ν 7→θ e′ @ ν′, is defined for states e @ ν such
that dom(θ) ⊆ ν. This ensures that the mapping θ governs only active sym-
bols. An initial state has the form e @∅, which requires that e type-check
with respect to the empty set of assumptions about the types of symbols. A
final state has the form e @ ν, where e val.

The rules defining this transition judgement are as follows:

a ∈ ν
get[a] @ ν 7→θ⊗〈a : e〉 e @ ν (36.7a)

e1 @ ν 7→θ e′1 @ ν′

set[a](e1; e2) @ ν 7→θ set[a](e′1; e2) @ ν′
(36.7b)

e1 val e2 @ ν 7→θ⊗〈a : e1〉 e′2 @ ν′

set[a](e1; e2) @ ν 7→θ⊗〈a : 〉 set[a](e1; e′2) @ ν′
(36.7c)
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e1 val e2 val

set[a](e1; e2) @ ν 7→θ e2 @ ν
(36.7d)

e @ ν 7→θ e′ @ ν′

gen(e) @ ν 7→θ gen(e′) @ ν′
(36.7e)

a′ /∈ ν
gen(new[σ](a.e)) @ ν 7→θ [a′/a]e @ ν ∪ { a′ } (36.7f)

Rule (36.7f) makes explicit that the symbol a′ is chosen outside of the set ν of
active symbols. Observe that the set of active symbols grows monotonically
with transition: if e @ ν 7→θ e′ @ ν′, then ν′ ⊇ ν.

To prove safety we define a state e @ ν to be well-formed iff there exists
a symbol typing Σ such that (a) a ∈ ν implies Σ = Σ′, a : τ for some type
τ, and (b) Σ ` e : σ for some type σ. It is then straightforward to formulate
and prove type safety, following along the lines of Section 36.1 on page 282,
but treating ν as the set of active symbols. The main difference compared
to the static case is that the proof of preservation for Rule (36.7f) relies on
the invariance of typing under renaming of parameters, as described in
Chapter 3.

36.3 Exercises

1. Complete the formalization of L{fluid gen} and prove type safety
for it.
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Chapter 37

Mutable Storage

Data structures constructed from sums, products, and recursive types are
all immutable in that their structure does not change over time as a result of
computation. For example, evaluation of an expression such as 〈2+3, 4*5〉
results in the ordered pair 〈5, 20〉, which cannot subsequently be altered by
further computation. Creation of a value (of any type) is “forever” in that
no subsequent computation can change it. Such data structures are said to
be persistent in that their value persists throughout the rest of the compu-
tation. In particular if we project the components of a pair, and construct
another pair from it, the original and the newly constructed pair continue
to exist side-by-side. This behavior is particularly significant when work-
ing with recursive types, such as lists and trees, because the operations
performed on them are non-destructive. Inserting an element into a persis-
tent binary search tree does not modify the original tree; rather it constructs
another tree with the new element inserted, leaving the original intact and
available for further computation.

This behavior is in sharp contrast to conventional textbook treatments
of data structures such as lists and trees, which are almost invariably de-
fined by destructive operations that modify, or mutate, the data structure “in
place”. Inserting an element into a binary tree changes the tree itself to
include the new element; the original tree is lost in the process, and all ref-
erences to it reflect the change. Such data structures are said to be ephemeral,
in that changes to them destroy the original. In some cases ephemeral data
structures are essential to the task at hand; in other cases a persistent repre-
sentation would do just as well, or even better. For example, a data struc-
ture modeling a shared database accessed by many users simultaneously
is naturally ephemeral in that the changes made by one user are to be im-
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mediately propagated to the computations made by another. On the other
hand, data structures used internally to a body of code, such as a search
tree, need no such capability and are often profitably represented in persis-
tent form.

A good programming language should naturally support both persis-
tent and ephemeral data structures. This is neatly achieved by making a
type distinction between a value of a type and a mutable cell containing a
value of that type. The number 3 is forever the number 3, but a mutable
cell containing the number 3 may be subsequently changed to contain the
number 4. Mutable cells are themselves values; one may think of them
as “boxes” containing a value that we may change at will. Such boxes
may appear within a data structure, so that some aspects of the data struc-
ture are mutable and other aspects are immutable. For example, a value
of type nat × (nat ref) is a pair consisting of a natural number and a
cell containing a natural number. The pair itself cannot be changed, but
the contents of its second component may be changed. Similarly, a value
of type nat ref × nat ref is a pair both of whose components are muta-
ble cells whose contents may change. Contrast this with a value of type
(nat× nat) ref, which is a cell whose contents is a pair of natural num-
bers. Its contents may change, but any pair stored within it will not change.

As these examples illustrate, maintaining a distinction between immutable
values and mutable cells greatly increases the expressive power of the lan-
guage. Without mutable cells, only persistent data structures would be
available. If all data structures were mutable, irrespective of type, then
only ephemeral data structures would be representable. With the separa-
tion of mutable from immutable data we gain the ability to draw fine dis-
tinctions that exploit delicate combinations of mutability and immutability.
The price we pay for this expressiveness is that it is more complex to reason
about programs that manipulate mutable data structures. The chief com-
plication is called aliasing. If variables x and y both have type nat ref, then
both are bound to mutable cells, but we cannot tell from the type alone
whether they are bound to the same cell or different cells. If they are bound
to the same cell, then mutation of the cell bound to x affects the contents of
the cell bound to y, otherwise modification of one does not affect the other.
When reasoning about programs with mutation, we must always remem-
ber to consider on possible aliasing relationships to ensure that the code
behaves properly in all cases. The more mutable cells there are, the more
cases we have to consider, and the more opportunities for error.
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37.1 Reference Cells

The language L{ref} of mutable cells is described by the following gram-
mar:

Category Item Abstract Concrete
Type τ ::= ref(τ) τ ref
Expr e ::= l l

| new(e) new(e)
| get(e) ! e
| set(e1; e2) e1 := e2

Mutable cells are handled by reference; a mutable cell is represented by a
location, which is the name, or abstract address, of the cell. The meta-variable
l ranges over locations, an infinite set of parameters disjoint from the vari-
ables and from any other parameters in the language. Although a form
of expression, locations arise only during evaluation as new cells are allo-
cated, and may not be present in expressions written by the programmer.
The expression new(e) allocates a “new” reference cell with initial contents
of type τ being the value of the expression e. The expression get(e) re-
trieves the contents of the cell given by the value of e, and set(e1; e2) sets
the contents of the cell given by the value of e1 to the value of e2.

In practice we consider L{ref} as an extension to another language,
such as L{nat⇀}, with mutable data. However, for the purposes of this
chapter we study L{ref} in isolation from other language features. The
beauty of type systems is that we may do so; the presence of a type of
mutable references does not disrupt the behavior of the other constructs of
the programming language in which they are embedded.

The static semantics of L{ref} consists of a set of rules for deriving
typing judgements of the form e : τ that are parametric in two sets of pa-
rameters, one for locations and one for variables, and hypothetical in two
forms of hypotheses specifying the type of the contents of a location and
the type of the binding of a variable. The fully explicit form of the typing
judgement for L{ref} is

LX | Λ Γ ` e : τ,

where L is a finite set of locations, X is a finite set of variables, Λ is a finite
set of assumptions of the form l : τ, one for each l ∈ L, and Γ is a finite set
of assumptions of the form x : τ, one for each x ∈ X . As usual, we usually
omit explicit mention of the parameters, writing just Λ Γ ` e : τ.
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The static semantics of L{ref} is specified by the following rules:

Λ, l : τ Γ ` l : ref(τ) (37.1a)

Λ Γ ` e : τ
Λ Γ ` new(e) : ref(τ)

(37.1b)

Λ Γ ` e : ref(τ)
Λ Γ ` get(e) : τ

(37.1c)

Λ Γ ` e1 : ref(τ2) Λ Γ ` e2 : τ2

Λ Γ ` set(e1; e2) : τ2
(37.1d)

The type of a location, l, when viewed as an expression, is a reference type,
whereas the type assigned to l in the hypothesis is the type of its contents.
The return type of set(e1; e2) is chosen more-or-less arbitrarily to be τ, as a
technical convenience (the assignment is considered to return the assigned
value as result).

A memory is a finite function mapping each of a finite set of locations
to closed value (i.e., one with no free variables). We write ∅ for the empty
memory, 〈l : e〉 for the memory µ with domain { l } such that µ(l) = e, and
µ1 ⊗ µ2, where dom(µ1) ∩ dom(µ2) = ∅, for the smallest memory µ such
that µ(l) = µ1(l) if l ∈ dom(µ1) and µ(l) = µ2(l) if l ∈ dom(µ2). Whenever
we write µ1 ⊗ µ2 it is tacitly assumed that µ1 and µ2 are disjoint.

The dynamic semantics of L{ref} consists of a transition systems be-
tween states of the form e @ µ, where µ is a memory and e is an expression
with no free variables. We will maintain the invariant that, in a state e @ µ,
the locations occurring in e, and in the contents of any cell in µ, lie within
the domain of µ. An initial state has the form e @∅ in which the memory is
empty and there are no locations occurring in e. A final state is one of the
form e @ µ, where e is a value.

The rules defining values and the transition judgement of the dynamic
semantics of L{ref} are given as follows:

l val (37.2a)

e @ µ 7→ e′ @ µ′

new(e) @ µ 7→ new(e′) @ µ′
(37.2b)

e val
new(e) @ µ 7→ l @ µ⊗ 〈l : e〉 (37.2c)

e @ µ 7→ e′ @ µ′

get(e) @ µ 7→ get(e′) @ µ′
(37.2d)
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e val
get(l) @ µ⊗ 〈l : e〉 7→ e @ µ⊗ 〈l : e〉 (37.2e)

e1 @ µ 7→ e′1 @ µ′

set(e1; e2) @ µ 7→ set(e′1; e2) @ µ′
(37.2f)

e1 val e2 @ µ 7→ e′2 @ µ′

set(e1; e2) @ µ 7→ set(e1; e′2) @ µ′
(37.2g)

e val
set(l; e) @ µ⊗ 〈l : e′〉 7→ e @ µ⊗ 〈l : e〉 (37.2h)

In Rule (37.2c) it is tacitly assumed that l is chosen so as not to occur in the
domain of µ. That is, l is a “new” location in the memory.

37.2 Safety

As usual, type safety is the conjunction of preservation and progress for
well-formed machine states. Informally, the state e @ µ is well-formed if (a)
µ is well-formed relative to itself, and (b) e is well-formed relative to µ.
The latter condition means that e : τ for some type τ, assuming that the
locations have the types given to them by µ. The former means that the
contents of each location, l, in µ has the type given to it relative to the types
given to all the other locations by µ, including the location l itself.

This condition is reminiscent of the typing rule for recursive functions
given in Chapter 16 in that we assume the typing that we are trying to prove
while trying to prove it. In the case of recursive functions this is necessary
to account for self-reference; in the case of memories, it is present to allow
for circularities within the memory itself. One memory location, l, depends
on another, l′, in a memory µ if the contents of l in µ contains l′. It can arise
that a location in a memory can depend on itself, either directly, or via an
arbitrary finite chain of dependencies. Consequently, we must account for
this when defining what it means for a memory to be well-formed.

The close relationship between the typing rules for memories and the
typing rules for recursive functions is more than just a rough analogy. In
fact we may use mutable storage to implement recursive functions, as il-
lustrated by the following example:

let r be new(λ n:nat.n) in
let f be λ n:nat.ifz(n, 1, n’.n*get(r)(n’)) in
let be set(r,f) in f
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This expression returns a function of type nat → nat that is obtained by
(a) allocating a reference cell initialized arbitrarily with a function of this
type, (b) defining a λ-abstraction in which each “recursive call” consists
of retrieving and applying the function stored in that cell, (c) assigning this
function to the cell, and (d) returning that function. This technique is called
back-patching.

The judgement e @ µ ok is defined by the following rule:

Λ ` e : τ Λ ` µ : Λ
e @ µ ok

(37.3)

The hypotheses Λ are the types of the locations in the domain of µ. Since
any location may appear in the expression e, it must be checked relative to
the assumptions Λ. This is defined formally by the following rules:

Λ ` ∅ : ∅ (37.4a)

Λ ` e : τ Λ ` µ′ : Λ′

Λ ` µ′ ⊗ 〈l : e〉 : Λ′, l : τ
(37.4b)

To account for circular dependencies, the contents of each location in mem-
ory is type-checked relative to the typing assumptions for all locations in
memory.

Theorem 37.1 (Preservation). If e @ µ ok and e @ µ 7→ e′ @ µ′, then e′ @ µ′ ok.

Proof. The proof is by rule induction on Rules (37.2). For the sake of the
induction we prove the following stronger result: if Λ ` e : τ, Λ ` µ : Λ,
and e @ µ 7→ e′ @ µ′, then there exists Λ′ ⊇ Λ such that Λ′ ` e′ : τ and
Λ′ ` µ′ : Λ′.

Consider Rule (37.2c). We have new(e) @ µ 7→ l @ µ′, where e val and
µ′ = µ ⊗ 〈l : σ : e〉. By inversion of typing Λ ` e : σ and τ = ref(σ).
Taking Λ′ = Λ, l : σ, observe that Λ′ ⊇ Λ, and Λ′ ` l : ref(τ). Finally,
we have Λ′ ` µ′ : Λ′, since Λ′ ` µ : Λ and Λ′ ` e : σ by assumption and
weakening.

The other cases follow a similar pattern.

Theorem 37.2 (Progress). If e @ µ ok then either e @ µ is a final state or there
exists e′ @ µ′ such that e @ µ 7→ e′ @ µ′.

Proof. By rule induction on Rules (37.1). For the sake of the induction we
prove the following stronger result: if Λ ` e : τ and Λ ` µ : Λ, then either
e val or there exists µ′ and e′ such that e @ µ 7→ e′ @ µ′.
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Consider Rule (37.1c). We have Λ ` get(e) : τ because Λ ` e : τ. By
induction either e val or there exists µ′ and e′ such that e @ µ 7→ e′ @ µ′. In the
latter case we have get(e) @ µ 7→ get(e′) @ µ′ by Rule (37.2d). In the former
it follows from an analysis of Rules (37.1) that e = l for some location l
such that Λ = Λ′, l : τ. Since Λ ` µ : Λ, it follows that µ = µ′ ⊗ 〈l : e′〉
for some µ′ and e′ such that Λ ` e′ : τ. But then by Rule (37.2e) we have
get(e) @ µ 7→ e′ @ µ.

The remaining cases follow a similar pattern.

37.3 Exercises
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Chapter 38

Dynamic Classification

Sum types may be used to classify data values by labelling them with a
class identifier that determines the type of the associated data item. For ex-
ample, a sum type of the form ∑ 〈i0 : τ0, . . . , in−1 : τn−1〉 consists of n distinct
classes of data, with the ith class labelling a value of type τi. A value of this
type is introduced by the expression in[i](ei), where 0 ≤ i < n and ei : τi,
and is eliminated by an n-ary case analysis binding the variable xi to the
value of type τi labelled with class i.

Sum types are useful in situations where the type of a data item is de-
termined dynamically, for example when processing input from an exter-
nal data source. A class is used to label the data items so that the type of
the underlying datum may be recovered from its class label. The difficulty
with sum types, however, is that it requires that the programmer specify in
advance the possible classes of data that may arise in a given situation. For
example, the code to process the data entered into a form on a web page
might yield either an integer or a string, according to what was typed by
the user. This may be modelled using a sum type with two classes, one for
integers, the other for strings.

The form of classification provided by finite sum types may be called
static classification, since it requires that the labels of the summands be fixed
in advance at the time the program is written. In some situations, however,
it is overly restrictive to demand static classification. Instead, some form of
dynamic determination of the class of data items is required, which we call
dynamic classification. A major use of dynamic classification is to impose
privacy restrictions on data values in which one program component may
create a data item that can only be processed by certain other components,
even though it may be manipulated passively by any number of other com-
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ponents (say, as a component of a data structure, or as an uninterpreted
argument to a function).

Dynamic classification may be used to implement privacy as follows.
First, the sender and receiver(s) of the data agree on a freshly generated
classifier for the secret data. The sender generates a new class that is guar-
anteed to be distinct from all others, and communicates the identity of that
class only to the intended recipients of the data. Then, when the data is
ready to be transmitted, it is classified by the agreed-upon class, and prop-
agated without further restriction to the recipients. For example, it could be
stored in a data structure such as a hash table or passed as argument to
a function, eventually making its way to an intended receiver. Knowing
the class of the data, an intended receiver may “decode” the datum by dis-
patching on its class to recover the underlying value. Any component that
is not aware of the class cannot recover this value, ensuring its secrecy.

A very common example of this sort of interaction arises when pro-
gramming with exceptions, as described in Chapter 30. One may consider
the value associated with an exception to be a “secret” that is shared be-
tween the program component that raises the exception and the program
component that handles it. No other intervening handler may intercept the
exception value; only the designated handler is permitted to process it. This
behavior may be readily modelled using dynamic classification. Exception
values are dynamically classified, with the class of the value known only
to the raiser and to the intended handler, and to no others. For this reason,
the type τexn of exception values may be usefully chosen to be the type of
dynamically classified data described in the present chapter.

The role of dynamic classification for exception handling is not widely
understood. Why not use static classification? One obvious reason is that
to do so would require that the set of classes of exception values must be
fixed globally, and in advance, by the programmer, which is evidently in-
convenient. Instead, one would prefer to introduce classes of exceptions
wherever they are needed, rather than all at once in a global scope. But
then one immediately encounters a serious problem: how can we ensure
that two different (separately developed and separately compiled) compo-
nents do not accidentally use the same class for two different purposes? In
the interest of modularity, it is essential to ensure that this cannot occur.
Dynamic classification precludes it, even in the presence of dynamically
loaded components.

In this chapter we study two separable concepts, dynamic classification,
and dynamic classes. Dynamic classification permits the classification of data
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values using dynamically generated symbols (as described in Section 36.2
on page 285 of Chapter 36). A value is classified by tagging it with a sym-
bol that determines the type of its associated value. A classified value is
inspected by pattern matching against a finite set of known classes, dis-
patching according to whether the class of the value is among them, with a
default behavior if it is not. Dynamic classes treat class labels as a form of dy-
namic data. This allows a class to be communicated between components
at run-time without embedding it into another data structure. Dynamic
classes, in combination with product and existential types (Chapter 26), are
sufficient to implement dynamic classification.

38.1 Dynamic Classification

The language L{classified} of dynamically classified data employs the
symbol generation mechanism described in Chapter 36 to generate fresh
symbols at execution time.1 As discussed there, the principle of implicit
renaming of bound identifiers ensures that freshly generated symbols are
globally unique, which ensures that no accidental collisions can occur. Sym-
bols are used as classes, with the type of the symbol determining the type
of the classified data value.

The syntax of L{classified} is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= clsfd clsfd
Expr e ::= in[a](e) in[a](e)

| ccase(e; e0; r1, . . . ,rn) ccase e {r1 | . . . | rn} ow e0
Rule r ::= in?[a](x.e) in[a](x)⇒ e

The expression in[a](e) classifies the value of the expression e by labelling
it with the symbol a. The expression ccase e {r1 | . . . | rn} ow e0 analyzes the
class of e according to the rule r1, . . . , rn. Each rule has the form in[ai](xi)⇒ ei,
consisting of a symbol, ai, representing a candidate class of the analyzed
value; a variable, xi, representing the associated data value for a value of
that class; and an expression, ei, to be evaluated in the case that the ana-
lyzed expression is labelled with class ai. If the class of the analyzed value
does not match any of the rules, the default expression, e0, is evaluated
instead.

1Although symbol generation was introduced in Chapter 36, it is important to recog-
nize that the mechanism of dynamic classification has nothing whatsoever to do with fluid
binding!
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Observe that there is, in general, no possibility for the case analysis on
the class of a value to be exhaustive. Since classes are dynamically gen-
erated, and since the analyzed data value could have arisen anywhere in
a program, there is no way to ensure that the class of the analyzed value
is among those listed in the case analysis. For this reason it is essential to
provide a default case so that evaluation has a well-defined outcome, even
when none of the specified cases applies. Alternatively, one may integrate
the primitive case analysis construct of L{classified} into the general,
non-exhaustive cdmatch expression considered in Chapter 19, using a wild
card to cover the default case.

The static semantics of L{classified} consists of a judgement of the
form Σ Γ ` e : τ, where Σ specifies the types of the symbols (as described
in Chapter 36), and Γ specifies the types of the variables. The definition
makes use of an auxiliary judgement of the form Σ Γ ` r : τ, specifying that
a rule, r, matches a classified value of the form in[a](e) and yields a value
of type τ. These judgements are inductively defined by the following rules:

Σ ` a : τ Σ Γ ` e : τ
Σ Γ ` in[a](e) : clsfd

(38.1a)

Σ Γ ` e : clsfd Σ Γ ` r1 : τ . . . Σ Γ ` rn : τ

Σ Γ ` ccase(e; e0; r1, . . . ,rn) : τ
(38.1b)

Σ ` a : σ Σ Γ, x : σ ` e : τ

Σ Γ ` in?[a](x.e) : τ
(38.1c)

The dynamic semantics of these operations is an entirely straightfor-
ward extension of the semantics of dynamic symbol generation given in
Section 36.2 on page 285.

e val
in[a](e) val

(38.2a)

e @ ν 7→ e0 @ ν′

in[a](e) @ ν 7→ in[a](e0) @ ν′
(38.2b)

e @ ν 7→ e′ @ ν′

ccase(e; e0; r1, . . . ,rn) @ ν 7→ ccase(e′; e0; r1, . . . ,rn) @ ν′
(38.2c)

in[a](e) val
ccase(in[a](e); e0; ε) @ ν 7→ e0 @ ν

(38.2d)

in[a1](e1) val

ccase(in[a1](e1); e0; in?[a1](x1.e′1), . . . , in?[an](xn.e′n)) @ ν
7→

[e1/x1]e′1 @ ν

(38.2e)
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in[a](e) val a 6= a1 n > 0
ccase(in[a1](e1); e0; in?[a1](x1.e′1), . . . , in?[an](xn.e′n)) @ ν

7→
ccase(in[a](e); e0; in?[a2](x2.e′2), . . . , in?[an](xn.e′n)) @ ν

(38.2f)

Rule (38.2d) specifies that the default case is evaluated when all rules have
been exhausted (i.e., the sequence of rules is empty). Rules (38.2e) and (38.2f)
specify that each rule is considered in turn, matching the class of the an-
alyzed expression to the class of each of the successive rules of the case
analysis.

The statement and proof of type safety for L{classified} proceeds
along the lines of the safey proofs given in Chapters 18, 19, and 36.

Theorem 38.1 (Preservation). Suppose that e @ ν 7→ e′ @ ν′, where Σ ` e : τ
and Σ ` a : τa whenever a ∈ ν. Then ν′ ⊇ ν, and there exists Σ′ ⊇ Σ such that
Σ′ ` e′ : τ and Σ′ ` a′ : τa′ for each a′ ∈ ν′.

Lemma 38.2 (Canonical Forms). Suppose that Σ ` e : clsfd and e val. Then
e = in[a](e) for some a such that Σ ` a : τ and some e such that e val and
Σ ` e : τ.

Theorem 38.3 (Progress). Suppose that Σ ` e : τ, and that if a ∈ ν, then
Σ ` a : τa for some type τa. Then either e val, or e @ ν 7→ e′ @ ν′ for some ν′ and e′.

38.2 Dynamic Classes

Dynamic classification may be used in combination with higher-order func-
tions to provide controlled access to data among the components of a pro-
gram as described in the introduction to this chapter. Given a dynamically
generated (and hence globally unique) symbol, a, of type τ, one may define
two functions of type τ → clsfd and clsfd→ τ that, respectively, classify
a value of type τ with class a and declassify a value classified by a, failing
otherwise. Either or both of these functions may be passed out of the scope
of the binder that introduced the symbol a, ensuring that knowledge of its
identity is confined to these two operations. Any component with access to
the classification operation may create a value with class a, and only those
components with access to the declassification operation may recover the
classified value.

A more direct way to enforce privacy is to treat classes themselves as
values of type τ class, where τ is the type of data labelled by that class. The
language L{class} consists of the dynamic symbol generation mechanism
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described in Chapter 36 together with the primitive operations for the type
τ class. The syntax of L{class} is specified by the following grammar:

Category Item Abstract Concrete
Type τ ::= class(τ) τ class
Expr e ::= cls[a] cls[a]

| ccase[t.σ](e; e0; r1, . . . ,rn) ccase e {r1 | . . . | rn} ow e0
Rule r | cls?[a](e) cls[a]⇒ e

The type τ class represents the type of classes with associated values of
type τ. A value of this type has the form cls[a], where a is a symbol la-
belling a class of values. The expression ccase e {r1 | . . . | rn} ow e0 is analo-
gous to the class case construct of L{classified}, except that there is no
data associated with each class. The abstractor, t.σ, in the syntax of the
class case construct plays a critical role in the static semantics of L{class}.

The static semantics of L{class} makes use of a technique, sometimes
facetiously called the John Major Principle, to propagate type identity infor-
mation gained during pattern matching. Suppose that e is an expression
of type class(τ), and that we analyze its class using a series of rules of
the form cls?[ai](ei), where each symbol ai has the corresponding type
τi. The type of e ensures that its value is of the form cls[a] for some class
symbol a of type τ. The typing rule for the case analysis must allow for the
possibility that a is one of the ai’s, in which case we must propagate the fact
that τi is, in fact, τ. This is achieved by assigning the case analysis the type
[τ/t]σ, and insisting that for each 1 ≤ i ≤ n, we have that ei : [τi/t]σ. In the
case that a is ai, then we are, in effect, treating an expression of type [τi/t]σ
as an expression of type [τ/t]σ, which is justified by the equality of τi and
τ.

The static semantics of L{class} consists of expression typing judge-
ments of the form Σ Γ ` e : τ, and rule typing judgements of the form
Σ Γ ` r : class(τ) > τ′. These judgements are inductively defined by the
following rules:

Σ ` a : τ
Σ Γ ` cls[a] : class(τ)

(38.3a)

Σ Γ ` e : class(τ) Σ Γ ` e0 : [τ/t]σ
Σ Γ ` r1 : class(τ1) > [τ1/t]σ . . . Σ Γ ` rn : class(τn) > [τn/t]σ

Σ Γ ` ccase[t.σ](e; e0; r1, . . . ,rn) : [τ/t]σ
(38.3b)

Σ ` a : τ Σ Γ ` e : τ′

Σ Γ ` cls?[a](e) : class(τ) > τ′
(38.3c)
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Rule (38.3a) specifies that the class cls[a] has type class(τ), where τ is
the type associated to the class a by Σ. Rule (38.3b) specifies the type of
a case analysis on a class of type class(τ) to be [τ/t]σ, where each rule
yields a value of type [τi/t]σ, and the default case is of type [τ/t]τ.

The dynamic semantics ofL{class} is similar to that ofL{classified}.
States have the form e @ ν, where ν is a finite set of symbols. Final states are
those for which e val; all states are initial states. The rules defining the
judgement e @ ν 7→ e′ @ ν′ are easily derived from Rules (38.2), and are omit-
ted here for the sake of brevity.

Theorem 38.4 (Preservation). Suppose that e @ ν 7→ e′ @ ν′, where Σ ` e : τ
and Σ ` a : τa whenever a ∈ ν. Then ν′ ⊇ ν, and there exists Σ′ ⊇ Σ such that
Σ′ ` e′ : τ and Σ′ ` a′ : τa′ for each a′ ∈ ν′.

Proof. By rule induction on the dynamic semantics of L{class}. The most
interesting case arises when e = cls[a] and a = ai for some rule cls[ai]⇒ ei.
By inversion of typing we know that ei : [τi/t]σ. We are to show that
ei : [τ/t]σ. This follows directly from the observation that if a = ai, then by
unicity of typing, τi = τ.

Lemma 38.5 (Canonical Forms). Suppose that Σ ` e : τ class and e val. Then
e = cls[a] for some a such that Σ ` a : τ.

Proof. By rule induction on Rules (38.3), taking account of the definition of
values.

Theorem 38.6 (Progress). Suppose that Σ ` e : τ, and that if a ∈ ν, then
Σ ` a : τa for some type τa. Then either e val, or e @ ν 7→ e′ @ ν′ for some ν′ and e′.

Proof. By rule induction on Rules (38.3). For a case analysis of the form
ccase e {r1 | . . . | rn} ow e0, where e val, we have by Lemma 38.5 that e =
cls[a] for some a. Either a = ai for some rule cls[ai]⇒ ei in r1, . . . , rn, in
which case we progress to ei, or else we progress to e0.

38.3 From Classes to Classification

The language L{classified} is definable from the language L{class}
augmented with existential and product types. Specifically, we may define
clsfd to be the existential type

∃(t.t class× t).
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The introductory form, in[a](e), is defined to be the package

pack τ with 〈cls[a], e〉 as ∃(t.t class× t),

where a is a symbol of type τ.
The eliminatory form has a slightly more complex definition. Suppose

that ccase e {r1 | . . . | rn} ow e′ has type ρ, where ri is the rule in[ai](xi)⇒ ei,
with xi : τi ` ei : ρ. We define this class case to be the expression

open e as t with 〈x, y〉:t class× t in (ebody(y)),

where ebody will be defined shortly. This expression opens the package, e,
representing the classified value, and decomposes it into a class, x, and an
associate value, y. The body of the open analyzes the class x, yielding a
function of type t → ρ, where t is the abstract type introduced by the open.
This function is applied to y, the value that is labelled by x in the package.

The expression ebody determines the function to apply by performing a
case analysis on the class x. The case analysis is parameterized by the type
abstractor u.u→ ρ, where u is not free in ρ. The overall type of the case is
[t/u]u→ ρ = t → ρ, which ensures that the above-mentioned application
to y is well-typed. Each branch of the case analysis has type τi → ρ, as
required by Rule (38.3b). The expression ebody is given by

ccase x {r′1 | . . . | r′n} owλ( :t. e0),

where for each 1 ≤ i ≤ n, we define r′i to be the rule

cls[ai]⇒ λ(xi:τi. ei).

It is easy to check that the static and dynamic semantics of L{classified}
are derivable in L{class} (enriched with products and existentials) ac-
cording to these definitions.

38.4 Exercises

1. Derive the Standard ML exception mechanism from the machinery
developed here.
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Chapter 39

Monads

Computational effects, whether control effects such as exceptions or stor-
age effects such as references, strongly influence the meanings of programs.
For example, in the absence of effects the type nat → nat may be thought
of as the type of mathematical functions on the natural numbers: given any
natural number as argument, a function of this type evaluates to a unique
natural number. General recursion weakens this to there being at most
one result for each application; in some cases the function might not re-
turn. Exceptions weaken the meaning still further, because a function of
this type might, on a given argument, raise an exception rather than fail
to terminate or return a natural number as result. Raising an exception
might be considered tantamount to not returning, but since an exception
can be caught by a handler, whereas an infinite loop cannot, the analogy is
not quite exact. References weaken the meaning still further, since now a
“function” of this type might even return a different result from each call,
even if the argument is the same! Indeed, in the absence of effects a type
such as unit → unit is uninteresting (it contains only the identity func-
tion), but in the presence of storage effects, or input/output effects, many
useful programs may be considered to have this type.

One attitude about this is to eschew computational effects entirely, stick-
ing to pure functional programming in which every expression has one (or
at most one) value. But this is quite unrealistic. After all, the entire purpose
of running a program is to have a “side effect” on the user! Another atti-
tude is to simply accept effects as a fact of life, and to live with the weak-
ened guarantees afforded by the type system. However, there is a useful
middle ground between these two extremes in which we maintain a dis-
tinction between pure and impure computations, being respectively those
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that are effect-free and those that may have effects. A pure computation is
executed solely to determine its value, where as an impure computation is
executed both for its value and for its effect on the context of execution.

One benefit of distinguishing pure from impure computations is that
pure computations are more amenable to mathematical reasoning. For ex-
ample, e1+e2 and e2+e1 are equivalent, provided that e1 and e2 are effect-free.
If, however, either has an effect (raises an exception or modifies storage),
then this natural equivalence need not hold. For example, swapping the ar-
guments in the impure expression raise(L)+raise(R) changes the mean-
ing of the expression, since one raises L and the other raises R. Storage
effects give rise to even more subtle and complex dependencies on evalua-
tion order.

Because the distinction matters to the semantics of expressions, it is use-
ful to introduce a type discipline that makes a corresponding distinction in
their syntax so that it is evident when a computation might have an ef-
fect, and when it is guaranteed to be effect-free. Such a distinction between
forms of expression is, in general, called a modality. Here we shall be con-
cerned with a particular modality, called a monad, or lax modality. A monad
makes a distinction between two forms of expression:

1. Pure expressions, which have no computational effects (except, possi-
bly, non-termination).

2. Impure commands, which both have a value and an effect.

The modality allows us to maintain a clear distinction between pure and
impure computations.

The syntax of commands is structured to ensure that commands are
executed in a fixed sequential order. The basic form of command is the re-
turn command, which simply returns a specified value without engender-
ing any effects. Commands are combined using the monadic bind construct,
which sequentializes execution of one command before another. These two
forms of command are shared by all monadic effects, and give rise to a
concrete syntax that is familiar from conventional imperative (command-
oriented) programming languages. In this chapter we introduce a skele-
ton monadic language, called L{comm}, that captures this basic structure
without specifying the forms of effect. These are modelled by extending
L{comm} with new forms of command that give rise to effects of interest,
such as storage or control effects.
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39.1 Monadic Framework

The syntax of L{comm} is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= comp(τ) τ comp
Expr e ::= x x

| comp(m) comp(m)
Comm m ::= return(e) return e

| letcomp(e; x.m) let comp(x) be e inm

The language L{comm} distinguishes distinguishes two modes, the pure
(effect-free) expressions, and the impure (effect-capable) commands. The monadic
type comp(τ) consists of suspended commands that, when evaluated, yield
a value of type τ. The expression comp(m) introduces an unevaluated com-
mand as a value of monadic type. The command return(e) returns the
value of e as its value, without engendering any effects. The command
letcomp(e; x.m) activates the suspended command obtained by evaluat-
ing the expression e, then continue by evaluating the command m. This
form sequences evaluation of commands so that there is no ambiguity about
the order in which effects occur during evaluation.

The static semantics of L{comm} consists of two forms of typing judge-
ment, e : τ, stating that the expression e has type τ, and m ∼ τ, stating
that the command m only yields values of type τ. Both of these judgement
forms are considered with respect to hypotheses of the form x : τ, which
states that a variable x has type τ. The rules defining the static semantics
of L{comm} are as follows:

Γ ` m ∼ τ
Γ ` comp(m) : comp(τ)

(39.1a)

Γ ` e : τ
Γ ` return(e) ∼ τ

(39.1b)

Γ ` e : comp(τ) Γ, x : τ ` m ∼ τ′

Γ ` letcomp(e; x.m) ∼ τ′
(39.1c)

The dynamic semantics of an instance of L{comm} is specified by two
transition systems:

1. Evaluation of expressions: e 7→ e′, e val.

2. Execution of commands: m 7→ m′, m final.
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The rules of expression evaluated are determined by the type structure of
expressions, and are carried over to L{comm} unchanged.

The rules of command execution include the following structural rules
of execution:

e 7→ e′

return(e) 7→ return(e′)
(39.2a)

e val
return(e) final

(39.2b)

e 7→ e′

letcomp(e; x.m) 7→ letcomp(e′; x.m)
(39.2c)

m1 7→ m′1
letcomp(comp(m1); x.m2) 7→ letcomp(comp(m′1); x.m2)

(39.2d)

return(e) final

letcomp(comp(return(e)); x.m) 7→ [e/x]m (39.2e)

Rules (39.2a) and (39.2c) specify that the expression part of a return or let
command is to be evaluated before execution can proceed. Rule (39.2b)
specifies that a return command whose argument is a value is a final state
of command execution. Rule (39.2d) specifies that a let activates an encap-
sulated command, and Rule (39.2e) specifies that a completed command
passes its return value to the body of the let.

Extensions to L{comm} are defined by adding new forms of command,
and new transition rules between commands. These rules often make use
of labelled transition systems (described in Chapter 4) in which the labels
express the effects of a command on the context of its execution. The struc-
tural rules given above are to be regarded as silent transitions that have
no influence on the context, but are required to ensure that commands are
executed in the proper order.

39.2 Programming With Monads

The monadic type, τ comp, is the type of encapsulated commands yielding
a value of type τ. The introductory form for this type is comp(m), and
the eliminatory form is let comp(x) be e inm. The only other form of com-
mand, other than primitives for specific effects, is the command return e.
Consequently, a command of type τ must have the form

let comp(x1) be e1 in . . . let comp(xn) be en in return e,
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where e1 : τ1 comp, . . . , en : τn comp, and x1 : τ1, . . . , xn : τn ` e : τ. This
serves to sequence the encapsulated commands determined by e1, . . . , en in
the order specified, and returning the value of e as a result.

Observe that the only means of including a command within an ex-
pression is to encapsulate it inside the monad. Since the only means of
executing an ecapsulated command is with the let command, there is no
means of using the result of executing a command to compute the value
of an expression. This is as it should be, for otherwise the evaluation of
such an expression would engender effects, ruining the very distinction we
seek to enforce with a monad. Put another way, it is impossible to define
an expression run e of type τ, where e : τ comp, whose value is the result of
running the command encapsulated in the value of e. There is, however,
such a command, namely

let comp(x) be e in return x.

The only form of sequencing in L{comm} is the elimination form for the
monadic type. This means that if we wish to execute commands m1 and m2
in sequence, passing the value of m1 to m2 via a variable x1, then we must
write

let comp(x1) be comp(m1) inm2,

which encapsulates m1 only to activate it before executing m2. More gener-
ally, to execute a sequence of commands in this manner, we must write

let comp(x1) be comp(m1) in . . . let comp(xk−1) be comp(mk−1) inmk,

which quickly gets out of hand. For this reason we introduce the do syntax,
which is reminiscent of the notation used in many imperative program-
ming languages. The binary do construct, do {x ← m1 ;m2}, stands for the
command

let comp(x) be comp(m1) inm2,

which executes the commands m1 and m2 in sequence, passing the value of
m1 to m2 via the variable x. The general do construct,

do {x1 ← m1 ; . . . ; xk ← mk ; return e},

is defined by iteration of the binary do as follows:

do {x1 ← m1 ; . . . do {xk ← mk ; return e} . . .}.

Suppose that the expression level of L{comm} is enriched with function
types, as in Chapter 14. Since the body of a λ-abstraction is an expression,
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any effects in the body of a function must be encapsulated in the monad.
Such a function has a type of the form σ → τ comp, which may be read as
saying that the function, when applied to an argument of type σ, yields a
computation of type τ. The application does not activate the computation;
this can only be done using the elimination form for the monad. Thus, if f
is such a function, and a is an argument of appropriate type, we must write

let comp(x) be f(a) inm

to activate the result of the application within another command m. The ap-
plication of f to a is an expression yielding an encapsulated command; ac-
tivation of that command can only occur withn another command.

39.3 Exercises
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Chapter 40

Monadic Exceptions

As we saw in Chapter 39, if an expression can raise an exception, then the
order of evaluation of sub-expressions of an expression is significant. For
example, the expression e1+e2 is not in general equivalent to e2+e1, even
though addition is commutative. This is so because in the presence of ex-
ceptions an expression of type nat need not evaluate to a number—it can,
instead, raise an exception. If e1 is raise(L) and e2 is raise(R), then we
may use a handler to distinguish the two addition expressions from each
other, yielding, say, zero in the one case and one in the other.

The semantics of expressions may be preserved even in the presence
of exceptions if we confine them to the monad by making the primitives
for raising and handling exceptions commands, rather than expressions.
In this chapter we study a variation on L{comm} in which exceptions are
treated as an impurity to be confined to commands. It should be noted,
however, that this approach is unsatisfactory for two related reasons. First,
because the monad imposes a strict sequential execution order on com-
mands, the programmer must specify an evaluation order whenever an ex-
ception might be raised. Second, if any exception can appear somewhere in
a program, then it must be structured as though an exception could appear
anywhere. This is because there is no means of “escaping the monad”—
an impurity somewhere infects all parts of the program that depend on its
result.

40.1 Monadic Exceptions

The most natural formalization of exceptions in the monadic framework
is to regard an exception as an alternative outcome of evaluation of a com-
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mand. That is, a command, when executed, may engender effects, and then
either return a value (as in L{comm}) or raise an exception. The language
L{comm exc} is a modification of L{comm} to account for this additional
outcome of execution. The following grammar specifies the characteristic
features of L{comm exc}:

Category Item Abstract Concrete
Comm m ::= raise[τ](e) raise(e)

| letcomp(e; x.m1; y.m2) let comp(x) be e inm1 ow(y) inm2

This grammar extends that of L{comm} with a new primitive command,
raise(e), that raises an exception with value e. It also modifies the gram-
mar of L{comm} to generalize the monadic bind construct to include an
exception handler. The command

let comp(x) be e inm1 ow(y) inm2

executes the encapsulated command determined by evaluation of e. If it
returns normally, then the return value is bound to x and the command m1
is executed. If, instead, it raises an exception, the exception value is bound
to y and the command m2 is executed instead. The monadic bind construct
of L{comm} is to be regarded as short-hand for the command

let comp(x) be e inm ow(y) in raise(y),

which behaves as before in the case of a normal return, and propagates any
exception in that case of an exceptional return.

The static semantics of these constructs is given by the following rules:

Γ ` e : τexn
Γ ` raise[τ](e) ∼ τ

(40.1a)

Γ ` e : comp(τ) Γ, x : τ ` m1 ∼ τ′ Γ, y : τexn ` m2 ∼ τ′

Γ ` letcomp(e; x.m1; y.m2) ∼ τ′
(40.1b)

The dynamic semantics of these commands consists of a transition sys-
tem of the form m 7→ m′ defined by the following rules:

e 7→ e′

return(e) 7→ return(e′)
(40.2a)

e 7→ e′

raise[τ](e) 7→ raise[τ](e′)
(40.2b)
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e 7→ e′

letcomp(e; x.m1; y.m2) 7→ letcomp(e′; x.m1; y.m2)
(40.2c)

m 7→ m′

letcomp(comp(m); x.m1; y.m2) 7→ letcomp(comp(m′); x.m1; y.m2)
(40.2d)

e val
letcomp(comp(return(e)); x.m1; y.m2) 7→ [e/x]m1

(40.2e)

e val
letcomp(comp(raise[τ](e)); x.m1; y.m2) 7→ [e/y]m2

(40.2f)

40.2 Programming With Monadic Exceptions

The chief virtue of monadic exceptions is also its chief vice. A value of type
nat → nat remains a function that, when applied to a natural number,
returns a natural number (or, in the case of partial functions, may diverge).
If a function can raise an exception when called, then it must be given the
weaker type nat → nat comp, which specifies that, when applied, it yields
an encapsulated computation that, when executed, may raise an exception.
Two such functions cannot be directly compose, since their types are no
longer compatible. Instead we must explicitly sequence their execution.
For example, to compose f and g of this type, we may write

λ(x:nat. do {y← run g(x) ; z← run f(y);return z}).

Here we have used the do syntax introduced in Chapter 39, which accord-
ing to our conventions above, implicitly propagates exceptions arising from
the application of f and g to their surrounding context.

This distinction may be regarded as either a virtue or a vice, depending
on how important it is to indicate in the type whether a function might
raise an exception when called. For programmer-defined exceptions one
may wish to draw the distinction, but the situation is less clear for other
forms of run-time errors. For example, if division by zero is to be regarded
as a form of exception, then the type of division must be

nat→ nat→ nat comp

to reflect this possibility. But then one cannot then use division in an or-
dinary arithmetic expression, because its result is not a number, but an en-
capsulated command. One response to this might be to consider division
by zero, and other related faults, not as handle-able exceptions, but rather
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as fatal errors that abort computation. In that case there is no difference
between such an error and divergence: the computation never terminates,
and this condition cannot be detected during execution. Consequently, op-
erations such as division may be regarded as partial functions, and may
therefore be used freely in expressions without taking special pains to man-
age any errors that may arise.

40.3 Exercises
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Chapter 41

Monadic State

In Chapter 37 we introduced the type of cells of a given type so as to dis-
tinguish mutable from immutable data structures. In that chapter we left
open the question of how to integrate mutation into a full-scale language.
There are two main methods of doing so, one that permits great flexibil-
ity in the use of mutable storage at the expense of weakening the meaning
of the typing judgement considerably, and one that retains the meaning of
the typing judgement, but impairs the use of storage effects considerably.
As this description suggest, each approach has its benefits and drawbacks,
with neither being clearly preferable to the other in all circumstances.

The simplest, and most obvious, approach, which we will call the inte-
gral style, is to enrich a purely functional language, such as L{nat⇀} or
its extensions, with the mechanisms of L{ref}. This results in an integra-
tion of imperative and functional programming in which the programmer
may, at will, use or eschew mutation at any point within a program. For
example, if we start with a purely functional data structure such as a tree
structure represented as a recursive type, and then we wish to instrument
this structure with, say, a reference count for profiling purposes, we may
simply revise the definition of the type to, say, attach a mutable cell to each
node that maintains the profiling information. It is usually straightforward
to extend the implementation of the tree operations to account for the ad-
ditional information at the nodes.

The chief drawback of the integral approach is that the meaning of
the typing judgement changes drastically. The judgement e : τ no longer
means “if e evaluates to a value v, then v is a value of type τ.” Instead, the
judgement now means that, in addition, that evaluation of e can engender
arbitrary side effects on any data structure to which e has (direct or indirect)
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access. (Indeed, side effects are so-called precisely because they act “on the
side,” without their influence being reflected in the type of the expression.)
Consequently, the type nat→ nat can no longer be understood as the type
of partial functions on the natural numbers, but must also admit the possi-
bility of side effects during its execution. As a case in point, in a language
without mutation the type unit → unit is quite trivial, containing only
the identity and the divergent function, whereas in a language with inte-
gral mutation, this type contains arbitrarily complex functions that mutate
storage, with the type revealing nothing about this behavior.

The integral approach works best with a strict language, in which the
order of evaluation of sub-expressions is fully determined by its form, and
is not sensitive to the evolution of the computation. Any form of laziness
complicates the integral approach because it makes it much harder to pre-
dict when expressions are evaluated. In the absence of storage effects this
is of no concern (at least for correctness, if not efficiency), but in the pres-
ence of storage effects, the indeterminacy of evaluation order is disastrous.
It is difficult to tell exactly when, or how often, a cell will be allocated or
assigned, greatly complicating reasoning about program correctness.

The monadic approach to storage effects is to confine operations that
may affect storage to the command level of L{comm}. This ensures that the
expression level remains pure, so that it is compatible with both an eager
and a lazy interpretation. The chief benefit of the monadic style is that it
makes explicit in the types any reliance on storage effects. The chief draw-
back of the monadic style is tat it makes explicit in the types any reliance
on storage effects. While it can be useful to document the use of storage
effects, it can also be a hindrance to program development. For example,
if we wish to instrument a piece of pure code with code for profiling, then
we must restructure it to permit modifications to the store for profiling pur-
poses, even though its functionality has not changed.

41.1 Storage Effects

The language L{comm ref} is an extension of L{comm} (described in Chap-
ter 39) with mutable references into L{comm}. The syntax of L{comm ref}
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extends that of L{comm} with the following constructs:

Category Item Abstract Concrete
Type τ ::= ref(τ) τ ref
Expr e ::= l l
Comm m ::= new(e) new(e)

| get(e) ! e
| set(e1; e2) e1 := e2

Locations are pure expressions, whereas the primitives for reference cells
are forms of command.

The static semantics of L{comm ref} extends that of L{comm} with the
following rules:

Λ, l : τ Γ ` l : ref(τ) (41.1a)

Λ Γ ` e : τ
Λ Γ ` new(e) ∼ ref(τ)

(41.1b)

Λ Γ ` e : ref(τ)
Λ Γ ` get(e) ∼ τ

(41.1c)

Λ Γ ` e1 : ref(τ) Λ Γ ` e2 : τ

Λ Γ ` set(e1; e2) ∼ τ
(41.1d)

Here we make explicit the location typing assumptions, Λ, as well as the
variable typing assumptions, Γ.

The dynamic semantics of L{comm ref} is structured into two parts:

1. A transition relation e 7→ e′ for expressions.

2. A transition relation m @ µ 7→ m′ @ µ′ for commands.

Expressions are evaluated without regard to context, since they engen-
der no effects, whereas commands are evaluated relative to a memory, on
which they may have an effect.

The rules defining the dynamic semantics of the monad constructs are
as follows.

comp(m) val (41.2a)

e 7→ e′

return(e) @ µ 7→ return(e′) @ µ
(41.2b)

e 7→ e′

letcomp(e; x.m) @ µ 7→ letcomp(e′; x.m) @ µ
(41.2c)
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m1 @ µ 7→ m′1 @ µ′

letcomp(comp(m1); x.m2) @ µ 7→ letcomp(comp(m′1); x.m2) @ µ′
(41.2d)

e val
letcomp(comp(return(e)); x.m) @ µ 7→ [e/x]m @ µ

(41.2e)

The transition rules for the monadic elimination form is somewhat un-
usual. First, the expression e is evaluated to obtain a suspended command.
Once such a command has been obtained, execution continues by evaluat-
ing it in the current memory, updating that memory as appropriate during
its execution. This process ends once the suspended command is a return
statement, in which case this value is passed to the body of the letcomp.

The transition rules for evaluation of storage commands are as follows:

l val (41.3a)

e 7→ e′

new(e) @ µ 7→ new(e′) @ µ
(41.3b)

e val
new(e) @ µ 7→ return(l) @ µ⊗ 〈l : e〉 (41.3c)

e 7→ e′

get(e) @ µ 7→ get(e′) @ µ
(41.3d)

e val
get(l) @ µ⊗ 〈l : e〉 7→ return(e) @ µ⊗ 〈l : e〉 (41.3e)

e1 7→ e′1
set(e1; e2) @ µ 7→ set(e′1; e2) @ µ

(41.3f)

e1 val e2 7→ e′2
set(e1; e2) @ µ 7→ set(e1; e′2) @ µ

(41.3g)

e val
set(l; e) @ µ⊗ 〈l : e′〉 7→ return(e) @ µ⊗ 〈l : e〉 (41.3h)

Type safety forL{comm ref} is stated and proved much as it is forL{ref}.

41.2 Integral versus Monadic Effects

The chief motivation for introducing monads is to make explicit in the types
any reliance on computational effects. In the case of storage effects this is
not always an advantage. The problem is that any use of storage forces the
computation to be within the monad, and there is no way to get back out—
once in the monad, always in the monad. This rules out the use of so-called
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benign effects, which may be used internally in some computation that is,
for all outward purposes, entirely pure. One example of this is provided
by splay trees, which may be used to implement a functional dictionary
abstraction, but which rely heavily on mutation for their implementation
in order to ensure efficiency. A simpler example, which we consider in
detail, is provided by the use of backpatching to implement recursion as
described in Chapter 37.

When formulated using monads to expose the use of storage effects, the
backpatching implementation, fact, of the factorial function is as follows:

do {
r ← new (λ n:nat. comp(return (n)))

; f ← return (λ n:nat. ...)
; ← set (r, f)
; return f
}

where the elided λ-abstraction is given as follows:

λ(n:nat.
ifz(n,

comp(return(1)),
n’.comp(

do {
f’← get(r)

; return (n*f’(n’))
})))

Observe that each branch of the conditional test returns a suspended com-
mand. In the case that the argument is zero, the command simply returns
the value 1. Otherwise, it fetches the contents of the associated reference
cell, applies this to the predecessor, and returns the result of the appropri-
ate calculation.

We may check that that fact ∼ nat→ (nat comp), which exposes two
aspects of this code:

1. The command that builds the recursive factorial function is impure,
because it allocates and assigns to the reference cell used to imple-
ment backpatching.

2. The body of the factorial function is itself impure, because it accesses
the reference cell to effect the recursive call.
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The consequence is that the factorial function may no longer be used as a
(pure) function! In particular, we cannot apply fact to an argument in an
expression; it must be executed as a command. We must write

do {
f ← fact

; x ← let comp (x:nat) be f(n) in return x
; return x
}

to bind the function computed by the expression fact to the variable f; apply
this to n, yielding the result; and return this to the caller.

The difficulty is that the use of a reference cell to implement recursion is
a benign effect, one that does not affect the purity of the function expression
itself, nor of its applications. But the type system for effects studied here
is incapable of recognizing this fact, and for good reason. It is extremely
difficult, in general, to determine whether or not the use of effects in some
region of a program is benign. As a stop-gap measure, one way around this
is to introduce an operation of type τ comp→ τ, which may be used to exit
the monad. But this ruins the very distinction we are trying to enforce, to
segregate pure expressions from impure commands!

41.3 Exercises
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Comonads

Monads arise naturally for managing effects that both influence and are in-
fluenced by the context in which they arise. This is particularly clear for
storage effects, whose context is a memory mapping locations to values.
The semantics of the storage primitives makes reference to the memory (to
retrieve the contents of a location) and makes changes to the memory (to
change the contents of a location or allocate a new location). These opera-
tions must be sequentialized in order to be meaningul (i.e., the precise order
of execution matters), and we cannot expect to escape the context since lo-
cations are values that give rise to dependencies on the context. As we shall
see in Chapter 48 other forms of effect, such as input/output or interpro-
cess communication, are naturally expressed in the context of a monad.

By contrast the use of monads for exceptions as in Chapter 40 is rather
less natural. Raising an exception does not influence the context, but rather
imposes the requirement on it that a handler be present to ensure that the
command is meaningful even when an exception is raised. One might
argue that installing a handler influences the context, but it does so in a
nested, or stack-like, manner. A new handler is installed for the duration
of execution of a command, and restored afterwards. The handler does
not persist across commands in the same sense that locations persist across
commands in the case of the state monad. Moreover, installing a handler
may be seen as restoring purity in that it catches any exceptions that may
be raised and, assuming that the handler does not itself raise an exception,
yields a pure value. A similar situation arises with fluid binding (as de-
scribed in Chapter 36). A reference to a symbol imposes the demand on
the context to provide a binding for it. The binding of a symbol may be
changed, but only for the duration of execution of a command, and not
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persistently. Moreover, the reliance on symbol bindings within a specified
scope confines the impurity to that scope.

The concept of a comonad captures the concept of an effect that imposes
a requirement on its context of execution, but that does not persistently alter
that context beyond its execution. Computations that rely on the context to
provide some capability may be thought of as impure, but the impurity is
confined to the extent of the reliance—outside of this context the compu-
tation may be once again regarded as pure. One may say that monads are
appropriate for global, or persistent, effects, whereas comonads are appro-
priate for local, or ephemeral, effects.

42.1 A Comonadic Framework

The central concept of the comonadic framework for effects is the con-
strained typing judgement, e : τ [χ], which states that an expression e has
type τ (as usual) provided that the context of its evaluation satisfies the
constraint χ. The nature of constraints varies from one situation to another,
but will include at least the trivially true constraint, >, and the conjunction
of constraints, χ1 ∧ χ2. We sometimes write e : τ to mean e : τ>, which
states that expression e has type τ under no constraints.

The syntax of the comonadic framework, L{comon}, is given by the
following grammar:

Category Item Abstract Concrete
Type τ ::= box[χ](τ) �χ τ
Const χ ::= tt >

| and(χ1; χ2) χ1 ∧ χ2
Expr e ::= box(e) box(e)

| unbox(e) unbox(e)

A type of the form �χ τ is called a comonad; it represents the type of un-
evaluated expressions that impose constraint χ on their context of execu-
tion. The constraint > is the trivially true constraint, and the constraint
χ1 ∧ χ2 is the conjunction of two constraints. The expression box(e) is the
introduction form for the comonad, and the expression unbox(e) is the cor-
responding elimination form.

The judgement χ true expresses that the constraint χ is satisfied. This
judgement is partially defined by the following rules, which specify the
meanings of the trivially true constraint and the conjunction of constraints.
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tt true (42.1a)

χ1 true χ2 true

and(χ1; χ2) true
(42.1b)

and(χ1; χ2) true
χ1 true

(42.1c)

and(χ1; χ2) true
χ2 true

(42.1d)

We will make use of hypothetical judgements of the form χ1 true, . . . , χn true `
χ true, where n ≥ 0, expressing that χ is derivable from χ1, . . . , χn, as usual.

The static semantics is specified by parametric hypothetical judgements
of the form

x1 : τ1 [χ1], . . . , xn : τn [χn] ` e : τ [χ].

As usual we write Γ for a finite set of hypotheses of the above form.
The static semantics of the core constructs of L{comon} is defined by

the following rules:
χ′ ` χ

Γ, x : τ [χ] ` x : τ [χ′]
(42.2a)

Γ ` e : τ [χ]
Γ ` box(e) : �χ τ [χ′]

(42.2b)

Γ ` e : �χ τ [χ′] χ′ ` χ

Γ ` unbox(e) : τ [χ′]
(42.2c)

Rule (42.2b) states that a boxed computation has comonadic type under an
arbitrary constraint. This is valid because a boxed computation is a value,
and hence imposes no constraint on its context of evaluation. Rule (42.2c)
states that a boxed computation may be activated provided that the am-
bient constraint, χ′, is at least as strong as the constraint χ of the boxed
computation. That is, any requirement imposed by the boxed computation
must be met at the point at which it is unboxed.

Rules (42.2) are formulated to ensure that the constraint on a typing
judgement may be strengthened arbitrarily.

Lemma 42.1 (Constraint Strengthening). If Γ ` e : τ [χ] and χ′ ` χ, then
Γ ` e : τ [χ′].

Proof. By rule induction on Rules (42.2).
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Intuitively, if a typing holds under a weaker constraint, then it also
holds under any stronger constraint as well.

At this level of abstraction the dynamic semantics ofL{comon} is trivial.

box(e) val (42.3a)

e 7→ e′

unbox(e) 7→ unbox(e′)
(42.3b)

unbox(box(e)) 7→ e (42.3c)

In specific applications of L{comon} the dynamic semantics will also spec-
ify the context of evaluation with respect to which constraints are to inter-
preted.

The role of the comonadic type inL{comon} is explained by considering
how one might extend the language with, say, function types. The crucial
idea is that the comonad isolates the dependence of a computation on its
context of evaluation so that such constraints do not affect the other type
constructors. For example, here are the rules for function types expressed
in the context of L{comon}:

Γ, x : τ1 [tt] ` e2 : τ2 [tt]
Γ ` lam[τ1](x.e2) : arr(τ1; τ2) [χ]

(42.4a)

Γ ` e1 : τ2 → τ [χ] Γ ` e2 : τ2 [χ]
Γ ` ap(e1; e2) : τ [χ]

(42.4b)

These rules are formulated so as to ensure that constraint strengthening
remains admissible. Rule (42.4a) states that a λ-abstraction has type τ1 →
τ2 under any constraint χ provided that its body has type τ2 under the
trivially true constraint, assuming that its argument has type τ1 under the
trivially true constraint. By demanding that the body be well-formed under
no constraints we are, in effect, insisting that its body be boxed if it is to
impose a constraint on the context at the point of application. Under a
call-by-value evaluation order, the argument x will always be a value, and
hence imposes no constraints on its context.

Let the expression unbox app(e1; e2) be an abbreviation for unbox(ap(e1; e2)),
which applies e1 to e2, then activates the result. The derived static semantics
for this construct is given by the following rule:

Γ ` e1 : τ2 → �χ τ [χ′] Γ ` e2 : τ2 [χ′] χ′ ` χ

Γ ` unbox app(e1; e2) : τ [χ′]
(42.5)
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In words, to apply a function with impure body to an argument, the ambi-
ent constraint must be strong enough to type the function and its argument,
and must be at least as strong as the requirements imposed by the body of
the function. We may view a type of the form τ1 → �χ τ2 as the type of
functions that, when applied to a value of type τ1, yield a value of type τ2
engendering local effects with requirements specified by χ.

Similar principles govern the extension of L{comon} with other types
such as products or sums.

42.2 Comonadic Effects

In this section we discuss two applications of L{comon} to managing local
effects. The first application is to exceptions, using constraints to specify
whether or not an exception handler must be installed to evaluate an ex-
pression so as to avoid an uncaught exception error. The second is to fluid
binding, using constraints to specify which symbols must be bound dur-
ing execution so as to avoid accessing an unbound symbol. The first may
be considered to be an instance of the second, in which we think of the
exception handler as a distinguished symbol whose binding is the current
exception continuation.

42.2.1 Exceptions

To model exceptions we extend L{comon} as follows:

Category Item Abstract Concrete
Const χ ::= ↑ ↑
Expr e ::= raise[τ](e) raise(e)

| handle(e1; x.e2) try e1 ow x ⇒ e2

The constraint ↑ specifies that an expression may raise an exception, and
hence that its context is required to provide a handler for it.

The static semantics of L{comon} is extended with the following rules:

Γ ` e : τexn [χ] χ `↑
Γ ` raise[τ](e) : τ [χ]

(42.6a)

Γ ` e1 : τ [χ ∧ ↑] Γ, x : τexn ` e2 : τ [χ]
Γ ` handle(e1; x.e2) : τ [χ]

(42.6b)

Rule (42.6a) imposes the requirement for a handler on the context of a raise
expression, in addition to any other conditions that may be imposed by its
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argument. (The rule is formulated so as to ensure that constraint strength-
ening remains admissible.) Rule (42.6b) transforms an expression that re-
quires a handler into one that may or may not require one, according to
the demands of the handling expression. If e2 does not demand a handler,
then χ may be taken to be the trivial constraint, in which case the overall
expression is pure, even though e1 is impure (may raise an exception).

The dynamic semantics of exceptions is as given in Chapter 30. The
interesting question is to explore the additional assurances given by the
comonadic type system given by Rules (42.6). Intuitively, we may think of
a stack as a constraint transformer that turns a constraint χ into a constraint
χ′ by composing frames, including handler frames. Then if e is an expres-
sion of type τ imposing constraint χ and k is a τ-accepting stack transform-
ing constraint χ into constraint >, then evaluation of e on k cannot yield an
uncaught exception. In this sense the constraints reflect the reality of the
execution behavior of expressions.

To make this precise, we define the judgement k : τ [χ] to mean that k is
stack that is suitable as an execution context for an expression e : τ [χ]. The
typing rules for stacks are as follows:

ε : τ [>] (42.7a)

k : τ′ [χ′] f : τ [χ]⇒ τ′ [χ′]
f;k : τ [χ]

(42.7b)

Rule (42.7a) states that the empty stack must not impose any constraints on
its context, which is to say that there must be no uncaught exceptions at the
end of execution. Rule (42.7b) simply specifies that a stack is a composition
of frames. The typing rules for frames are easily derived from the static
semantics of L{comon}. For example,

x : τexn ` e : τ [χ]
handle(−; x.e) : τ [χ ∧ ↑]⇒ τ [χ]

(42.8)

This rule states that a handler frame transforms an expression of type τ
demanding a handler into an expression of type τ that may, or may not,
demand a handler, according to the form of the handling expression.

The formation of states is defined essentially as in Chapter 29.

k : τ [χ] e : τ [χ]
k . e ok

(42.9a)

k : τ [χ] e : τ [χ] e val

k / e ok
(42.9b)
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Observe that a state of the form ε . raise(e), where e val, is ill-formed,
because the empty stack is well-formed only under no constraints on the
context.

Safety ensures that no uncaught exceptions can arise. This is expressed
by defining final states to be only those returning a value to the empty
stack.

e val
ε / e final

(42.10)

In contrast to Chapter 30, we do not consider an uncaught exception state
to be final!

Theorem 42.2 (Safety). 1. If s ok and s 7→ s′, then s′ ok.

2. If s ok then either s final or there exists s′ such that s 7→ s′.

Proof. These are proved by rule induction on the dynamic semantics and
on the static semantics, respectively, proceeding along standard lines.

42.2.2 Fluid Binding

Using comonads we may devise a type system for fluid binding that en-
sures that no unbound symbols are accessed during execution. This is
achieved by regarding the mapping of symbols to their values to be the
context of execution, and introducing a form of constraint stating that a
specified symbol must be bound in the context.

Let us consider a comonadic static semantics for L{fluid} defined in
Chapter 36. For this purpose we consider atomic constraints of the form
bd(a), stating that the symbol a has a binding.

The static semantics of fluid binding consists of judgements of the form
Σ Γ ` e : τ [χ], where Σ consists of hypotheses of the form a : τ assigning a
type to a symbol.

Σ ` a : τ χ ` bd(a)
Σ Γ ` get[a] : τ [χ]

(42.11a)

Σ ` a : τ Σ Γ ` e1 : τ [χ] Σ Γ ` e2 : τ [χ ∧ bd(a)]
Σ Γ ` set[a](e1; e2) : τ [χ]

(42.11b)

Rule (42.11a) records the demand for a binding for the symbol a incurred
by retrieving its value. Rule (42.11b) propagates the fact that the symbol a
is bound to the body of the fluid binding.

The dynamic semantics is as specified in Chapter 36. The safety theo-
rem for the comonadic type system for fluid binding states that no unbound
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symbol error may ever arise during execution. We define the judgement
θ |= χ to mean that a ∈ dom(θ) whenever χ ` bd(a).

Theorem 42.3 (Safety). 1. If e : τ [χ] and e 7→θ e′, then e′ : θ [χ].

2. If e : τ [χ] and θ |= χ, then either e val or there exists e′ such that e 7→θ e′.

The comonadic static semantics forL{fluid}may be extended toL{fluid gen},
which also permits dynamic symbol generation. The main difficulty is
to manage the interaction between the scopes of symbols and their oc-
currences in types. First, it is straightforward to define the judgement
Σ ` χ constr to mean that χ is a constraint involving only those symbols a
such that Σ ` a : τ for some τ. Using this we may also define the judgement
Σ ` τ type analogously. This judgement is used to impose a restriction on
symbol generation to ensure that symbols do not escape their scope:

Σ, a : σ Γ ` e : τ Σ ` τ type

Σ Γ ` new[σ](a.e) : 〈σ〉τ (42.12)

This imposes the requirement that the result type of a computation involv-
ing a dynamically generated symbol must not mention that symbol. Oth-
erwise the type 〈σ〉τ would involve a symbol that makes no sense with
respect to the ambient symbol context, Σ. In practical terms this means that
the expression, e, must ensure that its type imposes no residual require-
ments involving the symbol a introduced by the binder.

For example, an expression such as

gen(ν(a:nat.set a to z inλ(x:nat. box(. . . get a . . .))))

is necessarily ill-typed. The type of the λ-abstraction must be of the form
nat → �χ τ, where χ ` bd(a), reflecting the dependence of the body
of the function on the binding of a. This type is propagated through the
fluid binding for a, since it holds only for the duration of evaluation of
the λ-abstraction itself, which is immediately returned as its value. Since
the type of the λ-abstraction involves the symbol a, the second premise of
Rule (42.12) is not met, and the expression is ill-typed. This is as it should
be, for we cannot guarantee that the dynamically generated symbol replac-
ing a during evaluation will, in fact, be bound when the body of the func-
tion is executed.

However, if we move the binding for a into the scope of the λ-abstraction,

gen(ν(a:nat.λ(x:nat. box(set a to z in . . . get a . . .)))),
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then the type of the λ-abstraction may have the form nat → �χ τ, where
χ need not constrain a to be bound. The reason is that the fluid binding
for a discharges the obligation to bind a within the body of the function.
Consequently, the condition on Rule (42.12) is met, and the expression is
well-typed. Indeed, each evaluation of the body of the λ-abstraction ini-
tializes the fresh copy of a generated during evaluation, so no unbound
symbol error can arise during execution.

42.3 Exercises
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Chapter 43

Eagerness and Laziness

A fundamental distinction between eager, or strict, and lazy, or non-strict,
evaluation arises in the dynamic semantics of function, product, sum, and
recursive types. This distinction is of particular importance in the context
of L{µ⇀}, which permits the formation of divergent expressions. Quite
often eager and lazy evaluation is taken to be a language design distinction,
but we argue that it is better viewed as a type distinction.

43.1 Eager and Lazy Dynamics

According to the methodology outlined in Chapter 11, language features
are identified with types. The constructs of the language arise as the intro-
ductory and eliminatory forms associated with a type. The static semantics
specifies how these may be combined with each other and with other lan-
guage constructs in a well-formed program. The dynamic semantics spec-
ifies how these constructs are to be executed, subject to the requirement of
type safety. Safety is assured by the conservation principle, which states
that the introduction forms are the values of the type, and the elimination
forms are inverse to the introduction forms.

Within these broad guidelines there is often considerable leeway in the
choice of dynamic semantics for a language construct. For example, con-
sider the dynamic semantics of function types given in Chapter 14. There
we specified the λ-abstractions are values, and that applications are evalu-
ated according to the following rules:

e1 7→ e′1
e1(e2) 7→ e′1(e2)

(43.1a)
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e1 val e2 7→ e′2
e1(e2) 7→ e1(e′2)

(43.1b)

e2 val

λ(x:τ. e)(e2) 7→ [e2/x]e
(43.1c)

The first of these states that to evaluate an application e1(e2) we must first
of all evaluate e1 to determine what function is being applied. The third of
these states that application is inverse to abstraction, but is subject to the
requirement that the argument be a value. For this to be tenable, we must
also include the second rule, which states that to apply a function, we must
first evaluate its argument. This is called the call-by-value, or strict, or eager,
evaluation order for functions.

Regarding a λ-abstraction as a value is inevitable so long as we retain
the principle that only closed expressions (complete programs) can be exe-
cuted. Similarly, it is natural to demand that the function part of an appli-
cation be evaluated before the function can be called. On the other hand it
is somewhat arbitrary to insist that the argument be evaluated before the
call, since nothing seems to oblige us to do so. This suggests an alternative
evaluation order, called call-by-name,1 or lazy, which states that arguments
are to be passed unevaluated to functions. Consequently, function param-
eters stand for computations, not values, since the argument is passed in
unevaluated form. The following rules define the call-by-name evaluation
order:

e1 7→ e′1
e1(e2) 7→ e′1(e2)

(43.2a)

λ(x:τ. e)(e2) 7→ [e2/x]e (43.2b)

We omit the requirement that the argument to an application be a value.
This example illustrates some general principles governing the dynamic

semantics of a language:

1. The conservation principle demands that the elimination forms be
inverse to the introduction forms. The elimination forms associated
with a type have a distinguished principal argument, which is of the
type under consideration, to which the elimination form is inverse.

2. The principal argument of an elimination form is necessarily evalu-
ated to an introduction form, thereby exposing an opportunity for
cancellation according to the conservation principle.

1For obscure historical reasons.
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3. It is more or less arbitrary whether the non-principal arguments to an
elimination form are evaluated prior to cancellation.

4. Values of the type have introductory form, but may also be chosen to
satisfy further requirements such as insisting that certain sub-expressions
also be values.

Let us apply these principles to the product type. First, the sole argu-
ment to the elimination forms is, of course, principal, and hence must be
evaluated. Second, if the argument is a value, it must be a pair (the only
introductory form), and the projections extract the appropriate component
of the pair.

〈e1, e2〉 val

fst(〈e1, e2〉) 7→ e1
(43.3)

〈e1, e2〉 val

snd(〈e1, e2〉) 7→ e1
(43.4)

e 7→ e′

fst(e) 7→ fst(e′)
(43.5)

e 7→ e′

snd(e) 7→ snd(e′)
(43.6)

Since there is only one introductory form for the product type, a value
of product type must be a pair. But this leaves open whether the compo-
nents of a pair value must themselves be values or not. The eager (or strict)
semantics, which we gave in Chapter 17, evaluates the components of a
pair before deeming it to be a value: specified by the following additional
rules:

e1 val e2 val

〈e1, e2〉 val
(43.7)

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

(43.8)

e1 val e2 7→ e′2
〈e1, e2〉 7→ 〈e1, e′2〉

(43.9)

The lazy (or non-strict) semantics, on the other hand, deems any pair to be
a value, regardless of whether its components are values:

〈e1, e2〉 val (43.10)
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There are similar alternatives for sum and recursive types, differing ac-
cording to whether or not the argument of an injection, or to the introduc-
tory half of an isomorphism, is evaluated. There is no choice, however,
regarding evaluation of the branches of a case analysis, since each branch
binds a variable to the injected value for each case. Incidentally, this ex-
plains the apparent restriction on the evaluation of the conditional expres-
sion, if e then e1 else e2, arising from the definition of bool to be the sum
type unit + unit as described in Chapter 18 — the “then” and the “else”
branches lie within the scope of an (implicit) bound variable, and hence are
not eligible for evaluation!

43.2 Eager and Lazy Types

Rather than specify a blanket policy for the eagerness or laziness of the var-
ious language constructs, it is more expressive to put this decision into the
hands of the programmer by a type distinction. That is, we can distinguish
types of by-value and by-name functions, and of eager and lazy versions of
products, sums, and recursive types.

We may give eager and lazy variants of product, sum, function, and
recursive types according to the following chart:

Eager Lazy
Unit 1 >
Product τ1 ⊗ τ2 τ1 × τ2
Void ⊥ 0
Sum τ1 + τ2 τ1 ⊕ τ2
Function τ1 ◦→ τ2 τ1 → τ2

We leave it to the reader to formulate the static and dynamic semantics of
these constructs using the following grammar of introduction and elimina-
tion forms for the unfamiliar type constructors in the foregoing chart:

Introduction Elimination
1 • (none)
τ1 ⊗ τ2 e1 ⊗ e2 let x1 ⊗ x2 be e in e′

0 (none) abortτ(e)
τ1 ⊕ τ2 lftτ(e), rhtτ(e) choose e {lft(x1)⇒e1 | rht(x2)⇒e2}
τ1 ◦→ τ2 λ◦(x:τ1. e2) ap◦(e1; e2)

The elimination form for the eager product type uses pattern-matching to
recover both components of the pair at the same time. The elimination form
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for the lazy empty sum performs a case analysis among zero choices, and is
therefore tantamount to aborting the computation. Finally, the circle adorn-
ing the eager function abstraction and application is intended to suggest a
correspondence to the eager product and function types.

The notation for eager and lazy types is chosen to emphasize a duality
between the eager and lazy interpretations of the type constructors. We use
familiar notation to emphasize that the construct has a standard, or strong,
semantics, and unfamiliar notation to emphasize that the construct has a
non-standard, or weak, semantics. Thus the lazy interpretation features stan-
dard products and function types but non-standard sum types. Dually,
the eager interpretation features standard sums, but non-standard prod-
ucts and functions. In a sense that we cannot make fully precise here, the
standard types enjoy a full range of properties that are valid only in limited
forms for the non-standard types. For example, lazy products are standard
in that the expression fst(〈e1, e2〉) is interchangeable with e1, regardless of
whether or not e2 terminates, and similarly snd(〈e1, e2〉) is interchangeable
with e2, independently of whether e1 terminates. But these conditions fail
for strict products, unless both e1 and e2 are values. A dual, but harder
to state, situation obtains for sums, with eager sums being standard, and
lazy sums being non-standard. Lazy function types are standard in that
λ(x:τ1. e2)(e1) is always interchangeable with [e1/x]e2, whereas the corre-
sponding property fails for strict function types in the case that e2 does not
terminate.

43.3 Self-Reference

We have seen in Chapter 16 that we may use general recursion at the ex-
pression level to define recursive functions. In the presence of laziness we
may also define other forms of self-referential expression. For example,
consider the so-called lazy natural numbers, which are defined by the re-
cursive type lnat = µt.>⊕ t. The successor operation for the lazy natural
numbers is defined by the equation lsucc(e) = fold(rht(e)). Using gen-
eral recursion we may form the lazy natural number

ω = fix x:lnat is lsucc(x),

which consists of an infinite stack of successors!
Of course, one could argue (correctly) that ω is not a natural number at

all, and hence should not be regarded as one. So long as we can distinguish
the type lnat from the type nat, there is no difficulty—ω is the infinite lazy
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natural number, but it is not an eager natural number. But if the distinction
is not available, then serious difficulties arise. For example, lazy languages
provide only lazy product and sum types, and hence are only capable of
defining the lazy natural numbers as a recursive types. In such languages
ω is said to be a “natural number”, but only for a non-standard use of the
term; the true natural numbers are simply unavailable.

It is a significant weakness of lazy languages is that they provide only
a paucity of types. One might expect that, dually, eager languages are sim-
ilarly disadvantaged in providing only eager, but not lazy types. However,
in the presence of function types (the common case), we may encode the
lazy types as instances of the corresponding eager types, as we describe in
the next section.

43.4 Suspension Type

The essence of lazy evaluation is the suspension of evaluation of certain
expressions. For example, the lazy product type suspends evaluation of
the components of a pair until they are needed, and the lazy sum type sus-
pends evaluation of the injected value until it is required. To encode lazy
types as eager types, then, requires only that we have a type whose values
are unevaluated computations of a specified type. Such unevaluated compu-
tations are called suspensions, or thunks.2 Moreover, since general recursion
requires laziness in order to be useful, it makes sense to confine general
recursion to suspension types. To model this we consider self-referential un-
evaluated computations as values of suspension type.

The abstract syntax of suspensions is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= susp(τ) τ susp
Expr e ::= susp[τ](x.e) susp x : τ is e

| force(e) force(e)

The introduction form binds a variable that stands for the suspension it-
self. The elimination form evaluates e1 to a suspension, then evaluates that
suspension, binding its value to x for use within e2. As a notational conve-
nience, we sometimes write susp(e) for susp[τ](x.e), where x # e and e
is of type τ.

2The etymology of this term is uncertain, but its usage persists.
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The static semantics of suspensions is given by the following typing
rules:

Γ, x : susp(τ) ` e : τ

Γ ` susp[τ](x.e) : susp(τ)
(43.11a)

Γ ` e : susp(τ)

Γ ` force(e) : τ
(43.11b)

In Rule (43.11a) the variable x, which refers to the suspension itself, is as-
sumed to have type susp(τ) while checking that the suspended computa-
tion, e, has type τ.

The dynamic semantics of suspensions is given by the following rules:

susp[τ](x.e) val (43.12a)

e 7→ e′

force(e) 7→ force(e′)
(43.12b)

force(susp[τ](x.e)) 7→ [susp[τ](x.e)/x]e (43.12c)

Rule (43.12c) implements recursive self-reference by replacing x by the sus-
pension itself before substituting it into the body of the let.

It is straightforward to formulate and prove type safety for self-referential
suspensions. We leave the proof as an exercise for the reader.

Theorem 43.1 (Safety). If e : τ, then either e val or there exists e′ : τ such that
e 7→ e′.

We may use suspensions to encode the lazy type constructors as in-
stances of the corresponding eager type constructors as follows:

> = 1 (43.13a)
〈〉 = • (43.13b)

τ1 × τ2 = τ1 susp⊗ τ2 susp (43.14a)
〈e1, e2〉 = susp(e1)⊗ susp(e2) (43.14b)
fst(e) = let x⊗ be e in force(x) (43.14c)
snd(e) = let ⊗ y be e in force(y) (43.14d)

0 = ⊥ (43.15a)
abortτ(e) = abortτ e (43.15b)
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τ1 ⊕ τ2 = τ1 susp + τ2 susp (43.16a)
lft(e) = in[l](susp(e)) (43.16b)
rht(e) = in[r](susp(e)) (43.16c)

choose e {lft(x1)⇒e1 | rht(x2)⇒e2}
= case e {in[l](y1)⇒ [force(y1)/x1]e1 | in[r](y2)⇒ [force(y2)/x2]e2}

(43.16d)

τ1 → τ2 = τ1 susp ◦→ τ2 (43.17a)
λ(x:τ1. e2) = λ◦(x:τ1 susp. [force(x)/x]e2) (43.17b)

e1(e2) = ap◦(e1; susp(e2)) (43.17c)

In the case of lazy case analysis and call-by-name functions we replace oc-
currences of the bound variable, x, with force(x) to recover the value of
the suspension bound to x whenever it is required. Note that x may oc-
cur in a lazy context, in which case force(x) is delayed. In particular,
expressions of the form susp(force(x)) may be safely replaced by x, since
forcing the former computation simply forces x.

43.5 Exercises
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Chapter 44

Lazy Evaluation

Lazy evaluation refers to a variety of concepts that seek to avoid evaluation
of an expression unless its value is needed, and to share the results of eval-
uation of an expression among all uses of its, so that no expression need
be evaluated more than once. Within this broad mandate, various forms of
laziness are considered.

One is the call-by-need evaluation strategy for functions. This is a re-
finement of the call-by-name semantics described in Chapter 43 in which
arguments are passed unevaluated to functions so that it is only evaluated
if needed, and, if so, the value is shared among all occurrences of the argu-
ment in the body of the function.

Another is the lazy evaluation strategy for data structures, including
formation of pairs, injections into summands, and recursive folding. The
decisions of whether to evaluate the components of a pair, or the argument
to an injection or fold, are independent of one another, and of the decision
whether to pass arguments to functions in unevaluated form.

A third aspect of laziness is the ability to form recursive values, including
as a special case recursive functions. Using general recursion we can create
self-referential expressions, but these are only useful if the self-referential
expression can be evaluated without needing its own values. Function ab-
stractions provide one such mechanism, but so do lazy data constructors.

These aspects of laziness are often consolidated into a programming
language with call-by-need function evaluation, lazy data structures, and
unrestricted uses of recursion. Such languages are called lazy languages, be-
cause they impose the lazy evaluation strategy throughout. These are to be
contrasted with strict languages, which impose an eager evaluation strategy
throughout. This leads to a sense of opposition between two incompatible
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points of view, but, as we discussed in Chapter 43, experience has shown
that this apparent conflict is neither necessary nor desirable. Rather than
accept these as consequences of language design, it is preferable to put the
distinction in the hands of the programmer by introducing a type of sus-
pended computations whose evaluation is memoized so that they are only
ever evaluated once. The ambient evaluation strategy remains eager, but
we now have a value representing an unevaluated expression. Moreover, we
may confine self-reference to suspensions to avoid the pathologies of lazi-
ness while permitting self-referential data structures to be programmed.

44.1 Call-By-Need

The distinguishing feature of call-by-need, as compared to call-by-name,
is that it records in memory the bindings of all variables so that when
the binding of a variable is first needed, it is evaluated and the result is
re-bound to that variable. Subsequent demands for the binding simply
retrieve the stored value without having to repeat the computation. Of
course, if the binding is never needed, it is never evaluated, consistently
with the call-by-name semantics.

The call-by-need dynamic semantics of L{nat⇀} is given by a transi-
tion system whose states have the form e @ µ, where µ is a finite function
mapping variables to expressions (not necessarily values!), and e is an ex-
pression whose free variables lie within the domain of µ. (We use the same
notation for finite functions as in Chapter 37.)

The rules defining the call-by-need dynamic semantics ofL{nat⇀} are
as follows:

z val (44.1a)

s(x) val (44.1b)

lam[τ](x.e) val (44.1c)

x @ 〈x : e〉 initial (44.1d)

e val
e @ µ final

(44.1e)
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e val
x @ µ⊗ 〈x : e〉 7→ e @ µ⊗ 〈x : e〉 (44.1f)

e @ µ⊗ 〈x : •〉 7→ e′ @ µ′ ⊗ 〈x : •〉
x @ µ⊗ 〈x : e〉 7→ x @ µ′ ⊗ 〈x : e′〉

(44.1g)

s(e) @ µ 7→ s(x) @ µ⊗ 〈x : e〉 (44.1h)

e @ µ 7→ e′ @ µ′

ifz(e; e0; x.e1) @ µ 7→ ifz(e′; e0; x.e1) @ µ′
(44.1i)

ifz(z; e0; x.e1) @ µ 7→ e0 @ µ (44.1j)

x /∈ dom(µ)
ifz(s(x); e0; x.e1) @ µ 7→ e1 @ µ

(44.1k)

e1 @ µ 7→ e′1 @ µ′

e1(e2) @ µ 7→ e′1(e2) @ µ′
(44.1l)

x /∈ dom(µ)
λ(x:τ. e)(e2) @ µ 7→ e @ µ⊗ 〈x : e2〉

(44.1m)

x /∈ dom(µ)
fix[τ](x.e) @ µ 7→ x @ µ⊗ 〈x : e〉

(44.1n)

Rules (44.1a) through (44.1c) specify that z is a value, any expression
of the form s(x), where x is a variable, is a value, and any λ-abstraction,
possibly containing free variables, is a value. Importantly, variables them-
selves are not values, since they may be bound by the memory to an un-
evaluated expression.

Rule (44.1d) specifies that an initial state consists of a binding for a
closed expression, e, in memory, together with a demand for its binding.
Rule (44.1e) specifies that a final state has the form e @ µ, where e is a value.

Rule (44.1h) specifies that evaluation of s(e) yields the value s(x), where
x is bound in the memory to e in unevaluated form. This reflects a lazy
semantics for the successor, in which the predecessor is not evaluated un-
til it is required by a conditional branch. Rule (44.1k), which governs a
conditional branch on a sucessor, makes use of α-equivalence to choose
the bound variable, x, for the predecessor to be the variable to which the
predecessor was already bound by the successor operation. Evaluation of
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the successor branch of the conditional may make a demand on x, which
would then cause the predecessor to be evaluated, as discussed above.

Rule (44.1l) specifies that the value of the function position of an appli-
cation must be determined before the application can be executed. Rule (44.1m)
specifies that to evaluate an application of a λ-abstraction we create a fresh
binding of its parameter to its unevaluated argument, and continue by eval-
uating its body. The freshness condition may always be met by implicitly
renaming the bound variable of the λ-abstraction to be a variable not oth-
erwise bound in the memory. Thus, each call results in a fresh binding of
the parameter to the argument at the call.

The rules for variables are crucial, since they implement memoization.
Rule (44.1f) governs a variable whose binding is a value, which is returned
as the value of that variable. Rule (44.1g) specifies that if the binding of
a variable is required and that binding is not yet a value, then its value
must be determined before further progress can be made. This is achieved
by switching the “focus” of evaluation to the binding, while at the same
time replacing the binding by a black hole, which represents the absence of
a value for that variable (since it has not yet been determined). Evaluation
of a variable whose binding is a black hole is “stuck”, since it indicates a
circular dependency of the value of a variable on the variable itself.

Rule (44.1n) implements general recursion. Recall from Chapter 16 that
the expression fix[τ](x.e) stands for the solution of the recursion equa-
tion x = e, where x may occur within e. Rule (44.1n) obtains the solu-
tion directly by equating x to e in the memory, and returning x. The role
of the black hole becomes evident when evaluating an expression such as
fix x:τ is x. Evaluation of this expression binds the variable x to itself in
the memory, and then returns x, creating a demand for its binding. Apply-
ing Rule (44.1g), we see that this immediately leads to a stuck state in which
we require the value of x in a memory in which it is bound to the black hole.
This captures the inherent circularity in the purported definition of x, and
amounts to catching a potential infinite loop before it happens. Observe
that, by contrast, an expression such as fix f:σ→ τ isλ(x:σ. e) does not
get stuck, because the occurrence of the recursively defined variable, f , lies
within the λ-expression. Evaluation of a λ-abstraction, being a value, cre-
ates no demand for f , so the black hole is not encountered. Rule (44.1g)
backpatches the binding of f to be the λ-abstraction itself, so that sub-
sequent uses of f evaluate to it, as would be expected. Thus recursion
is automatically implemented by the backpatching technique described in
Chapter 37.
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The type safety of the by-need semantics for lazy L{nat⇀} is proved
using methods similar to those developed in Chapter 37 for references. To
do so we define the judgement e @ µ ok to hold iff there exists a set of typing
assumptions Γ governing the variables in the domain of the memory, µ,
such that

1. if Γ = Γ′, x : τx and µ(x) = e 6= •, then Γ ` e : τx.

2. there exists a type τ such that Γ ` e : τ.

As a notational convenience, we will sometimes write µ : Γ ` e : τ for the
conjunction of these two conditions.

Theorem 44.1 (Preservation). If e @ µ 7→ e′ @ µ′ and e @ µ ok, then e′ @ µ′ ok.

Proof. The proof is by rule induction on Rules (44.1). For the induction we
prove the stronger result that if µ : Γ and Γ ` e : τ, then there exists Γ′ such
that µ′ : Γ Γ′ ` e′ : τ. We will consider two illustrative cases of the proof.

Consider Rule (44.1l), for which e = e1(e2). Suppose that µ : Γ and Γ `
e : τ. Then by inversion of typing Γ ` e1 : τ2 → τ for some type τ2 such that
Γ ` e2 : τ2. So by induction there exists Γ′ such that µ′ : Γ Γ′ ` e′1 : τ2 → τ.
By weakening Γ Γ′ ` e2 : τ2, and hence µ′ : Γ Γ′ ` e′1(e2) : τ. We have only
to notice that e′ = e′1(e2) to complete this case.

Consider Rule (44.1g), for which we have e = e′ = x, µ = µ0 ⊗ 〈x : e0〉,
and µ′ = µ′0 ⊗ 〈x : e′0〉, where e0 @ µ0 ⊗ 〈x : •〉 7→ e′0 @ µ′0 ⊗ 〈x : •〉. Assume
that µ : Γ ` e : τ; we are to show that there exists Γ′ such that µ′ : Γ Γ′ `
e′0 : τ. Since µ : Γ and e is the variable x, we have that Γ = Γ′′, x : τ and
Γ ` e0 : τ. Therefore µ0 ⊗ 〈x : •〉 : Γ, so by induction there exists Γ′ such that
µ′0 ⊗ 〈x : •〉 : Γ Γ′ ` e′0 : τ. But then µ′0 ⊗ 〈x : e′0〉 : Γ Γ′ ` x : τ, as required.

The progress theorem must be stated so as to account for accessing a
variable that is bound to a black hole, which is tantamount to a detectable
form of looping. Since the type system does not rule this out, we define the
judgement e @ µ loops by the following rules:

x @ µ⊗ 〈x : •〉 loops (44.2a)

e @ µ⊗ 〈x : •〉 loops

x @ µ⊗ 〈x : e〉 loops
(44.2b)

e @ µ loops

ifz(e; e0; x.e1) @ µ loops
(44.2c)
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e1 @ µ loops

ap(e1; e2) @ µ loops
(44.2d)

In general looping is propagated through the principal argument of every
eliminatory construct, since this argument position must always be evalu-
ated in any transition sequence involving it.

The progress theorem is weakened to account for detectable looping.

Theorem 44.2 (Progress). If e @ µ ok, then either e @ µ final, or e @ µ loops, or
there exists µ′ and e′ such that e @ µ 7→ e′ @ µ′.

Proof. We prove by rule induction on the static semantics that if µ : Γ ` e :
τ, then either e val, or e @ µ loops, or e @ µ 7→ e′ @ µ′ for some µ′ and e′. The
proof is by lexicographic induction on the measure (m, n), where n ≥ 0 is
the size of e and m ≥ 0 is the sum of the sizes of the non-black-hole bindings
of each variable in the domain of µ. This means that we may appeal to
the inductive hypothesis for sub-expressions of e, since they have smaller
size, provided that the size of the memory remains fixed. Since the size of
µ⊗ 〈x : •〉 is strictly smaller than the size of µ⊗ 〈x : ex〉 for any expression
ex, we may also appeal to the inductive hypothesis for expressions larger
than e, provided we do so relative to a smaller memory.

As an example of the former case, consider the case of Rule (16.1f), for
which e = ap(e1; e2), where µ : Γ ` e1 : arr(τ2; τ) and µ : Γ ` e2 : τ2. By the
induction hypothesis applied to e1, we have that either e1 val or e1 @ µ loops
or e1 @ µ 7→ e′1 @ µ′.

In the first case it may be shown that e1 = lam[τ2](x.e), and hence
that ap(e1; e2) @ µ 7→ e @ µ′ ⊗ 〈x : e2〉 by Rule (44.1m), where x is chosen
by α-equivalence to lie outside of the domain of µ′. In the second case we
have by Rule (44.2d) that ap(e1; e2) @ µ loops. In the third case we have by
Rule (44.1l) that ap(e1; e2) @ µ 7→ ap(e′1; e2) @ µ′.

Now consider Rule (16.1a), for which we have Γ ` x : τ with Γ =
Γ′, x : τ. For any µ such that µ : Γ, we have that µ = µ0 ⊗ 〈x : e0〉 with
µ0 ⊗ 〈x : •〉 : Γ ` e0 : τ. Since the memory µ0 ⊗ 〈x : •〉 is smaller than the
memory µ, we have by induction that either e0 val or e0 @ µ0 ⊗ 〈x : •〉 loops,
or e0 @ µ0 ⊗ 〈x : •〉 7→ e′0 @ µ′0 ⊗ 〈x : •〉.

If e0 val, then x @ µ0 ⊗ 〈x : e0〉 7→ e0 @ µ0 ⊗ 〈x : e0〉 by Rule (44.1f). If
e0 @ µ0 ⊗ 〈x : •〉 loops, then x @ µ0 ⊗ 〈x : e0〉 loops by Rule (44.2b). Finally, if
e0 @ µ0 ⊗ 〈x : •〉 7→ e′0 @ µ′0 ⊗ 〈x : •〉, then x @ µ0 ⊗ 〈x : e0〉 7→ x @ µ′0 ⊗ 〈x : e′0〉
by Rule (44.1g).
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44.2 Lazy Data Structures

Call-by-need evaluation addresses only one aspect of laziness, namely de-
ferring evaluation of function arguments until they are needed, and shar-
ing the value among all other uses of it. Other aspects of laziness pertain to
product, sum, and recursive types, whose introductory forms may be given
a lazy interpretation, with memoization of unevaluated sub-expressions to
avoid needless recomputation.

The “by need” dynamic semantics of product types is given by the fol-
lowing set of rules:

pair(x1; x2) val (44.3a)

pair(e1; e2) @ µ 7→ pair(x1; x2) @ µ⊗ 〈x1 : e1〉 ⊗ 〈x2 : e2〉 (44.3b)

e @ µ 7→ e′ @ µ′

fst(e) @ µ 7→ fst(e′) @ µ′
(44.3c)

fst(pair(x1; x2)) @ µ 7→ x1 @ µ (44.3d)

e @ µ loops

fst(e) @ µ loops
(44.3e)

e @ µ 7→ e′ @ µ′

snd(e) @ µ 7→ snd(e′) @ µ′
(44.3f)

snd(pair(x1; x2)) @ µ 7→ x2 @ µ (44.3g)

e @ µ loops

snd(e) @ µ loops
(44.3h)

A pair is considered a value only if its arguments are variables (Rule (44.3a)),
which are introduced when the pair is created (Rule (44.3b)). The first and
second projections evaluate to one or the other variable in the pair, induc-
ing a demand for the value of that component. This ensures that another
occurrence of the same projection of the same pair will yield the same value
without having to recompute it.

The by-need semantics of sums and recursive types follow a similar
pattern, and are left as an exercise for the reader.
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44.3 Suspensions By Need

In Chapter 43 it is suggested that laziness be confined to a type of self-
referential suspensions. To avoid needless recomputation it is essential to
give a by-need semantics to suspensions, following along similar lines to
the by-need semantics of a lazy language. The chief difference is that vari-
ables are regarded as values, rather than as computations to be evaluated. To
force evaluation of a memoized computation, we must explicitly use the
elimination form for suspension types, rather than simply refer to it via the
variable to which it is bound.

The by-need semantics of suspensions is given by the following rules:

x val (44.4a)

susp[τ](x.e) @ µ 7→ x @ µ⊗ 〈x : e〉 (44.4b)

e @ µ 7→ e′ @ µ′

force(e) @ µ 7→ force(e′) @ µ′
(44.4c)

e val
force(x) @ µ⊗ 〈x : e〉 7→ e @ µ⊗ 〈x : e〉 (44.4d)

e @ µ⊗ 〈x : •〉 7→ e′ @ µ′ ⊗ 〈x : •〉
force(x) @ µ⊗ 〈x : e〉 7→ force(x) @ µ′ ⊗ 〈x : e′〉

(44.4e)

It is straightforward to adapt the type safety proof given in Section 44.1 on
page 344 to the special case of suspension types.

44.4 Exercises
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Chapter 45

Speculative Parallelism

The semantics of call-by-need given in Chapter 44 suggests opportunities
for speculative parallelism. Evaluation of a delayed binding is initiated as
soon as the binding is created, executing simultaneously with the evalua-
tion of the body. Should the variable ever be needed, evaluation of the body
synchronizes with the concurrent evaluation of the binding, and proceeds
only once the value is available. This form of parallelism is called specula-
tive, because the value of the binding may never be needed, in which case
the resources required for its evaluation are wasted. However, in some sit-
uations there are available computing resources that would otherwise be
wasted, and which can be usefully employed for speculative evaluation.

There is also a speculative version of suspensions, called futures, which
behave in the same manner, except that the synchronization points are ex-
plicit in the form of calls to force the suspension. The suspended com-
putation can be executed in parallel on the hypothesis that its value will
eventually be needed to proceed.

45.1 Speculative Execution

An interesting variant of the call-by-need semantics is obtained by relaxing
the restriction that the bindings of variables be evaluated only once they are
needed. Instead, we may permit a step of execution of the binding of any
variable to occur at any time. Specifically, we replace the second variable
rule given in Section 44.1 on page 344 by the following general rule:

e @ µ⊗ 〈y : •〉 7→ e′ @ µ′ ⊗ 〈y : •〉
e0 @ µ⊗ 〈y : e〉 7→ e0 @ µ′ ⊗ 〈y : e′〉

(45.1)
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This rule permits any variable binding to be chosen at any time as the focus
of attention for the next evaluation step. The first variable rule remains as-
is, so that, as before, a variable may be evaluated only after the value of its
binding has been determined.

This semantics is said to be non-deterministic because the transition re-
lation is no longer a partial function on states. That is, for a given state
e @ µ, there may be many different states e′ @ µ′ such that e @ µ 7→ e′ @ µ′,
precisely because the foregoing rule permits us to shift attention to any lo-
cation in memory at any time. The rules abstract away from the specifics of
how such “context switches” might be scheduled, permitting them to oc-
cur at any time so as to be consistent with any scheduling strategy. In this
sense non-determinism models parallel execution by permitting the indi-
vidual steps of a complete computation to be interleaved in an arbitrary
manner.

The non-deterministic semantics is said to be speculative, because it per-
mits evaluation of any suspended expression at any time, without regard
to whether its value is needed to determine the overall result of the compu-
tation. In this sense it is contrary to the spirit of call-by-need, since it may
perform work that is not strictly necessary. The benefit of speculation is
that it leads to a form of parallel computation, called speculative parallelism,
which seeks to exploit computing resources that would otherwise be left
idle. Ideally one should only use processors to compute results that are
needed, but in some situations it is difficult to make full use of available
resources without resorting to speculation.

Just as with call-by-need, there is also a speculative version of suspen-
sions, which are called futures. Conceptually, a delayed computation in
memory is evaluated speculatively “in parallel” while computation along
the main thread proceeds. When a suspension is forced, evaluation of the
main thread is blocked until the suspension has been evaluated, at which
point the value is propagated to the main thread and execution proceeds.
The semantics of futures is a straightforward modification to the semantics
of suspensions given in Chapter 44 to permit arbitrary context switches that
evaluate suspended computations.

45.2 Speculative Parallelism

The non-deterministic semantics given in Section 45.1 on the preceding
page captures the idea of speculative execution, but addresses parallelism
only indirectly, by avoiding specification of when the focus of evaluation
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may shift from one suspended expression to another. The semantics is
specified from the point of view of an omniscient observer who sequen-
tializes the parallel execution into a sequence of atomic steps. No particu-
lar sequentialization is enforced; rather, all possible sequentializations are
derivable from the rules.

A more accurate model is one that makes explicit the parallel specu-
lative evaluation of some number of suspended computations. We model
this using a judgement of the form µ 7→ µ′, which specifies the simultane-
ous execution of a computation step on each of k > 0 suspended computa-
tions. 

ei @ µ⊗ 〈x1 : •〉 ⊗ · · · ⊗ 〈xk : •〉
7→

e′i @ µ⊗ 〈x1 : •〉 ⊗ · · · ⊗ 〈xk : •〉 ⊗ µi

 (∀1 ≤ i ≤ k)


µ⊗ 〈x1 : e1〉 ⊗ · · · ⊗ 〈xk : ek〉

7→
µ⊗ 〈x1 : e′1〉 ⊗ · · · ⊗ 〈xk : e′k〉 ⊗ µ1 ⊗ · · · ⊗ µk


(45.2)

This rule may be seen as a generalization of Rule (44.1g), except that it ap-
plies independently of whether there is a demand for any of the variables
involved. The transition consists of choosing k > 0 suspended computa-
tions on which to make progress, and simultaneously taking a step on each,
and restoring the results to the memory. The choice of k is left unspecified,
but is fixed for all inferences; in practice it would be related to the number
of available processors.

The speculative parallel semantics of L{nat⇀} is defined by replacing
Rule (44.1g) by the following rule:

µ 7→ µ′

e @ µ 7→ e @ µ′
(45.3)

This rules specifies that, at any moment, we may make progress by exe-
cuting a step of evaluation on some number of suspended computations.
Since Rule (44.1g) has been omitted, this rule must be applied sufficiently
often to ensure that the binding of any required variable is fully evaluated
before its value is required. The goal of speculative execution is to ensure
that this is always the case, but in practice a computation must sometimes
be suspended to await completion of evaluation of the binding of some
variable.
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There is a technical complication with Rule (45.2), however, that lies at
the heart of any parallel programming language. When executing com-
putations in parallel, it is possible that two or more of them choose the
same variable to represent a new suspended computation. Formally, this
occurs when the domain of µi intersects the domain of µj for some i 6= j
in the premise of Rule (45.2). In practice this corresponds to two threads
attempting to allocate memory at the same time: some synchronization is
required to resolve the contention. In a formal model we may leave the
means of achieving this abstract, and simply demand as a side condition
that the memories µ1, . . . , µk have disjoint domains. This may always be
achieved by choosing variable names independently for each thread. In an
implementation some method is required to support memory allocation in
parallel, using one of several well-known synchronization methods (such
as an atomic fetch-and-add instruction).

45.3 Exercises
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Chapter 46

Work-Efficient Parallelism

In this chapter we study the concept of work-efficient parallelism, which ex-
ploits opportunities for parallelism without increasing the workload com-
pared to a sequential execution. This is in contrast to speculative paral-
lelism (see Chapter 45), which exposes parallelism, but potentially at the
cost of doing more work than would be done in the sequential case. In
a speculative semantics we may evaluate suspended computations even
though their value is never required for the ultimate result. The work ex-
pended in computing the value of the suspension is wasted; it keeps the
processor warm, but could just as well have been omitted. In contrast
work-efficient parallelism never wastes effort; it only performs computa-
tions whose results are required for the final outcome.

To make these ideas precise we make use of a cost semantics, which de-
termines not only the value of an expression, but a measure of the cost of
evaluating it. The costs are chosen so as to expose both opportunities for
and obstructions to parallelism. If one computation depends on the result
of another, then there is a sequential dependency between them that pre-
cludes their execution in parallel. If, on the other hand, two computations
are independent of one another, then they can be executed in parallel. Func-
tional languages without state provide ample opportunities for parallelism,
and will be the focus of our work in this chapter.

46.1 A Simple Parallel Language

We begin with a very simple parallel language whose sole source of paral-
lelism arises from the evaluation of two variable bindings simultaneously.
This is modelled by a construct of the form let x1 = e1 and x2 = e2 in e, in
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which we bind two variables, x1 and x2, to two expressions, e1 and e2, re-
spectively, for use within a single expression, e. This represents a simple
fork-join primitive in which e1 and e2 may be evaluated independently of
one another, with their results combined by the expression e. Some other
forms of parallelism may be defined in terms of this primitive. For exam-
ple, a parallel pair construct might be defined as the expression

let x1 = e1 and x2 = e2 in 〈x1, x2〉,

which evaluates the components of the pair in parallel, then constructs the
pair itself from these values.

The abstract syntax of the parallel binding construct is given by the ab-
stract binding tree

let(e1; e2; x1.x2.e),

which makes clear that the variables x1 and x2 are bound only within e, and
not within their bindings. This ensures that evaluation of e1 is independent
of evaluation of e2, and vice versa. The typing rule for an expression of this
form is given as follows:

Γ ` e1 : τ1 Γ ` e2 : τ2 Γ, x1 : τ1, x2 : τ2 ` e : τ

Γ ` let(e1; e2; x1.x2.e) : τ
(46.1)

Although we emphasize the case of binary parallelism, it should be clear
that this construct easily generalizes to n-way parallelism for any static
value of n. One may also define an n-way parallel let construct from the
binary parallel let by cascading binary splits. (For a treatment of n-way
parallelism for a dynamic value of n, see Section 46.4 on page 367.)

We will give both a sequential and a parallel dynamic semantics of the
parallel let construct. The definition of the sequential dynamics as a tran-
sition judgement of the form e 7→seq e′ is entirely straightforward:

e1 7→ e′1
let(e1; e2; x1.x2.e) 7→seq let(e′1; e2; x1.x2.e)

(46.2a)

e1 val e2 7→ e′2
let(e1; e2; x1.x2.e) 7→seq let(e1; e′2; x1.x2.e)

(46.2b)

e1 val e2 val

let(e1; e2; x1.x2.e) 7→seq [e1, e2/x1, x2]e
(46.2c)

The parallel dynamics is given by a transition judgement of the form e 7→par
e′, defined as follows:

e1 7→par e′1 e2 7→par e′2
let(e1; e2; x1.x2.e) 7→par let(e′1; e′2; x1.x2.e)

(46.3a)
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e1 7→par e′1 e2 val

let(e1; e2; x1.x2.e) 7→par let(e′1; e2; x1.x2.e)
(46.3b)

e1 val e2 7→par e′2
let(e1; e2; x1.x2.e) 7→par let(e1; e′2; x1.x2.e)

(46.3c)

e1 val e2 val

let(e1; e2; x1.x2.e) 7→par [e1, e2/x1, x2]e
(46.3d)

The parallel semantics is idealized in that it abstracts away from any limi-
tations on parallelism that would necessarily be imposed in practice by the
availability of computing resources. (We will return to this point in Sec-
tion 46.3 on page 364.)

An important advantage of the present approach is captured by the im-
plicit parallelism theorem, which states that the sequential and the parallel
semantics coincide. This means that one need never be concerned with
the semantics of a parallel program (its meaning is determined by the se-
quential dynamics), but only with its performance. Put in other terms, this
language exhibits deterministic parallelism, which does not effect the correct-
ness of programs, in contrast to languages such as those to be considered
in Chapter 47, which exhibit non-deterministic parallelism, or concurrency.

Lemma 46.1. If let(e1; e2; x1.x2.e) 7→∗par v with v val, then there exists v1 val
and v2 val such that e1 7→∗par v1, e2 7→∗par v2, and [v1, v2/x1, x2]e 7→∗par v.

Proof. Since v val, the given derivation must consist of one or more steps.
We proceed by induction on the derivation of the first step, let(e1; e2; x1.x2.e) 7→par
e′. For Rule (46.3d), we have e1 val and e2 val, and e′ = [e1, e2/x1, x2]e, so we
may take v1 = e1 and v2 = e2 to complete the proof. The other cases follow
easily by induction.

Lemma 46.2. If let(e1; e2; x1.x2.e) 7→∗seq v with v val, then there exists v1 val
and v2 val such that e1 7→∗seq v1, e2 7→∗seq v2, and [v1, v2/x1, x2]e 7→∗seq v.

Proof. Similar to the proof of Lemma 46.2.

Theorem 46.3. The sequential and parallel dynamics coincide: for all v val,
e 7→∗seq v iff e 7→∗par v.

Proof. From left to right it is enough to prove that if e 7→seq e′ 7→∗par v with
v val, then e 7→∗par v. This may be shown by induction on the deriva-
tion of e 7→seq e′. If e 7→seq e′ by Rule (46.2c), then by Rule (46.3d) we
have e 7→par e′, and hence e 7→∗par v. If e 7→seq e′ by Rule (46.2a), then we
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have e = let(e1; e2; x1.x2.e), e′ = let(e′1; e2; x1.x2.e), and e1 7→seq e′1. By
Lemma 46.1 on the preceding page there exists v1 val and v2 val such that
e′1 7→∗par v1, e2 7→∗par v2, and [v1, v2/x1, x2]e 7→∗par v. By induction we have
e1 7→∗par v1, and hence e 7→∗par v. The other cases are handled similarly.

From right to left, it is enough to prove that if e 7→par e′ 7→∗seq v with
v val, then e 7→∗seq v. We proceed by induction on the derivation of e 7→par e′.
Rule (46.3d) carries over directly to the sequential case by Rule (46.2c). Con-
sider Rule (46.3a). We have let(e1; e2; x1.x2.e) 7→par let(e′1; e′2; x1.x2.e),
e1 7→par e′1, and e2 7→par e′2. By Lemma 46.2 on the previous page we have
that there exists v1 val and v2 val such that e′1 7→∗seq v1, e′2 7→∗seq v2, and
[v1, v2/x1, x2]e 7→∗seq v. By induction we have e1 7→∗seq v1 and e2 7→∗seq v2, and
hence e 7→∗seq v, as required. The other cases are handled similarly.

Theorem 46.3 on the preceding page is the basis for saying that the
model of parallelism discussed in this chapter is work-efficient—the com-
putations performed in any execution, sequential or parallel, are precisely
those that must be performed acording to the sequential semantics. This is
in contrast to speculative parallelism, as discussed in Chapter 45, in which
we may schedule a task for execution whose outcome is not needed to de-
termine the overall result of the computation. This theorem may also be
read as saying that we have achieved implicit parallelism in that the use of
parallelism in evaluation has no effect on the overall end-to-end behavior
of a program. An expression has a value according to the sequential se-
mantics iff it does so according to the parallel semantics. In other words
one never need worry about correctness when programming in an implic-
itly parallel language, but instead only about asymptotic efficiency.

46.2 Cost Semantics

In this section we define a parallel cost semantics that assigns a cost graph to
the evaluation of an expression. Cost graphs are defined by the following
grammar:

Cost c ::= 0 zero cost
| 1 unit cost
| c1 ⊗ c2 parallel combination
| c1 ⊕ c2 sequential combination

A cost graph is a form of series-parallel directed acyclic graph, with a des-
ignated source node and sink node. For 0 the graph consists of one node
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and no edges, with the source and sink both being the node itself. For 1 the
graph consists of two nodes and one edge directed from the source to the
sink. For c1 ⊗ c2, if g1 and g2 are the graphs of c1 and c2, respectively, then
the graph has two additional nodes, a source node with two edges to the
source nodes of g1 and g2, and a sink node, with edges from the sink nodes
of g1 and g2 to it. Finally, for c1 ⊕ c2, where g1 and g2 are the graphs of c1
and c2, the graph has as source node the source of g1, as sink node the sink
of g2, and an edge from the sink of g1 to the source of g2.

The intuition behind a cost graph is that nodes represent subcompu-
tations of an overall computation, and edges represent sequentiality con-
straints stating that one computation depends on the result of another, and
hence cannot be started before the one on which it depends completes. The
product of two graphs represents parallelism opportunities in which there are
no sequentiality constraints between the two computations. The assign-
ment of source and sink nodes reflects the overhead of forking two parallel
computations and joining them after they have both completed.

We associate with each cost graph two numeric measures, the work,
wk(c), and the depth, dp(c). The work is defined by the following equa-
tions:

wk(c) =


0 if c = 0
1 if c = 1
wk(c1) + wk(c2) if c = c1 ⊗ c2

wk(c1) + wk(c2) if c = c1 ⊕ c2

(46.4)

The depth is defined by the following equations:

dp(c) =


0 if c = 0
1 if c = 1
max(dp(c1), dp(c2)) if c = c1 ⊗ c2

dp(c1) + dp(c2) if c = c1 ⊕ c2

(46.5)

Informally, the work of a cost graph determines the total number of com-
putation steps represented by the cost graph, and thus corresponds to the
sequential complexity of the computation. The depth of the cost graph de-
termines the critical path length, the length of the longest dependency chain
within the computation, which imposes a lower bound on the idealized par-
allel complexity of a computation. It is idealized in that it may be achieved
only by taking full advantage of all available parallelism opportunities in
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the cost graph, which can only be achieved with unbounded computing
resources.

In Chapter 12 we introduced the concept of a cost semantics as a means
of assigning a step complexity to evaluation. The proof of Theorem 12.6
on page 89 shows that e ⇓k v iff e 7→k v. That is, the step complexity of
an evaluation of e to a value v is just the number of transitions required to
derive e 7→∗ v. Here we use cost graphs as the measure of complexity, then
relate these cost graphs to the transition semantics given in Section 46.1 on
page 357.

The judgement e ⇓c v, where e is a closed expression, v is a closed value,
and c is a cost graph specifies the cost semantics. By definition we arrange
that e ⇓0 e when e val. The cost assignmetn for let is given by the following
rule:

e1 ⇓c1 v1 e2 ⇓c2 v2 [v1, v2/x1, x2]e ⇓c v

let(e1; e2; x1.x2.e) ⇓(c1⊗c2)⊕1⊕c v
(46.6)

The cost assignment specifies that, under ideal conditions, e1 and e2 are to
be evaluated in parallel, and that their results are to be propagated to e.
The cost of fork and join is implicit in the parallel combination of costs, and
assign unit cost to the substitution because we expect it to be implemented
in practice by a constant-time mechanism for updating an environment.
The cost semantics of other language constructs is specified in a similar
manner, using only sequential combination so as to isolate the source of
parallelism to the let construct.

The link between the cost semantics and the transition semantics given
in the preceding section is established by the following theorem, which
states that the work cost is the sequential complexity, and the depth cost is
the parallel complexity, of the computation.

Theorem 46.4. If e ⇓c v, then e 7→w
seq v and e 7→d

par v, where w = wk(c) and
d = dp(c). Conversely, if e 7→w

seq v with v val, then there exists a cost graph c
such that wk(c) = w and e ⇓c v, and, moreover, if e 7→d

par v with v val, then
dp(c) = d.

Proof. The first part is proved by induction on the derivation of e ⇓c v,
the interesting case being Rule (46.6). By induction we have e1 7→w1

seq v1,
e2 7→w2

seq v2, and [v1, v2/x1, x2]e 7→w
seq v, where w1 = wk(c1), w2 = wk(c2),
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and w = wk(c). By pasting together derivations we obtain a derivation

let(e1; e2; x1.x2.e) 7→w1
seq let(v1; e2; x1.x2.e) (46.7)

7→w2
seq let(v1; v2; x1.x2.e) (46.8)

7→seq [v1, v2/x1, x2]e (46.9)
7→w

seq v. (46.10)

Noting that wk((c1 ⊗ c2)⊕ 1⊕ c) = w1 + w2 + 1 + w completes the proof.
Similarly, we have by induction that e1 7→d1

par v1, e2 7→d2
par v2, and e 7→d

par v,
where d1 = dp(c1), d2 = dp(c2), and d = dp(c). Assume, without loss of
generality, that d1 ≤ d2 (otherwise simply swap the roles of d1 and d2 in
what follows). We may paste together derivations as follows:

let(e1; e2; x1.x2.e) 7→d1
par let(v1; e′2; x1.x2.e) (46.11)

7→d2−d1
par let(v1; v2; x1.x2.e) (46.12)

7→par [v1, v2/x1, x2]e (46.13)

7→d
par v. (46.14)

Calculating dp((c1 ⊗ c2)⊕ 1⊕ c) = max(d1, d2)+ 1 + d completes the proof.
The second part is proved by induction on w (respectively, d) to obtain

the required cost derivation. If w = 0, then e = v and hence e ⇓0 v. If
w = w′ + 1, then it is enough to show that if e 7→seq e′ and e′ ⇓c′ v with
wk(c′) = w′, then e ⇓c v for some c such that wk(c) = w. We proceed by
induction on the derivation of e 7→seq e′. Consider Rule (46.2c). We have
e = let(e1; e2; x1.x2.e0) with e1 val and e2 val, and e′ = [e1, e2/x1, x2]e0. By
definition e1 ⇓0 e1 and e2 ⇓0 e2, since e1 and e2 are values. It follows that
e ⇓(0⊗0)⊕1⊕c′ v by Rule (46.6). But wk((0⊗ 0)⊕ 1⊕ c′) = 1 + wk(c′) = 1 +
w′ = w, as required. The remaining cases for sequential derivations follow
a similar pattern. Turning to the parallel derivations, consider Rule (46.3a),
in which we have e = let(e1; e2; x1.x2.e0) 7→par let(e′1; e′2; x1.x2.e0) = e′,
with e1 7→par e′1 and e2 7→par e′2. We have by the outer inductive assumption
that e′ ⇓c′ v for some c′ such that dp(c′) = d′, and we are to show that
e ⇓c v for some c such that dp(c) = 1 + d′ = d. It follows from the form
of e′ and the determinacy of evaluation that c′ = (c′1 ⊗ c′2)⊕ 1⊕ c0, where
e′1 ⇓c′1 v1, e′2 ⇓c′2 v2, and [v1, v2/x1, x2]e0 ⇓c0 v. It follows by the inner
induction that e1 ⇓c1 v1 for some c1 such that dp(c1) = dp(c′1) + 1, and that
e2 ⇓c2 v2 for some c2 such that dp(c2) = dp(c′2) + 1. But then e ⇓c v, where
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c = (c1 ⊗ c2)⊕ 1⊕ c0. Calculating, we obtain

dp(c) = max(dp(c′1) + 1, dp(c′2) + 1) + 1 + dp(c0) (46.15)
= max(dp(c′1), dp(c′2)) + 1 + 1 + dp(c0) (46.16)
= dp((c′1 ⊗ c′2)⊕ 1⊕ c0) + 1 (46.17)
= dp(c′) + 1 (46.18)
= d′ + 1 (46.19)
= d, (46.20)

which completes the proof.

46.3 Provable Implementations

Theorem 46.4 on page 362 states that the cost semantics accurately models
the dynamics of the parallel let construct, whether executed sequentially
or with maximal parallelism. This validates the cost model from the point
of view of the language definition, and permits us to draw conclusions
about the asymptotic complexity of a parallel program that abstracts away
from the limitations imposed by a concrete implementation. Chief among
these is the limitation to some fixed number, p > 0, of processors on which
to multiplex the workload. In addition to limiting the available parallelism
this also imposes some scheduling and synchronization overhead that must
be accounted for in order to make accurate predictions of run-time behavior
on a concrete parallel platform. A provable implementation is one for which
we may establish an asymptotic bound on the actual execution time once
these overheads are taken into account.

For the purposes of chapter, we define a symmetric multiprocessor, or
SMP, to be a shared-memory multiprocessor with an interconnection net-
work that implements a synchronization construct equivalent to a parallel-
fetch-and-add instruction in which any number of processors may simul-
taneously add a value to a shared memory location, retrieving the previous
contents, while ensuring that each processor obtains the result it would ob-
tain in some sequential ordering of their execution. Most multiprocessors
implement an instruction of expressive power equivalent to the fetch-and-
add to provide a foundation for parallel programming. In the following
analysis we assume that the fetch-and-add instruction takes constant time,
but the result can be adjusted (as noted below) to account for the overhead
of implementing it under more relaxed assumptions about the processor
model.
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The main result relating the abtract cost to its concrete realization on
a p-processor SMP is an application of Brent’s Principle, which describes
how to implement arithmetic expressions on a parallel processor.

Theorem 46.5. If e ⇓c v with wk(c) = w and dp(c) = d, then e may be evaluated
on a p-processor SMP in time O(max(w/p, d)), given a constant-time stable
fetch-and-add facility.

Since the work always dominates the depth, if p = 1, then the theo-
rem reduces to the statement that e may be evaluated in time O(w), the
sequential complexity of the expression. That is, the work cost is asymp-
totically realizable on a single processor machine. For the general case the
theorem tells us that we can never evaluate e in fewer steps than its depth
cost, since this is the critical path length, and, for computations with shal-
low depth, we can achieve the best-possible result of dividing up the work
evenly among the p processors.

Theorem 46.5 suggests a characterization of those problems for which
having a great degree of parallelism (more processing elements) improves
the running time. For a computation of depth d and work w, we can make
good use of parallelism whenever w/p > d, which occurs when the par-
allelizability ratio, w/d, is at least p. For a highly sequential program, the
work is proportional to the depth, and so the parallelizability is constant,
which means that increasing p does not speed up the computation. On
the other hand, a highly parallelizable computation is one with constant
depth, or depth d proportional to lg w. Such programs have a high par-
allelizability ratio, and hence are amenable to speedup by increasing the
number of available processors. It is worth stressing that it is not known
whether all problems admit a parallelizable solution or not. The best we
can say, on present knowledge, is that there are algorithms for some prob-
lems that have a high degree of parallelizability, and there are problems
for which no such algorithm is known. It is an important open problem in
complexity theory to characterize which problems are parallelizable, and
which are not. As a stop-gap measure, if one is faced with a problem for
which no parallelizable solution is known, it may make sense to exploit
available parallelism that would otherwise be wasted by employing spec-
ulative methods in addition to the work-efficient methods discussed here.

The proof of Theorem 46.5 amounts to a design for the implementa-
tion of a parallel language. A critical ingredient is scheduling the workload
onto the p processors so as to maximize their utilization. This is achieved
by maintaining a shared worklist of tasks that have been created by evalu-
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ation of a parallel let construct, all of which must be completed to deter-
mine the final outcome of the computation. (Here we make use of shared
memory so that all processors have access to the central worklist.) Exe-
cution is divided into rounds. At the end of each round a processor may
complete execution, in which case further work can be scheduled onto it; it
may continue execution into the next round; or it may fork two additional
tasks to be scheduled for execution, blocking until they complete. To start
the next round the processors must collectively assign work to themselves
so that if sufficient work is available, then all p processors will be assigned
work. Assume that we have at least p units of work remaining to be done
at any given time (otherwise just consider all remaining work in what fol-
lows). Each step of execution on each processor consists of executing an
instruction of our computing model. After this step a task may either be
complete, or may continue with further execution, or may fork two new
tasks as a result of executing a parallel let instruction, or it may join two
completed tasks into one. The synchronization required for a join may be
done in constant time on an SMP using standard methods. The main dif-
ficulty is to re-schedule tasks to processors after each round. This may be
achieved in constant time by computing partial sums across the processors
to determine the assignment of tasks to processors on the next round. Tasks
that complete contribute zero, continuing tasks contribute one, and forking
tasks contribute two to the sum. The partial sums then determine the as-
signment of tasks to processors for the next round of execution: processor i
executes the task at index determined by the ith partial sum just calculated.

Theorem 46.5 on the preceding page assumes a constant-time fetch-
and-add instruction for synchronization of p processors. In practice this
assumption is not always realistic, but in most cases we may implement it
from more basic primitives in O(lg p) time. In that case Theorem 46.5 on
the previous page must be weakened to an upper bound of O(w/p, d lg p)
time. Accounting for the execution time of fetch-and-add imposes a factor
of lg p overhead on the work and depth of the computation. This factor ap-
pears in the weakened bound on the depth, but it is interesting that it can be
hidden for highly parallelizable computations (i.e., those for which w/d�
p lg p). This is achieved by assigning lg p units of sequential work to each
processor on each scheduling round, and observing that (w lg p)/(p lg p) =
w/p, indicating that we may, in this case, achieve the same execution bound
even when the cost of fetch-and-add is considered.
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46.4 Vector Parallelism

So far we have confined attention to binary fork/join parallelism induced
by the parallel let construct. While technically sufficient for many pur-
poses, a more natural programming model admit an unbounded number
of parallel tasks to be spawned simultaneously, rather than forcing them
to be created by a cascade of binary forks and corresponding joins. Such a
model, often called data parallelism, ties the source of parallelism to a data
structure of unbounded size. The principal example of such a data struc-
ture is a vector of values of a specified type. The primitive operations on
vectors provide a natural source of unbounded parallelism. For example,
one may consider a parallel map construct that applies a given function to
every element of a vector simultaneously, forming a vector of the results.
Similarly, for an associative binary operation with a unit element, one may
consider a parallel reduce primitive that computes the result of performing
the binary operation across all elements of the vector, starting with the unit
element. Intuitively, this can be computed in logarithmic time in parallel
by successively splitting the vector in half, and using the operation to com-
bine intermediate results. This operation is itself easily derived from a scan
primitive that computes all partial results, from left to right, of applying
the binary operation to successive elements of the vector, starting with the
unit element. (The result of the reduce operation is simply the last element
of the vector obtained by the corresponding scan primitive.)

We will consider here a very simple language of vector operations to
illustrate the main ideas. The upshot of this is that we may recapitulate
the main results of this chapter in the general case of vector parallelism,
including a version of Theorem 46.5 on page 365 for vector operations that
tells us how to implement the language on an SMP. Our purpose here is
not to give a detailed development, but to concentrate instead on the main
features of parallel vector computation.

The following grammar specifies the syntax for a minimal language of
vector computations:

Category Item Abstract Concrete
Type τ ::= vec(τ) τ vec
Expr e ::= vec(e0, . . . ,en−1) [e0, . . . ,en−1]

| sub(e1; e2) e1[e2]
| siz(e) size (e)
| idx(e) index(e)
| map(e1; x.e2) <e2 | x ∈ e1>
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The expression vec(e0, . . . ,en−1) evaluates to an n-vector whose elements
are given by the expressions e0, . . . , en−1. The operation sub(e1; e2) retrieves
the element of the vector given by e1 at the index given by e2. The opera-
tion siz(e) returns the number of elements in the vector given by e. The
operation idx(e) creates a vector of length n (given by e) whose elements
are 0, . . . , n− 1. The operation map(e1; x.e2) computes the vector whose ith
element is the result of evaluating e2 with x bound to the ith element of the
vector given by e1.

The static semantics of these operations is given by the following typing
rules:

Γ ` e0 : τ . . . Γ ` en−1 : τ

Γ ` vec(e0, . . . ,en−1) : vec(τ)
(46.21a)

Γ ` e1 : vec(τ) Γ ` e2 : nat
Γ ` sub(e1; e2) : τ

(46.21b)

Γ ` e : vec(τ)
Γ ` siz(e) : nat

(46.21c)

Γ ` e : nat
Γ ` idx(e) : vec(nat)

(46.21d)

Γ ` e1 : vec(τ) Γ, x : τ ` e2 : τ′

Γ ` map(e1; x.e2) : vec(τ′)
(46.21e)

We will not bother to give the sequential and parallel semantics of these
primitives, but will instead simply give a cost semantics for them. It is a
good exercise to formulate a sequential and parallel transition semantics
and to relate these to the cost semantics in the manner of Theorem 46.3 on
page 359. The cost semantics of these primitives is given by the following
rules:

e0 ⇓c0 v0 . . . en−1 ⇓cn−1 vn−1

vec(e0, . . . ,en−1) ⇓
⊗n−1

i=0 ci vec(v0, . . . ,vn−1)
(46.22a)

e1 ⇓c1 vec(v0, . . . ,vn−1) e2 ⇓c2 num[i] (0 ≤ i < n)
sub(e1; e2) ⇓c1⊕c2⊕1 vi

(46.22b)

e ⇓c vec(v0, . . . ,vn−1)

siz(e) ⇓c⊕1 num[n]
(46.22c)

e ⇓c num[n]

idx(e) ⇓c⊕⊗n−1
i=0 1 vec(0, . . . ,n− 1)

(46.22d)

e1 ⇓c1 vec(v0, . . . ,vn−1)

[v0/x]e2 ⇓c0 v′0 . . . [vn−1/x]e2 ⇓cn−1 v′n−1

map(e1; x.e2) ⇓c1⊕(c0⊗...⊗cn−1) vec(v′0, . . . ,v′n−1)

(46.22e)

11:12PM DRAFT JULY 8, 2008



46.5. EXERCISES 369

The cost semantics for vectors may be validated against the sequential
and parallel dynamics in a manner similar to Theorem 46.4 on page 362 so
that the work cost and depth cost are, respectively, the sequential and par-
allel execution times measured as steps in the transition systems defining
the dynamics of the language. We may also validate the cost semantics in
terms of its implementation by an extension of Theorem 46.5 on page 365
to handle vectors.

To get an idea of what is involved in this extension, let us consider how
to implement the operation idx(e) on a p-processor SMP. We wish to show,
consistently with Theorem 46.5 on page 365, that this operation may be im-
plemented in time O(max(n/p, 1)), where e evaluates to num[n]. This may
be achieved as follows. First, reserve, in constant time, an uninitialized re-
gion of n words of memory for the vector to be created by this operation. To
initialize this memory, we assign responsibility for a segment of size n/p to
each of the p processors, which then execute in parallel to fill in the required
values. To do this we must assign to processor i the starting point, ni, of the
ith segment, which it will then initialize to ni, ni + 1, . . . , (ni + n)/(p− 1).
This is achieved by constructing, in constant time using fetch-and-add, the
vector consisting of the values 0, . . . , p− 1, and then multiplying each ele-
ment by the number n/p to obtain the vector n0, . . . , np−1 of starting points.
Each processor then initializes its segment, requiring O(n/p) steps each,
executed in parallel, which achieves the required bound.

This example illustrates an important point of methodology. The cost
semantics of the vector primitives is chosen so that, when combined The-
orem 46.5 on page 365 the predicted asymptotic bound is actually achiev-
able in practice. If we were unable to find an algorithm that achieves this
bound, then the cost semantics of the operation would have to be adjusted
to reflect the reality. Alternatively, given that we have an appropriate algo-
rithm, any implementation that fails to achieve the predicted bound may
be considered faulty, and must be corrected to bring it in line with the cost
semantics.

46.5 Exercises
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Chapter 47

Process Calculus

So far we have mainly studied the static and dynamic semantics of pro-
grams in isolation, without regard to their interaction with the world. But
to extend this analysis to even the most rudimentary forms of input and
output requires that we consider external agents that interact with the pro-
gram. After all, the whole purpose of a computer is to interact with a per-
son!

To extend our investigations to interactive systems, we begin with the
study of process calculi, which are abstract formalisms that capture the essence
of interaction among independent agents. There are many forms of process
calculi, differing in technical details and in emphasis. We will consider the
best-known formalism, which is called the π-calculus. The development
will proceed in stages, starting with simple action models, then extend-
ing to interacting concurrent processes, and finally to the synchronous and
asynchronous variants of the π-calculus itself.

Our presentation of the π-calculus differs from that in the literature in
several respects. Most significantly, we maintain a distinction between pro-
cesses and events. The basic form of process is one that awaits a choice of
events. Other forms of process include parallel composition, the introduc-
tion of a communication channel, and, in the asychronous case, a send
on a channel. The basic form of event is the ability to read (and, in the
synchronous case, write) on a channel. Events are combined by a non-
deterministic choice operator. Even the choice operator can be eliminated
in favor of a protocol for treating a parallel composition of events as a non-
deterministic choice among them.
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47.1 Actions and Events

Our treatment of concurrent interaction is based on the notion of an event,
which specifies the set of actions that a process is prepared to undertake in
concert with another process. Two processes interact by undertaking two
complementary actions, which may be thought of as a read and a write on
a common channel. The processes synchronize on these complementary
actions, after which they may proceed independently to interact with other
processes.

To begin with we will focus on sequential processes, which simply await
the arrival of one of several possible actions, known as an event.

Category Item Abstract Concrete
Process P ::= await(E) $ E
Event E ::= null 0

| choice(E1; E2) E1 + E2
| rcv[a](P) ?a.P
| snd[a](P) !a.P

Action α ::= rcv(a) ?a
| snd(a) !a
| sil ε

The variables a, b, and c range over channels, which serve as conduits for
synchronization. The receive action, ?a, and the send action, !a, are comple-
mentary. The silent action, ε, is included as a technical convenience to serve
as a label for the silent transition (as described in Chapter 4).

We will handle events modulo structural congruence, written P1 ≡ P2
and E1 ≡ E2, respectively, which is the strongest equivalence relation closed
under the following rules:

E ≡ E′
$ E ≡ $ E′

(47.1a)

E1 ≡ E′1 E2 ≡ E′2
E1 + E2 ≡ E′1 + E′2

(47.1b)

P ≡ P′
?a.P ≡ ?a.P′

(47.1c)

P ≡ P′
!a.P ≡ !a.P′

(47.1d)

E + 0 ≡ E (47.1e)

E1 + E2 ≡ E2 + E1 (47.1f)
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E1 + (E2 + E3) ≡ (E1 + E2) + E3 (47.1g)

The importance of imposing structural congruence on sequential processes
is that it enables us to think of an event as having the form of a finite sum
of send or receive events, with the sum of zero events being the null event,
0.

An illustrative example of Robin Milner’s is a simple vending machine
that may take in a 2p coin, then optionally either permit selection of a cup
of tea, or take another 2p coin, then permit selection of a cup of coffee.

V = $ (?2p.$ (!tea.V + ?2p.$ (!cof.V)))

As the example indicates, we tacitly permit recursive definitions of pro-
cesses, with the understanding that a defined identifier may always be re-
placed with its definition wherever it occurs.

Because we have suppressed the internal computation occurring within
a process, sequential processes have no dynamic semantics on their own—
their dynamics arises only as a result of interaction with another process.
For the vending machine to operate there must be another process (you!)
who initiates the events expected by the machine, causing both your state
(the coins in your pocket) and its state (as just described) to change as a
result.

47.2 Concurrent Interaction

We enrich the language of processes with concurrent composition.

Category Item Abstract Concrete
Process P ::= await(E) $ E

| stop 1
| par(P1; P2) P1 ‖ P2

The process 1 represents the inert process, and the process P1 ‖ P2 represents
the concurrent composition of P1 and P2. One may identify 1 with $ 0, the
process that awaits the event that will never occur, but we prefer to treat
the inert process as a primitive concept.

Structural congruence for processes is enriched by the following rules
governing the inert process and concurrent composition of processes:

P ‖ 1 ≡ P (47.2a)

P1 ‖ P2 ≡ P2 ‖ P1 (47.2b)
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P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3 (47.2c)

P1 ≡ P′1 P2 ≡ P′2
P1 ‖ P2 ≡ P′1 ‖ P′2

(47.2d)

Up to structural equivalence every process has the form

$ E1 ‖ . . . ‖ $ En

for some n ≥ 0, it being understood that when n = 0 this is the process 1.
The dynamic semantics of concurrent interaction is defined by an action-

indexed family of transition judgements, P α7−→ P′, where the silent action
indexes the silent transition P 7→ P′. The action label on a transition spec-
ifies the effect of an execution step on the environment in which it occurs.
Here the effect is to “announce” the action of sending or receiving on a
specified channel. Two concurrent processes may interact by announcing
complementary actions, resulting in a silent transition.

P1 ≡ P2 P2
α7−→ P′2 P′2 ≡ P2

P1
α7−→ P2

(47.3a)

$ (!a.P + E) !a7−→ P (47.3b)

$ (?a.P + E) ?a7−→ P (47.3c)

P1 ‖ P2
α7−→ P′1 ‖ P2

P1
α7−→ P′1

(47.3d)

P1
!a7−→ P′1 P2

?a7−→ P′2
P1 ‖ P2 7→ P′1 ‖ P′2

(47.3e)

Rules (47.3b) and (47.3c) specify that any of the events on which a pro-
cess is synchronizing may occur. Rule (47.3e) synchronizes two processes
that take complementary actions.

As an example, let us consider the interaction of the vending machine,
V, with the user process, U, defined as follows:

U = $ !2p.$ !2p.$ ?cof.1.
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Here is a trace of the interaction between V and U:

V ‖U 7→ $ !tea.V + ?2p.$ !cof.V ‖ $ !2p.$ ?cof.1
7→ $ !cof.V ‖ $ ?cof.1
7→ V

These steps are justified, respectively, by the following pairs of labelled
transitions:

U
!2p
7−−→ U′ = $ !2p.$ ?cof.1

V
?2p
7−−→ V ′ = $ (!tea.V + ?2p.$ !cof.V)

U′
!2p
7−−→ U′′ = $ ?cof.1

V ′
?2p
7−−→ V ′′ = $ !cof.V

U′′ ?cof7−−−→ 1

V ′′ !cof7−−−→ V

We have suppressed uses of structural congruence in the above derivations
to avoid clutter, but it is important to see its role in managing the non-
deterministic choice of events by a process.

47.3 Replication

Some presentations of process calculus forego reliance on defining equa-
tions for processes in favor of a replication construct, which we write * P.
This process stands for as many concurrently executing copies of P as one
may require, which may be modeled by the structural congruence

* P ≡ P ‖ * P.

Taking this as a principle of structural congruence hides the overhead of
process creation, and gives no hint as to how often it can or should be ap-
plied. One could alternatively build replication into the dynamic semantics
to model the details of replication more closely:

* P 7→ P ‖ * P.
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Since the application of this rule is unconstrained, it may be applied at any
time to effect a new copy of the replicated process P.

So far we have been using recursive process definitions to define pro-
cesses that interact repeatedly according to some protocol. Rather than take
recursive definition as a primitive notion, we may instead use replication
to model repetition. This may be achieved by introducing an “activator”
process that is contacted to effect the replication. Consider the recursive
definition X = P(X), where P is a process expression involving occur-
rences of the process variable, X, to refer to itself. This may be simulated
by defining the activator process

A = * $ (?a.P($ (!a.1))),

in which we have replaced occurrences of X within P by an initiator process
that signals the event a to the activator. Observe that the activator, A, is
structurally congruent to the process A′ ‖ A, where A′ is the process

$ (?a.P($ (!a.1))).

To start process P we concurrently compose the activator, A, with an initia-
tor process, $ (!a.1). Observe that

A ‖ $ (!a.1) 7→ A ‖ P(!a.1),

which starts the process P while maintaining a running copy of the activa-
tor, A.

As an example, let us consider Milner’s vending machine written using
replication, rather than using recursive process definition:

V1 = * $ (?v.V2) (47.4)
V2 = $ (?2p.$ (!tea.V0 + ?2p.$ (!cof.V0))) (47.5)
V0 = $ (!v.1) (47.6)

The process V1 is a replicated server that awaits a signal on channel v to
create another instance of the vending machine. The recursive calls are
replaced by signals along v to re-start the machine. The original machine,
V, is simulated by the concurrent composition V0 ‖V1.

47.4 Private Channels

It is often desirable to isolate interactions among a group of concurrent pro-
cesses from those among another group of processes. This can be achieved
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by creating a private channel that is shared among those in the group, and
which is inaccessible from all other processes. This may be modeled by
enriching the language of processes with a construct for creating a new
channel:

Category Item Abstract Concrete
Process P ::= new(a.P) ν(a.P)

As the syntax suggests, this is a binding operator in which the channel a is
bound within P.

Structural congruence is extended with the following rules:

P =α P′

P ≡ P′
(47.7a)

P ≡ P′
ν(a.P) ≡ ν(a.P′)

(47.7b)

a # P2

ν(a.P1) ‖ P2 ≡ ν(a.P1 ‖ P2)
(47.7c)

The last rule, called scope extrusion, will be important for the treatment of
communication in the next section.

The dynamic semantics is extended with one additional rule permitting
steps to take place within the scope of a binder.

P α7−→ P′ a # α

ν(a.P) α7−→ ν(a.P′)
(47.8)

No process may interact with ν(a.P) along the newly-allocated channel,
for to do so would require knowledge of the private channel, a, which is
chosen, by the magic of α-equivalence, to be distinct from all other channels
in the system.

As an example, let us consider again the non-recursive definition of the
vending machine. The channel, v, used to initialize the machine should be
considered private to the machine itself, and not be made available to a user
process. This is naturally expressed by the process expression ν(v.V0 ‖V1),
where V0 and V1 are as defined above using the designated channel, v. This
process correctly simulates the original machine, V, because it precludes
interaction with a user process on channel V. If U is a user process, the
interaction begins as follows:

ν(v.V0 ‖V1) ‖U 7→ ν(v.V2) ‖U ≡ ν(v.V2 ‖U)

The interaction continues as before, albeit within the scope of the binder,
provided that v has been chosen (by structural congruence) to be apart from
U, ensuring that it is private to the internal workings of the machine.
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47.5 Synchronous Communication

The concurrent process calculus presented in the preceding section mod-
els synchronization based on the willingness of two processes to under-
take complementary actions. A natural extension of this model is to permit
data to be passed from one process to another as part of synchronization.
Since we are abstracting away from the computation occurring within a
process, it would not make much sense to consider, say, passing an integer
during synchronization. A more interesting possibility is to permit pass-
ing channels, so that new patterns of connectivity can be established as a
consequence of inter-process synchronization. This is the core idea of the
π-calculus.

The syntax of events is changed to account for communication by gen-
eralizing send and receive events as specified in the following grammar:

Category Item Abstract Concrete
Event E ::= rcv[a](x.P) ?a(x).P

| snd[a; b](P) !a(b).P

The event ?a(x).P binds the variable x within the process expression P.
The rest of the syntax remains as described earlier in this chapter.

The syntax of actions is generalized along similar lines, with both the
send and receive actions specifying the data communicated by the action.

Category Item Abstract Concrete
Action α ::= rcv[a](b) ?a(b)

| snd[a](b) !a(b)

The action !a(b) represents a write, or send, of a channel, b, along a chan-
nel, a. The action ?a(b) represents a read, or receive, along channel, a, of
another channel, b.

Interaction in the π-calculus consists of synchronization on the concur-
rent availability of complementary actions on a channel, passing a channel
from the sender to the receiver.

$ (!a(b).P + E) !a(b)7−−−−→ P (47.9a)

$ (?a(x).P + E) ?a(b)7−−−−→ [b/x]P (47.9b)

P1
!a(b)7−−−−→ P′1 P2

?a(b)7−−−−→ P′2
P1 ‖ P2 7→ P′1 ‖ P′2

(47.9c)
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In contrast to pure synchronization the message-passing form of interac-
tion is fundamentally asymmetric — the receiver continues with the chan-
nel passed by the sender substituted for the bound variable of the action.
Rule (47.9b) may be seen as “guessing” that the received data will be b,
which is substituted into the resulting process.

47.6 Polyadic Communication

So far communication is limited to sending and receiving a single channel
along another channel. It is often useful to consider more flexible forms
of communcation in which zero or more channels are communicated by a
single interaction. Transmitting no data corresponds to a pure signal on a
channel in which the mere fact of the communication is all that is trans-
mitted between the sender and the receiver. Transmitting more than one
channel corresponds to a packet in which a single interaction communicates
a finite number of channels from sender to receiver.

The polyadic π-calculus is the generalization of the π-calculus to admit
communication of multiple channels between sender and receiver in a sin-
gle interaction. The syntax of the polyadic π-calculus is a simple extension
of the monadic π-calculus in which send and receive events, and their cor-
responding actions, are generalized as follows:

Category Item Abstract Concrete
Event E ::= rcv[a](x1, . . . , xk.P) ?a(x1, . . . , xk).P

| snd[a; b1, . . . , bk](P) !a(b1, . . . , bk).P
Action α ::= rcv[a](b1, . . . , bk) ?a(b1, . . . , bk)

| snd[a](b1, . . . , bk) !a(b1, . . . , bk)

The index k ranges over natural numbers. When k is zero, the events model
pure signals, and when k > 1, the events model communication of packets
along a channel. There arises the possibility of sending more or fewer val-
ues along a channel than are expected by the receiver. To remedy this one
may associate with each channel a unique arity k ≥ 0, which represents the
size of any packet that it may carry. The syntax of the polyadic π-calculus
should then be restricted to respect the arity of the channel. We leave the
specification of this refinement as an exercise for the reader.

The rules for structural congruence and interaction generalize in the
evident manner to the polyadic case.
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47.7 Mutable Cells as Processes

Let us consider a reference cell server that, when given an initial value,
creates a cell that listens on two dedicated channels, one to get the current
value of the cell, the other to set it to a new designated value. This may be
defined using recursion equations as follows:

C(x, g, s) = $ (S(g, s) +G(x, g, s)) (47.10)
S(g, s) = ?s(y).C(y, g, s) (47.11)

G(x, g, s) = !g(x).C(x, g, s) (47.12)

The cell is parameterized by its current value and two channels on which
to contact it to get and set its value. Each message causes a new cell to be
created, reflecting any update to its value.

To avoid the recursion implicit in the equations we may instead define
a server that creates fresh cells whenever contacted on a specified channel,
c, specifying an initial value, x, for that cell and two channels, g and s, on
which to contact it to get and set its value.

R(c) = * $ (?c(x, g, s).C′(c, x, g, s)) (47.13)
C′(c, x, g, s) = $ (S′(c, g, s) +G′(c, x, g, s)) (47.14)

S′(c, g, s) = ?s(y).$ (!c(y, g, s).1) (47.15)
G′(c, x, g, s) = !g(x).$ (!c(x, g, s).1) (47.16)

The reference cell server repeatedly awaits receipt of a creation message on
channel r, and creates a new cell with the specified initial value and chan-
nels on which to contact it. The cell awaits contact, then behaves appropri-
ately, but this time contacting the server to create a new cell with updated
value after each message.

To use reference cells in a process P, we concurrently compose P with
an instance, R(c), of the cell server, which is contacted via channel c. For
example, the process

ν(c.R(c) ‖ ν(g.ν(s.$ !c(0, g, s).$ !s(1).$ ?g(x).. . .)))

allocates a channel for communication with the reference cell server, then
allocates two channels for a new cell, initializes it to 0, sets it to 1, then
retrieves its value, and so forth.

This example illustrates the importance of scope extrusion in the π-
calculus. Initially, the process R(c) is run concurrently with a process that
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allocates two new channels, g and s, and then sends these channels, along
with the initial value, 0, along c. Tracing out the steps, this results in a pro-
cess offering to send along g and to receive along s, which represents the
new reference cell, running concurrently with the subsequent process that
manipulates this newly allocated cell. For this to make sense, the scope of
g and s must be enlarged to encompass the body of R(c) after receipt of
0, g, and s along c. Structural congruence ensures that we may “lift” the
allocation of g and s to encompass R(c), since g and s may be chosen, by
α-equivalence, to be distinct from any channels already occurring in R(c).
This enables communication of the cell server with the cell client along the
channels g and s.

47.8 Asynchronous Communication

This form of interaction is called synchronous, because both the sender and
the receiver are blocked from further interaction until synchronization has
occurred. On the receiving side this is inevitable, because the receiver can-
not continue execution until the channel which it receives has been deter-
mined, much as the body of a function cannot be executed until its ar-
gument has been provided. On the sending side, however, there is no
fundamental reason why notification is required; the sender could simply
send the message along a channel without specifying how to continue once
that message has been received. This “fire and forget” semantics is called
asynchronous communication, in constrast to the synchronous form just de-
scribed.

The asynchronous π-calculus is obtained by removing the synchronous
send event, !a(b).P, and adding a new form of process, the asynchronous
send process, written !a(b), which has no continuation after the send. The
syntax of the asynchronous π-calculus is given by the following grammar:

Category Item Abstract Concrete
Process P ::= snd[a](b) !a(b)

| await(E) $ E
| par(P1; P2) P1 ‖ P2
| new(a.P) ν(a.P)

Event E ::= null 0
| rcv[a](x.P) ?a(x).P
| choice(E1; E2) E1 + E2

Up to structural congruence, an event is just a choice of zero or more reads
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along any number of channels.
The dynamic semantics for the asynchronous π-calculus is defined by

omitting Rule (47.9a), and adding the following rule for the asynchronous
send process:

!a(b) !a(b)7−−−−→ 1 (47.17)

One may regard the pending asynchronous write as a kind of buffer in
which the message is held until a receiver is chosen.

In a sense the synchronous π-calculus is more fundamental than the
asynchronous variant, because we may always mimic the asynchronous
send by a process of the form $ !a(b).1, which performs the send, and then
becomes the inert process 1. In another sense, however, the asynchronous
π-calculus is more fundamental, because we may encode a synchronous
send by introducing a notification channel on which the receiver sends a
message to notify the sender of the successful receipt of its message. This
exposes the implicit communication required to implement synchronous
send, and avoids it in cases where it is not needed (in particular, when the
resumed process is just the inert process, as just illustrated).

To get an idea of what is involved in the encoding of the synchronous π-
calculus in the asynchronous π-calculus, we sketch the implementation of
an acknowledgement protocol that only requires (polyadic) asynchronous
communication. A synchronous process of the form

ν(a.$ ((!a(b).P) + E) ‖ $ ((?a(x).Q) + F))

is represented by the asynchronous process

ν(a.ν(a0.P′ ‖Q′)),

where a0 # P, a0 # Q, and we define

P′ = !a(b) ‖ $ (?a0().P + E)

and
Q′ = $ (?a(x, x0).(!a0() ‖Q) + F).

The process that is awaiting the outcome of a send event along channel a
instead sends the argument, b, along with a newly allocated acknowledge-
ment channel, a0, along the channel a, then awaits receipt of a signal in the
form of a null message along a0, then acts as the process P. Correspond-
ingly, the process that is awaiting a receive event along channel a must
be prepared to receive, in addition, the acknowledgement channel, x0, on
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which it sends an asychronous signal back to the sender, and proceeds to
act as the process Q. It is easy to check that the synchronous interaction of
the original process is simulated by several steps of execution of the trans-
lation into asynchronous form.

47.9 Exercises
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Chapter 48

Concurrency

In this chapter we utilize the machinery of process calculus presented in
Chapter 47 to derive a uniform treatment of several seemingly disparate
concepts: mutable storage, speculative parallelism, input/output, process
creation, and inter-process communication. The unifying theme is to use
the methods of process calculus to give an account of context-sensitive exe-
cution. For example, inter-process communication necessarily involves the
execution of two processes, each in a context that includes the other. The
two processes synchronize, and continue execution separately after their
rendezvous.

48.1 Framework

The language L{conc} is an extension of L{comm} (described in Chap-
ter 39) with an additional level of processes, which represent concurrently
executing agents. The syntax of L{conc} is given by the following gram-
mar:

Category Item Abstract Concrete
Type τ ::= comp(τ) τ comp
Expr e ::= comp(m) comp(m)
Comm m ::= return(e) return e

| letcomp(e; x.m) let comp(x) be e inm
Proc p ::= proc[a](m) {m}a

| par(p1; p2) p1 ‖ p2
| new(x.p) ν(x.p)
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The basic form of process is proc[a](m), consisting of a single command,
m, labelled with a symbol, a, that serves to identify it. We may also form
the parallel composition of processes, and generate a new symbol for use
within a process.

As always, we identify syntactic objects up to α-equivalence, so that
bound names may always be chosen so as to satisfy any finitary contraint
on their occurrence. As in Chapter 47, we also identify processes up to
structural congruence, which specifies that parallel composition is commu-
tative and associative, and that new symbol generation may have its scope
expanded to encompass any parallel process, subject only to avoidance of
capture.

In the succeeding sections of this chapter, the language L{conc} will
be extended to model various forms of computational phenomena. In each
case we will enrich the language with new forms of command, represent-
ing primitive capabilities of the language, and new forms of process, used
to model the context in which commands are executed. In this respect it
is misleading to think of processes as necessarily having to do with con-
current execution and synchronization! Rather, what processes provide is
a simple, uniform means of describing the context in which a command is
executed. This can include concurrent interaction (synchronization) in the
familiar sense, but is not limited to this case.

The static semantics of L{conc} extends that of L{comm} (see Chap-
ter 39) to include the additional level of processes. Let Σ range over finite
sets of judgements of the form a : τ, where a is a symbol and τ is a type,
such that no symbol is the subject of more than one such judgement in Σ.
We define the judgement Σ Γ ` p ok by the following rules:

Σ, a : τ pid Γ ` m ∼ τ (48.1a)

Σ Γ ` p1 ok Σ ` p2 ok

Σ Γ ` p1 ‖ p2 ok
(48.1b)

Σ, a : τ Γ ` p ok

Σ Γ ` ν(a.p) ok
(48.1c)

Rule (48.1a) specifies that a process of the form {m}a is well-formed if m
is a command yielding a value of type τ under the assumption that a is a
process identifier for a process of type τ. Rule (48.1b) states that a parallel
composition of processes is well-formed if both processes are well-formed.
Rule (48.1c) enriches Σ with a new symbol with a type τ chosen so that p is
well-formed under this assumption.
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Each extension of L{conc} considered below may introduce new forms
of process governed by new rules of process formation.

The dynamic semantics of L{conc} is defined by judgements of the
form p 7→ p′, where p and p′ are processes. Contextual execution of pro-
cesses includes structural normalization, may apply to any active process,
may occur within the scope of a newly introduced symbol, and respects
structural congruence:

m 7→ m′

proc[a](m) 7→ proc[a](m′)
(48.2a)

p1 7→ p′1
par(p1; p2) 7→ p′1 ‖ p2

(48.2b)

p 7→ p′

new(a.p) 7→ new(a.p′)
(48.2c)

p ≡ q q 7→ q′ q′ ≡ p′

p 7→ p′
(48.2d)

Other rules of contextual execution are specific to the particular computa-
tional phenomenon under consideration, but in general all rules have the
form

{m1;x.m2}a ‖ p 7→ ν(a1, . . . , ak.{m′2}a ‖ p′)
.

(48.3)

That is, the execution of a command depends on the context of processes in
which it is executed, and may result in the generation of new symbols, the
creation of new processes, or the perpetuation of existing processes (in any
combination).

48.2 Mutable Cells

We begin with the specification of mutable storage in L{conc}. We aug-
ment the grammar of the language with the following constructs:

Category Item Abstract Concrete
Type τ ::= ref(τ) τ ref
Expr e ::= loc[l] l
Comm m ::= new(e) new(e)

| get(e) ! e
| set(e1; e2) e1 := e2

Proc p ::= ref[l](e) 〈l : e〉
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The basic machinery of mutable cells is as described in Chapter 37. In ad-
dition we have a new form of process, written 〈l : e〉, which represents a
mutable cell with location l and contents e. One may think of the cell as
a “server” that interacts with a command process on channel l to retrieve
and alter the contents of that cell.

The static semantics of reference cells is essentially as described in Chap-
ter 39, transposed to the setting of L{conc}. There is one new form of pro-
cess, 〈l : e〉, whose well-formation is defined by the following rule:

Σ, l : τ ref Γ ` e : τ

Σ, l : τ ref Γ ` 〈l : e〉 ok
(48.4)

The process 〈l : e〉 is well-formed if the assumed type of l is τ ref, where e
is of type τ under the full set of typing assumptions for locations (and other
active symbols).

The dynamic semantics of mutable storage is specified in L{conc} by
the following rules:

e val
{new(e);x.m}a 7→ ν(l.{[l/x]m}a ‖ 〈l : e〉) (48.5a)

{! l;x.m}a ‖ 〈l : e〉 7→ {[e/x]m}a ‖ 〈l : e〉 (48.5b)

e val
{l := e;x.m}a ‖ 〈l : e′〉 7→ {[e/x]m}a ‖ 〈l : e〉 (48.5c)

Rule (48.5a) gives the semantics of new, which allocates a new location, l,
and creates a new process, a mutable cell with location l and contents e. The
original process continues with l bound to x in m. Rule (48.5b) specifies the
semantics of fetching the contents of a mutable cell by synchronization with
the process representing that cell.

It is a simple matter to transpose the type safety proof given in Chap-
ter 37 to the present setting. The static semantics of processes requires that
we “guess” the type of each location such that the contents has that type un-
der this very hypothesis. This is sufficient for preservation. For progress,
it is necessary to establish some obvious inversion principles for typing.
For example, if Σ ` 〈l : e〉 ok, then Σ = Σ′, l : τ ref for some type τ such
that Σ ` e : τ. With this is hand it is straightforward to prove progress for
L{conc} enriched with mutable storage.
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48.3 Futures

The semantics of futures (speculatively executed suspensions) is readily ex-
pressed in L{conc}. Whenever a future is evaluated, we create a new pro-
cess to evaluate the suspended expression, and continue execution, yield-
ing the name of the newly created process as the value of the future. When-
ever that future process is forced, we synchronize with it to ensure that it
has achieved a value, and, if so, return that to the forcing process.

The syntax of futures in L{comm} is given by the following grammar:

Category Item Abstract Concrete
Type τ ::= fut(τ) τ fut
Expr e ::= pid[a] a
Comm m ::= fut(e) ↑ e

| syn(e) ↓ e

The command fut(e) creates a suspended computation that is evaluated
concurrently with the process that created it. The command syn(e) syn-
chronizes with the process given as argument to retrieve its value, once its
evaluation has completed. No new forms of process are required to express
the ssemantics of futures.

The static semantics of futures specifies the evident typing rules for the
commands ↑ e and ↓ e:

Σ Γ ` e : τ
Σ Γ ` ↑ e ∼ τ fut

(48.6a)

Σ Γ ` e : τ fut
Σ Γ ` ↓ e ∼ τ

(48.6b)

Σ Γ ` l : τ pid

Σ Γ ` l : τ fut
(48.6c)

In addition the treatment of futures relies on Rule (48.1a), which specifies
the formation of a basic process expression. A value of type τ fut is a pro-
cess identifier of type τ, since the dynamic semantics will specify that the
future is represented by a concurrently executing process.

The dynamic semantics of futures is specified by the following rules:

{↑ e;x.m}a 7→ ν(b.{[b/x]m}a ‖ {return e}b) (48.7a)

e val
{↓ b;x.m}a ‖ {return e}b 7→ {[e/x]m}a ‖ {return e}b

(48.7b)

Rule (48.7a) specifies that a future is executed by creating a new process that
returns the value of the suspended expression e, passing the identifier of the
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new process to the original for later synchronization. Rule (48.7b) specifies
that to synchronize on a future requires that evaluation of the speculatively
executed expression have finished before the synchronizing process may
continue.

48.4 Input/Output

Character input and output are readily modeled inL{conc} by considering
input and output ports to be mutable cells containing lists of characters.

Category Item Abstract Concrete
Comm m ::= getc() getc()

| putc(e) putc(e)

The static semantics assumes that we have a type char of characters:

Σ Γ ` getc() ∼ char (48.8a)

Σ Γ ` e : char
Σ Γ ` putc(e) ∼ char

(48.8b)

Assuming that there are two ports, in and out, the dynamic semantics
of character input/output may be given by the following rules:

{getc();x.m}a ‖ 〈in : cons(c; cs)〉 7→ {[c/x]m}a ‖ 〈in : cs〉 (48.9a)

{putc(c);x.m}a ‖ 〈out : cs〉 7→ {[c/x]m}a ‖ 〈out : cons(c; cs)〉 (48.9b)

(Here we specify that putc returns the character that it sent to the output.)
It is a worthwhile exercise to extend these simple primitives to admit

creating new output ports, opening input ports linked to some data source
(such as a file), duplicating ports, closing ports, and so forth.

48.5 Concurrent Processes

Spawning a new process, and awaiting its completion, are similar to cre-
ating and synchronizing with a future. However, a process may execute
an arbitrary command, not just evaluate an expression. The argument to
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spawn is a value of type τ comp for some τ; the newly created process exe-
cutes the encapsulated command, returning its value.

Category Item Abstract Concrete
Type τ ::= pid(τ) τ pid
Expr e ::= pid[a] a
Comm m ::= spawn(e) spawn(e)

| wait(e) wait(e)

The static semantics is given by the following rules:

Σ Γ ` e : τ comp

Σ Γ ` spawn(e) ∼ τ pid
(48.10a)

Σ Γ ` e : τ pid

Σ Γ ` wait(e) ∼ τ
(48.10b)

The dynamic semantics is given by the following rules:

{spawn(comp(m1));x.m2}a 7→ ν(b.{[b/x]m2}a ‖ {m1}b) (48.11a)

e val
{wait(b);x.m}a ‖ {return e}b 7→ {[e/x]m}a ‖ {return e}b

(48.11b)

Rule (48.11a) creates a new process, passing its identifier to the spawning
process. Rule (48.11b) applies only once the process labeled b has com-
pleted, at which point its return value is passed to the waiting process.

48.6 Inter-Process Communication

(to be completed)

48.7 Excercises
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Separate Compilation and
Linking

49.1 Linking and Substitution

49.2 Exercises
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Equivalence





Chapter 52

Equational Reasoning for T

Equations are the heart and soul of mathematics. We derive equations such
as

(x + 1)2 = x2 + 2 x + 1

to express the equivalence of two functions of the variable x ∈ R. We solve
equations such as

z2 + 1 = 0

for z ∈ C for the complex number i =
√
−1. In elementary geometry

congruence and similarity are forms of equality between geometric objects.
The beauty of functional programming is that equality of expressions

in a functional language corresponds very closely to familiar patterns of
mathematical reasoning. For example, in the language L{nat→} of Chap-
ter 15 in which we can express addition as the function plus, the expres-
sions

λ(x:nat. λ(y:nat. plus(e1)(e2)))

and
λ(x:nat. λ(y:nat. plus(e2)(e1)))

are equal, regardless of what e1 and e2, so long as they are of type nat. In
other words, the addition function as programmed in L{nat→} is commu-
tative.

This may seem to be obviously true, but why, precisely, is it so? More
importantly, what do we even mean when we say that two expressions of
a programming language are equal? In this chapter we will develop an-
swers to these questions for the language L{nat→} introduced in Chap-
ter 15. The development is based on a lazy dynamic semantics, but one
could equally well consider an eager semantics. Since L{nat→} is a totally
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pure language (all expressions terminate), there is no significant distinction
between the two variants in the sense that an equation is valid for one se-
mantics iff it is valid for the other.

52.1 Observational Equivalence

When are two expressions equal? Whenever we cannot tell them apart!
This may seem tautological, but it is not, because it depends on what we
consider to be a means of telling expressions apart. What “experiment”
are we permitted to perform on expressions in order to distinguish them?
What counts as an observation that, if different for two expressions, is a
sure sign that they are different?

If we permit ourselves to consider the syntactic details of the expres-
sions, then very few expressions could be considered equal. For example,
if it is deemed significant that an expression contains, say, more than one
function application, or that it has an occurrence of λ-abstraction, then very
few expressions would come out as equivalent. But such considerations
seem silly, because they conflict with the intuition that the significance of
an expression lies in its contribution to the outcome of a computation, and
not to the process of obtaining that outcome. In short, if two expressions
make the same contribution to the outcome of a complete program, then
they ought to be regarded as equal.

We must fix what we mean by a complete program. Two considerations
inform the definition. First, the dynamic semantics of L{nat→} is given
only for expressions without free variables, so a complete program should
clearly be a closed expression. Second, the outcome of a computation should
be observable, so that it is evident whether the outcome of two computations
differs or not. We define a complete program to be a closed expression of type
nat, and define the observable behavior of the program to be the outermost
form of its value, either z or s(−).1

An experiment on, or observation about, an expression is any means of
using that expression within a complete program. We define an expression
context to be an expression with a “hole” in it serving as a placeholder for
another expression. The hole is permitted to occur anywhere, including
within the scope of a binder. The bound variables within whose scope the
hole lies are said to be exposed (to capture) by the expression context. These
variables may be assumed, without loss of generality, to be distinct from

1This notion of behavior is chosen so as to be compatible with both the eager and lazy
semantics.
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one another. A program context is a closed expression context of type nat—
that is, it is a complete program with a hole in it. The meta-variable C
stands for any expression context.

Replacement is the process of filling a hole in an expression context, C,
with an expression, e, which is written C{e}. Importantly, the free vari-
ables of e that are exposed by C are captured by replacement (which is why
replacement is not a form of substitution, which is defined so as to avoid
capture). If C is a program context, then C{e} is a complete program iff
all free variables of e are captured by the replacement. For example, if
C = λ(x:nat. ◦), and e = x+x, then

C{e} = λ(x:nat. x+x).

The free occurrences of x in e are captured by the λ-abstraction as a result
of the replacement of the hole in C by e.

We sometimes write C{◦} to emphasize the occurrence of the hole in
C. Expression contexts are closed under composition in that if C1 and C2 are
expression contexts, then so is

C{◦} := C1{C2{◦}},

and we have C{e} = C1{C2{e}}. The trivial, or identity, expression context
is the “bare hole”, written ◦, for which ◦{e} = e.

The static semantics of expressions of L{nat→} is extended to expres-
sion contexts by defining the typing judgement

C : (Γ . τ) (Γ′ . τ′)

so that if Γ ` e : τ, then Γ′ ` C{e} : τ′. This judgement may be induc-
tively defined by a collection of rules derived from the static semantics of
L{nat→} (for which see Rules (15.1)). Some representative rules are as
follows:

◦ : (Γ . τ) (Γ . τ) (52.1a)

C : (Γ . τ) (Γ′ . nat)
s(C) : (Γ . τ) (Γ′ . nat)

(52.1b)

C : (Γ . τ) (Γ′ . nat) Γ′ ` e0 : τ′ Γ′, x : nat, y : τ′ ` e1 : τ′

rec C {z⇒e0 | s(x) with y⇒e1} : (Γ . τ) (Γ′ . τ′)
(52.1c)

Γ′ ` e : nat C0 : (Γ . τ) (Γ′ . τ′) Γ′, x : nat, y : τ′ ` e1 : τ′

rec e {z⇒C0 | s(x) with y⇒e1} : (Γ . τ) (Γ′ . τ′)
(52.1d)
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Γ′ ` e : nat Γ′ ` e0 : τ′ C1 : (Γ . τ) (Γ′, x : nat, y : τ′ . τ′)
rec e {z⇒e0 | s(x) with y⇒C1} : (Γ . τ) (Γ′ . τ′)

(52.1e)

C2 : (Γ . τ) (Γ′, x : τ1 . τ2)
λ(x:τ1. C2) : (Γ . τ) (Γ′ . τ1 → τ2)

(52.1f)

C1 : (Γ . τ) (Γ′ . τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ . τ) (Γ′ . τ′)
(52.1g)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ . τ) (Γ′ . τ2)
e1(C2) : (Γ . τ) (Γ′ . τ′)

(52.1h)

Lemma 52.1. If C : (Γ . τ) (Γ′ . τ′), then Γ′ ⊆ Γ, and if Γ ` e : τ, then
Γ′ ` C{e} : τ′.

Observe that the trivial context consisting only of a “hole” acts as the
identity under replacement. Moreover, contexts are closed under composi-
tion in the following sense.

Lemma 52.2. If C : (Γ . τ) (Γ′ . τ′), and C ′ : (Γ′ . τ′) (Γ′′ . τ′′), then
C ′{C{◦}} : (Γ . τ) (Γ′′ . τ′′).

Kleene equivalence determines when two experiments have the same ob-
servable outcome. If e and e′ are complete programs, then e is Kleene equiv-
alent to e′, written e ' e′, provided that e 7→∗ z iff e′ 7→∗ z. It follows
from Lemma 15.2 on page 116 that e ' e′ iff e 7→∗ s(e1) (for some e1) iff
e′ 7→∗ s(e′1) (for some e′1). This relation is easily seen to be reflexive, sym-
metric, and transitive. Kleene equivalence is quite coarse in that, for exam-
ple, all non-zero natural numbers are considered Kleene equivalent! This
is not a concern, however, because we are only interested in Kleene equiv-
alence as an auxiliary notion in the definition of observational equivalence.
What is important, however, is that Kleene equivalence does not relate zero
to any successor, which ensures consistency of observational equivalence.

Definition 52.1. Suppose that Γ ` e : τ and Γ ` e′ : τ are two expressions
of the same type. We say that e and e′ are observationally equivalent, written
e ∼= e′ : τ [Γ], iff C{e} ' C{e′} for every program context C.

In other words, for all possible experiments, the outcome of an experiment
on e is the same as the outcome on e′. This is obviously an equivalence
relation.

A type-indexed family of equivalence relations e1 ≡ e2 : τ [Γ] is a con-
gruence iff it is preserved by all contexts. That is,

if e ≡ e′ : τ [Γ], then C{e} ≡ C{e′} : τ′ [Γ′]
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for every expression context C : (Γ . τ) (Γ′ . τ′). Such a family of re-
lations is consistent iff e ≡ e′ : nat [Γ] implies e ' e′. Observe that the
converse does not hold. For example, s(z) and s(s(z)) are Kleene equiv-
alent, but not observationally equivalent, because there is a context that
distinguishes them, namely the predecessor function, which sends the first
to z but the second to s(z).

Theorem 52.3. Observational equivalence is the coarsest consistent congruence
on expressions.

Proof. Consistency follows directly from the definition by noting that the
trivial context is a program context. Observational equivalence is obvi-
ously an equivalence relation. To show that it is a congruence, we need
only observe that type-correct composition of a program contex with an
arbitrary expression context is again a program context. Finally, it is the
coarsest such equivalence relation, for if e 6∼= e′ : τ [Γ], then there is a pro-
gram context C such that C{e} 6' C{e′}, so that extending observational
equivalence with this pair would be inconsistent.

Theorem 52.3 licenses the principle of proof by coinduction to show that
two expressions are observational equivalence: to show that e ∼= e′ : τ [Γ],
it is enough to exhibit a consistent congruence such that e ≡ e′ : τ [Γ]. It
can be difficult, however, to construct such a relation. In the next section we
will provide a general method for doing so that will prove useful in many
situations.

52.2 Logical Equivalence

The key to simplifying reasoning about observational equivalence is to ex-
ploit types. Informally, we may classify the uses of expressions of a type
into two broad categories, the passive and the active uses. The passive uses
are those that merely manipulate expressions without actually inspecting
them. For example, we may pass an expression of type τ to a function that
merely returns it. The active uses are those that operate on the expression
itself; these are the elimination forms associated with the type of that ex-
pression. For the purposes of distinguishing two expressions, it is only the
active uses that matter; the passive uses merely manipulate expressions at
arm’s length, affording no opportunities to distinguish one from another.

This leads to the definition of typed, or logical, equivalence.

JULY 8, 2008 DRAFT 11:12PM



410 52.3. LOGICAL AND OBSERVATIONAL . . .

Definition 52.2. Logical equivalence is a type-indexed family of relations e ∼ e′ :
τ between closed expressions of type τ. It is defined by induction on the structure
of τ as follows:

e ∼ e′ : nat iff e 7→∗ z and e′ 7→∗ z or
e 7→∗ s(e1) and e′ 7→∗ s(e′1), and e1 ∼ e′1 : nat.

e ∼ e′ : τ1 → τ2 iff if e1 ∼ e′1 : τ1, then e(e1) ∼ e′(e′1) : τ2

Logical equivalence at type nat is inductively defined to be the strongest
relation satisfying the specified conditions.

Logical equivalence is extended to open terms by substitution. An ex-
pression assignment, γ, for a set of assumptions, Γ, is a finite partial function
that assigns to each variable x such that Γ ` x : τ an expression e = γ(x)
such that Γ ` e : τ, and that is undefined on all other variables. If γ and
γ′ are two expression assignments for assumptions Γ, we define γ ∼ γ′ : Γ
to hold iff γ(x) ∼ γ′(x) : Γ(x) for every variable, x, such that Γ ` x : τ.
Finally, we define e ∼ e′ : τ [Γ] to mean that γ̂(e) ∼ γ̂′(e′) : τ whenever
γ ∼ γ′ : Γ.

52.3 Logical and Observational Equivalence Coincide

In this section we prove the coincidence of observational and logical equiv-
alence.

Lemma 52.4 (Substitution and Functionality). If e ∼= e′ : τ [Γ, x : σ], and d :
σ, then [d/x]e ∼= [d/x]e′ : τ [Γ]. Furthermore, if d ∼= d′ : σ, then [d/x]e ∼= [d′/x]e′ :
τ [Γ].

Proof. Suppose that C : (Γ . τ) ( . nat) is a program context. We are to
show that C{[d/x]e} ' C{[d/x]e′}. Since d and d′ are closed, and since
C is a program context, this is equivalent to showing that [d/x]C{e} '
[d/x]C{e′}. Let D be the context (λ(x:σ. C{◦}))(d), and note that D :
(Γ, x : σ . τ) ( . nat). It follows from the assumption thatD{e} ' D{e′}.
But by construction D{e} ' [d/x]C{e}, and D{e′} ' [d/x]C{e′}. Let
D′ be the context (λ(x:σ. C{◦}))(d′), and note that it, too, is a program
context. Now if d ∼= d′ : σ, by congruence of observational equivalence,
D{e} ∼= D′{e} : nat, and similarly D{e′} ∼= D′{e′} : nat. By consistency of
observational equivalence these are valid Kleene equivalences, from which
the result follows.
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Lemma 52.5 (Closure Under Converse Evaluation). Suppose that e ∼ e′ : τ.
If d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Proof. By induction on the structure of τ. If τ = nat, then the result fol-
lows immediately from Definition 52.2 on the facing page. Suppose that
τ = τ1 → τ2, e ∼ e′ : τ, and d 7→ e. To show that d ∼ e′ : τ, we assume
e1 ∼ e′1 : τ1 and show d(e1) ∼ e′(e′1) : τ2. It follows from the assumption
that e(e1) ∼ e′(e′1) : τ2. Noting that d(e1) 7→ e(e1), the result follows by
induction.

Lemma 52.6 (Consistency). If e ∼ e′ : nat, then e ' e′.

Proof. Immediate, from Definition 52.2 on the preceding page.

Theorem 52.7 (Reflexivity). If Γ ` e : τ, then e ∼ e : τ [Γ].

Proof. We are to show that if Γ ` e : τ and γ ∼ γ′ : Γ, then γ̂(e) ∼ γ̂′(e′) : τ.
The proof proceeds by induction on typing derivations; we consider a few
representative cases.

Consider the case of Rule (14.2b), in which τ = τ1 ⇀ τ2, e = λ(x:τ1. e2)
and e′ = λ(x:τ1. e′2). Since e and e′ are values, we are to show that

λ(x:τ1. γ̂(e2)) ∼ λ(x:τ1. γ̂′(e′2)) : τ1 ⇀ τ2.

Assume that e1 ∼ e′1 : τ1; we are to show that [e1/x]γ̂(e2) ∼ [e′1/x]γ̂′(e′2) :
τ2. Let γ2 = γ[x 7→ e1] and γ′2 = γ′[x 7→ e′1], and observe that γ2 ∼ γ′2 :
Γ, x : τ1. Therefore, by induction we have γ̂2(e2) ∼ γ̂′2(e′2) : τ2, from which
the result follows directly.

Now consider the case of Rule (15.1d), for which we are to show that

rec[τ](γ̂(e); γ̂(e0); x.y.γ̂(e1)) ∼ rec[τ](γ̂′(e′); γ̂(e′0); x.y.γ̂′(e′1)) : τ.

By the induction hypothesis applied to the first premise of Rule (15.1d), we
have

γ̂(e) ∼ γ̂′(e′) : nat.

Since logical equivalence at type nat is inductively defined, and bearing in
mind Lemma 52.5, it suffices to show

rec[τ](z; γ̂(e0); x.y.γ̂(e1)) ∼ rec[τ](z; γ̂′(e′0); x.y.γ̂′(e′1)) : τ,

and, assuming

rec[τ](d; γ̂(e0); x.y.γ̂(e1)) ∼ rec[τ](d′; γ̂′(e′0); x.y.γ̂′(e′1)) : τ,
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that

rec[τ](s(d); γ̂(e0); x.y.γ̂(e1)) ∼ rec[τ](s(d′); γ̂′(e′0); x.y.γ̂′(e′1)) : τ.

For the former case, it is enough to show by Lemma 52.5 on the previous
page that γ̂(e0) ∼ γ̂(e′0) : τ, which is assured by the outer inductive hy-
pothesis applied to the third premise of Rule (15.1d). For the latter, define

δ = γ[x 7→ γ̂(e)][y 7→ rec[τ](γ̂(e); γ̂(e0); x.y.γ̂(e1))]

and
δ′ = γ′[x 7→ γ̂′(e′)][y 7→ rec[τ](γ̂(e); γ̂(e0); x.y.γ̂(e1))].

We then have that δ ∼ δ′ : Γ, x : nat, y : τ, and hence the required follows
from the outer inductive hypothesis applied to the third premise of Rule (15.1d).

It follows that complete programs of L{nat→} terminate.

Corollary 52.8. If e : nat in L{nat→}, then there exists e′ such that e 7→∗ e′

and e′ val.

Proof. By Lemma 52.7 on the preceding page we have e ∼ e′ : nat, from
which the result follows by Definition 52.2 on page 410.

Symmetry and transitivity of logical equivalence are easily established
by induction on types; logical equivalence is therefore an equivalence rela-
tion.

Lemma 52.9 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and e ∼ e′ : τ [Γ], then
C0{e} ∼ C0{e′} : τ0 [Γ0].

Proof. By induction on the derivation of the typing of C0. We consider a rep-
resentative case in which C0 = λ(x:τ1. C2) so that C0 : (Γ . τ) (Γ0 . τ1 → τ2)
and C2 : (Γ . τ) (Γ0, x : τ1 . τ2). Assuming e ∼ e′ : τ [Γ], we are to show
that

C0{e} ∼ C0{e′} : τ1 → τ2 [Γ0],

which is to say

λ(x:τ1. C2{e}) ∼ λ(x:τ1. C2{e′}) : τ1 → τ2 [Γ0].

We know, by induction, that

C2{e} ∼ C2{e′} : τ2 [Γ0, x : τ1].
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Suppose that γ0 ∼ γ′0 : Γ0, and that e1 ∼ e′1 : τ1. Let γ1 = γ0[x 7→ e1],
γ′1 = γ′0[x 7→ e′1], and observe that γ1 ∼ γ′1 : Γ0, x : τ1. By Definition 53.1 on
page 418 it is enough to show that

γ̂1(C2{e}) ∼ γ̂′1(C2{e′}) : τ2,

which follows immediately from the inductive hypothesis.

Theorem 52.10. If e ∼ e′ : τ [Γ], then e ∼= e′ : τ [Γ].

Proof. By Lemmas 52.6 on page 411 and 52.9 on the facing page, and Theo-
rem 52.3 on page 409.

Lemma 52.11. If e ∼= e′ : τ, then e ∼ e′ : τ.

Proof. We proceed by induction on the structure of τ. When τ = nat,
we appeal to Theorem 52.7 on page 411 and proceed by a simultaneous
induction licensed by Definition 52.2 on page 410. If both e 7→∗ z and
e′ 7→∗ z, then evidently e ∼ e′ : τ. Otherwise, suppose that e 7→∗ s(d)
and e′ 7→∗ s(d′) with d ∼ d : nat and d′ ∼ d′ : nat. Since the predecessor
operation is definable in L{nat→}, it follows from the assumption that
d ∼= d′ : nat. Hence, by induction, we have d ∼ d′ : nat, from which the re-
sult follows by head expansion. The remaining cases, in which e evaluates
to z and e′ evalautes to s(−), or vice versa, are ruled out by the assumption
of observational equivalence of e and e′.

If τ = τ1 → τ2, then we are to show that whenever e1 ∼ e′1 : τ1, we have
e(e1) ∼ e′(e′1) : τ2. By Theorem 52.10 we have e1

∼= e′1 : τ1, and hence by
congruence of observational equivalence it follows that e(e1) ∼= e′(e′1) : τ2,
from which the result follows by induction.

Theorem 52.12. If e ∼= e′ : τ [Γ], then e ∼ e′ : τ [Γ].

Proof. Assume that e ∼= e′ : τ [Γ]. Suppose that Γ = x1 : τ1, . . . , xn : τn
for some n ≥ 0, and that e1 ∼ e′1 : τ1, . . . , en ∼ e′n : τn. By Theorem 52.10
we have that e1

∼= e′1 : τ1, . . . , en ∼= e′n : τn, and hence by Lemma 52.4 on
page 410 we have

[e1, . . . , en/x1, . . . , xn]e ∼= [e′1, . . . , e′n/x1, . . . , xn]e′ : τ.

Therefore by Lemma 52.11 we have

[e1, . . . , en/x1, . . . , xn]e ∼ [e′1, . . . , e′n/x1, . . . , xn]e′ : τ,

as required.

JULY 8, 2008 DRAFT 11:12PM



414 52.4. SOME LAWS OF EQUIVALENCE

Observational equivalence coincides with logical equivalence.

Corollary 52.13. e ∼= e′ : τ [Γ] iff e ∼ e′ : τ [Γ].

Even though the evaluation order is lazy, every closed expression of
natural number type is observationally equivalent to a numeral.

Corollary 52.14. If e : τ, then e ∼= n : nat for some n ≥ 0.

Proof. By Theorem 52.7 on page 411 e ∼ e : τ. By a simple induction based
on Definition 52.2 on page 410 we may show that e ∼ n : τ for some n ≥ 0,
and hence the result follows from Theorem 52.10 on the preceding page.

52.4 Some Laws of Equivalence

In this section we summarize some useful principles of observational equiv-
alence for L{nat→}. For the most part these may be proved as laws of
logical equivalence, and then transferred to observational equivalence by
appeal to Corollary 52.13.

52.4.1 General Laws

Logical equivalence is indeed an equivalence relation: it is reflexive, sym-
metric, and transitive.

e ∼= e : τ [Γ] (52.2a)

e′ ∼= e : τ [Γ]
e ∼= e′ : τ [Γ]

(52.2b)

e ∼= e′ : τ [Γ] e′ ∼= e′′ : τ [Γ]
e ∼= e′′ : τ [Γ]

(52.2c)

Observational equivalence is a congruence: we may replace equals by
equals anywhere in an expression.

e ∼= e′ : τ [Γ] C : (Γ . τ) (Γ′ . τ′)
C{e} ∼= C{e′} : τ′ [Γ′]

(52.3a)

Equivalence is stable under substitution for free variables, and substi-
tuting equivalent expressions in an expression gives equivalent results.
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Γ ` e : τ e2 ∼= e′2 : τ′ [Γ, x : τ]
[e/x]e2 ∼= [e/x]e′2 : τ′ [Γ]

(52.4a)

e1
∼= e′1 : τ [Γ] e2 ∼= e′2 : τ′ [Γ, x : τ]

[e1/x]e2 ∼= [e′1/x]e′2 : τ′ [Γ]
(52.4b)

52.4.2 Symbolic Evaluation Laws

All of the instruction steps of an operational semantics are valid laws of
equivalence. These are called symbolic evaluation laws, because they are
extensions of the operational semantics to expressions with free variables
that may occur anywhere within a program.

rec z {z⇒e0 | s(x) with y⇒e1} ∼= e0 : τ [Γ] (52.5a)

e = rec s(e′) {z⇒e0 | s(x) with y⇒e1}
e ∼= [e′, e/x, y]e1 : τ [Γ]

(52.5b)

(λ(x:τ1. e2))(e1) ∼= [e1/x]e2 : τ2 [Γ] (52.5c)

52.4.3 Extensionality Laws

Two functions are equivalent if they are equivalent on all arguments.

e(x) ∼= e′(x) : τ2 [Γ, x : τ1]
e ∼= e′ : τ1 → τ2 [Γ]

(52.6)

Consequently, every expression of function type is equivalent to a λ-
abstraction:

e ∼= λ(x:τ1. e(x)) : τ1 → τ2 [Γ] (52.7)

52.4.4 Induction Law

An equation involving a free variable, x, of type nat can be proved by in-
duction on x.

[n/x]e ∼= [n/x]e′ : τ [Γ] (for every n ∈N)
e ∼= e′ : τ [Γ, x : nat]

(52.8a)

To apply the induction rule, we proceed by mathematical induction on
n ∈N, which reduces to showing:
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1. [z/x]e ∼= [z/x]e′ : τ [Γ], and

2. [s(n)/x]e ∼= [s(n)/x]e′ : τ [Γ], if [n/x]e ∼= [n/x]e′ : τ [Γ].

52.5 Exercises
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Chapter 53

Equational Reasoning for PCF

In this Chapter we develop the theory of observational equivalence for
L{nat⇀}, Plotkin’s PCF, under an eager semantics. We proceed along
similar lines to Chapter 52, but the development is a bit more involved
in the presence of general recursion. The difficulty may be traced to the
self-referential nature of general recursion—some care must be taken to
avoid a circular argument. The proof relies on the compactness property
of L{nat⇀} proved in Chapter 16 to establish the principle of fixed point
induction, which is then used to prove reflexivity and congruence for logical
equivalence.

53.1 Observational Equivalence

The definition of observational equivalence, along with the auxiliary notion
of Kleene equivalence, remain essentially as in Chapter 52, but adapted to
the language of L{nat⇀}. In particular, the syntax of contexts is given by
rules similar to Rules (52.1), modified to replace primitive recursion by case
analysis and general recursion. The complete rules for typing contexts in
L{nat⇀} are as follows:

◦ : (Γ . τ) (Γ . τ) (53.1a)

C : (Γ . τ) (Γ′ . nat)
s(C) : (Γ . τ) (Γ′ . nat)

(53.1b)

C : (Γ . τ) (Γ′ . nat) Γ′ ` e0 : τ′ Γ′, x : nat ` e1 : τ′

ifz C {z⇒e0 | s(x)⇒e1} : (Γ . τ) (Γ′ . nat)
(53.1c)
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Γ′ ` e : nat C0 : (Γ . τ) (Γ′ . τ′) Γ′, x : nat ` e1 : τ′

ifz e {z⇒C0 | s(x)⇒e1} : (Γ . τ) (Γ′ . τ′)
(53.1d)

Γ′ ` e : nat Γ′ ` e0 : τ′ C1 : (Γ . τ) (Γ′, x : nat . τ′)
ifz e {z⇒e0 | s(x)⇒C1} : (Γ . τ) (Γ . τ′)

(53.1e)

C2 : (Γ . τ) (Γ′, x : τ1 . τ2)
λ(x:τ1. C2) : (Γ . τ) (Γ′ . τ1 → τ2)

(53.1f)

C1 : (Γ . τ) (Γ′ . τ2 → τ′) Γ′ ` e2 : τ2

C1(e2) : (Γ . τ) (Γ′ . τ′)
(53.1g)

Γ′ ` e1 : τ2 → τ′ C2 : (Γ . τ) (Γ′ . τ2)
e1(C2) : (Γ . τ) (Γ′ . τ′)

(53.1h)

C : (Γ . τ) (Γ′, fix x:τ′ is e : τ′ . τ′)
fix x:τ′ is C : (Γ . τ) (Γ′ . τ′)

(53.1i)

The class of applicative contexts, A, for the eager variant of L{nat⇀} is
defined similarly by considering only Rule (53.1a) and Rule (53.1g), but
restricted to applicative sub-contexts. Such contexts do not bind any vari-
ables, so that if A : (Γ . τ) (Γ′ . τ′), then Γ = Γ′.

53.2 Logical Equivalence For Eager PCF

The definition of logical equivalence for the eager semantics of PCF must
take account of two characteristic features. First, any two computations
that diverge are to be related, since they are observationally equivalent.
Second, because the successor is evaluated eagerly, and because functions
are called with the value of their argument, we must distinguish values
from computations.

Definition 53.1. Logical equivalence is a type-indexed family of relations e ∼ e′ :
τ between closed expressions of type τ. It is defined simultaneously with the re-
lation e ≈ e′ : τ of logical equivalence between closed values by induction on the
structure of τ as follows:

e ∼ e′ : τ iff if e 7→∗ e1 val then e′ 7→∗ e′1 val and e1 ≈ e′1 : τ and
if e′ 7→∗ e′1 val then e 7→∗ e1 val and e1 ≈ e′1 : τ

e ≈ e′ : nat iff e = e′ = z, or
e = s(e1) and e′ = s(e′1) and e1 ≈ e′1 : nat

e ≈ e′ : τ1 → τ2 iff e = λ(x:τ1. e2), e′ = λ(x:τ1. e′2), and
e1 ≈ e′1 : τ1 implies [e1/x]e2 ∼ [e′1/x]e′2 : τ2
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In addition, two closed applicative contexts are logically related, A ∼ A′ :
τ iff their respective arguments are logically related at appropriate type.
That is, we define ◦ ∼ ◦ : τ, and if A ∼ A′ : τ2 → τ and e2 ∼ e′2 : τ2, then
A(e2) ∼ A′(e′2) : τ.

The conditions defining logical equivalence at type nat are self-referential,
which raises the question of whether the relation is properly defined. To be
more precise, we define e ≈ e′ : nat to be the strongest binary relation R on
closed values of type nat such that the following two conditions hold:

1. z R z, and

2. if e R e′, then s(e) R s(e′).

If R is the strongest such relation, it is easy to see that it satisfies the con-
ditions given in Definition 53.1 on the facing page. In particular, observe
that e ≈ e′ : nat iff e = e′ = n for some n ≥ 0. This may be proved by
showing that the diagonal relation on closed values of type nat satisfies
the foregoing conditions.

Logical equivalence is extended to open terms by substitution. A value
assignment, γ, for a finite set of variables, X , is a finite function assigning to
each variable x ∈ X a closed expression e = γ(x) such that e val. A value
assignment γ for X = { x1, . . . , xn } extends to a simultaneous substitution,
γ̂, on expressions by defining

γ̂(e) = [γ(x1), . . . , γ(xn)/x1, . . . , xn]e.

If γ and γ′ are two value assignments for X , and Γ is a finite set of
typing hypotheses either of the form x : τ, where x ∈ X , or of the form
fix x:τ is e : τ, then we define γ ≈ γ′ : Γ to hold iff

1. if x : τ is in Γ, then γ(x) ≈ γ′(x) : τ;

2. if fix x:τ is e : τ is in Γ, then fix x:τ is γ̂(e) ∼ fix x:τ is γ̂′(e) : τ.

We define e ∼ e′ : τ [Γ] to mean that γ̂(e) ∼ γ̂′(e′) : τ whenever γ ≈ γ′ : Γ.

53.3 Logical and Observational Equivalence Coincide

In this section we prove the coincidence of observational and logical equiv-
alence.

Lemma 53.1 (Substitution and Functionality). If e ∼= e′ : τ [Γ, x : σ], and d :
σ, then [d/x]e ∼= [d/x]e′ : τ [Γ]. Furthermore, if d ∼= d′ : σ, then [d/x]e ∼= [d′/x]e′ :
τ [Γ].
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Lemma 53.2 (Closure Under Converse Evaluation). Suppose that e ∼ e′ : τ.
If d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Lemma 53.3 (Closure Under Application). e ≈ e′ : τ1 → τ2 iff whenever e1 ≈ e′1 :
τ1, e(e1) ∼ e′(e′1) : τ2.

Proof. By assumption and Definition 53.1 on page 418 we know that e =
λ(x:τ1. e2) and e′ = λ(x:τ1. e′2), and hence that [e1/x]e2 ∼ [e′1/x]e′2 : τ2.
But since e(e1) 7→ [e1/x]e2 and e′(e′1) 7→ [e′1/x]e′2, the result follows im-
mediately from the definition of logical equivalence of expressions. The
converse follows directly from determinacy of evaluation.

Lemma 53.4 (Consistency). If e ∼ e′ : nat, then e ' e′.

Proof. Immediate, from Definition 53.1 on page 418.

Theorem 53.5 (Fixed Point Induction). fix x:τ is e ∼ fix x:τ is e′ : τ if,
for every k ≥ 0, fixk x:τ is e ∼ fixk x:τ is e′ : τ.

Proof. We prove the stronger result that whenever A ∼ A′ : τ, if

for every k ≥ 0, A{fixk x:τ is e} ∼ A′{fixk x:τ is e′} : τ,

then
A{fix x:τ is e} ∼ A′{fix x:τ is e′} : τ.

We proceed by induction on the structure of τ.
If τ = nat, then first suppose that A{fix x:τ is e} 7→∗ n. By Theo-

rem 16.7 on page 131 there exists k ≥ 0 such that A{fixk x:τ is e} 7→∗ n.
By the assumptionA′{fixk x:τ is e′} 7→∗ n, and henceA′{fix x:τ is e′} 7→∗
n by simply erasing the bounds on recursion. The second, symmetric, case
is handled analogously.

If τ = τ1 ⇀ τ2, then by Lemma 53.3, it is enough to show

A{fix x:τ is e}(v1) ∼ A′{fix x:τ is e′}(v′1) : τ2

whenever v1 ≈ v′1 : τ1. LetA2 = A(v1) andA′2 = A′(v′1). Observe that for
every k ≥ 0 we have A2{fixk x:τ is e} ∼ A′2{fixk x:τ is e′} : τ2, which
follows directly from the outer assumption. Consequently,

A2{fix x:τ is e} ∼ A′2{fix x:τ is e′} : τ2,

from which it follows that

A{fix x:τ is e} ∼ A′{fix x:τ is e′} : τ1 → τ2,

as required.
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Lemma 53.6 (Reflexivity). If Γ ` e : τ, then e ∼ e : τ [Γ].

Proof. We are to show that if Γ ` e : τ and γ ≈ γ′ : Γ, then γ̂(e) ∼ γ̂′(e′) : τ.
The proof proceeds by induction on typing derivations.

Consider the case of Rule (14.2b), in which τ = τ1 ⇀ τ2, e = λ(x:τ1. e2)
and e′ = λ(x:τ1. e′2). Since γ̂(e) and γ̂′(e′) are values, it is enough to show
that

λ(x:τ1. γ̂(e2)) ≈ λ(x:τ1. γ̂′(e′2)) : τ1 ⇀ τ2.

Assume that e1 ≈ e′1 : τ1; we are to show that [e1/x]γ̂(e2) ∼ [e′1/x]γ̂′(e′2) :
τ2. Let γ2 = γ[x 7→ e1] and γ′2 = γ′[x 7→ e′1], and observe that γ2 ≈ γ′2 :
Γ, x : τ1. Therefore, by induction we have γ̂2(e2) ∼ γ̂′2(e′2) : τ2, from which
the result follows directly.

Consider the case of Rule (16.1g). Assuming γ ≈ γ′ : Γ, we are to show
that

fix x:τ is γ̂(e) ∼ fix x:τ is γ̂′(e′) : τ.

By Theorem 53.5 on the preceding page it is enough to show that, for every
k ≥ 0,

fixk x:τ is γ̂′(e′) ∼ τ : . [fixk x:τ is γ̂(e)]

We proceed by an inner induction on k. When k = 0 the result is immediate,
since both sides of the desired equivalence diverge. Assuming the result for
k, and applying Lemma 53.2 on the facing page, it is enough to show that
γ̂(e1) ∼ γ̂′(e′1) : τ, where

e1 = [fixk x:τ is γ̂(e)/x]γ̂(e), and (53.2)

e′1 = [fixk x:τ is γ̂′(e′)/x]γ̂′(e′). (53.3)

But this follows directly from the inner and outer inductive hypotheses.
For by the outer inductive hypothesis, if

fixk x:τ is γ̂′(e) ∼ τ : , [fixk x:τ is γ̂(e)]

then

[fixk x:τ is γ̂′(e)/x]γ̂′(e) ∼ τ : . [[fixk x:τ is γ̂(e)/x]γ̂(e)]

But the hypothesis holds by the inner inductive hypothesis, from which the
result follows.

Symmetry and transitivity of logical equivalence are easily established
by induction on types, noting that Kleene equivalence is symmetric and
transitive. Logical equivalence is therefore an equivalence relation.
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Lemma 53.7 (Congruence). If C0 : (Γ . τ) (Γ0 . τ0), and e ∼ e′ : τ [Γ], then
C0{e} ∼ C0{e′} : τ0 [Γ0].

Proof. By induction on the derivation of the typing of C0.
Suppose that C0 = λ(x:τ1. C2) so that C0 : (Γ . τ) (Γ0 . τ1 → τ2) and

C2 : (Γ . τ) (Γ0, x : τ1 . τ2). Assuming e ∼ e′ : τ [Γ], we are to show that

C0{e} ∼ C0{e′} : τ1 → τ2 [Γ0],

which is to say

λ(x:τ1. C2{e}) ∼ λ(x:τ1. C2{e′}) : τ1 → τ2 [Γ0].

We know, by induction, that

C2{e} ∼ C2{e′} : τ2 [Γ0, x : τ1].

Suppose that γ0 ≈ γ′0 : Γ0, and that e1 ≈ e′1 : τ1. Let γ1 = γ0[x 7→ e1],
γ′1 = γ′0[x 7→ e′1], and observe that γ1 ≈ γ′1 : Γ0, x : τ1. By Definition 53.1 on
page 418 it is enough to show that

γ̂′1(C2{e′}) ∼ τ2 : , [γ̂1(C2{e})]

which follows immediately from the inductive hypothesis.
Suppose that C0 = fix x:τ is C1, so that C0 : (Γ . τ) (Γ0, x : τ0 . τ0)

and C1 : (Γ . τ) (Γ0 . τ0)τ0. Assuming e ∼ e′ : τ [Γ], we are to show that

C0{e} ∼ C0{e′} : τ0 [Γ0],

which is to say

fix x:τ0 is C1{e} ∼ fix x:τ0 is C1{e′} : τ0 [Γ0].

It follows from the inductive assumption that

[fix x:τ0 is C1{e}/x]C1{e} ∼ [fix x:τ0 is C1{e′}/x]C1{e′} : τ0 [Γ0],

which is enough for the desired result.

Theorem 53.8. If e ∼ e′ : τ [Γ], then e ∼= e′ : τ [Γ].

Proof. By Lemmas 53.4 on page 420 and 53.7, and the maximality of obser-
vational equivalence among consistent congruences.
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Lemma 53.9. If e ∼= e′ : τ, then e ∼ e′ : τ.

Proof. By induction on the structure of τ. If τ = nat, then the result is
immediate, since the trivial expression context is a program context. If τ =
τ1 → τ2, then suppose that e 7→∗ d val and e′ 7→∗ d′ val. Since d and d′

are closed values of function type, d = λ(x:τ1. e2) and d′ = λ(x:τ1. e′2) for
some e2 and e′2. We are to show that d ≈ d′ : τ1 → τ2. So suppose further
that d1 ≈ d′1 : τ1, and show that [d1/x]e2 ∼ [d′1/x]e′2 : τ2. By Theorem 53.8
on the facing page d1

∼= d′1 : τ1, and hence by Lemma 53.1 on page 419
[d1/x]e2 ∼= [d′1/x]e′2 : τ2, from which the result follows by induction.

Theorem 53.10. If e ∼= e′ : τ [Γ], then e ∼ e′ : τ [Γ].

Proof. Assume that e ∼= e′ : τ [Γ]. Suppose that Γ = x1 : τ1, . . . , xn : τn for
some n ≥ 0, and that e1 ≈ e′1 : τ1, . . . , en ≈ e′n : τn. By Theorem 53.8 on
the facing page we have that e1

∼= e′1 : τ1, . . . , en ∼= e′n : τn, and hence by
Lemma 53.1 on page 419 we have

[e1, . . . , en/x1, . . . , xn]e ∼= [e′1, . . . , e′n/x1, . . . , xn]e′ : τ.

Therefore by Lemma 53.9 we have

[e1, . . . , en/x1, . . . , xn]e ∼ [e′1, . . . , e′n/x1, . . . , xn]e′ : τ,

as required.

Corollary 53.11. e ∼= e′ : τ [Γ] iff e ∼ e′ : τ [Γ].

53.4 Some Laws of Equivalence

To state the laws of equivalence for the eager variant of PCF reflects the
distinction between values and computations in the definition of logical
equivalence. In particular we must consider the extension of the judgement
e val to open expressions e in which we hypothesize that variables stand for
values. That is, we consider typing hypotheses Γ of the form

x1 : τ1, x1 val, . . . , xn : τn, xn val,

in which each variable is assumed to have a type and is assumed to be a
value. We write Γ ` e val to indicate that e is a value under the assumptions
Γ. For example, the judgement

x : nat, x val ` s(x) val

is valid, since a successor is a value if its argument is a value, and, by hy-
pothesis, the variable x is a value.
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53.4.1 General Laws

Logical equivalence is indeed an equivalence relation: it is reflexive, sym-
metric, and transitive.

e ∼= e : τ [Γ] (53.4a)

e′ ∼= e : τ [Γ]
e ∼= e′ : τ [Γ]

(53.4b)

e ∼= e′ : τ [Γ] e′ ∼= e′′ : τ [Γ]
e ∼= e′′ : τ [Γ]

(53.4c)

Observational equivalence is a congruence: we may replace equals by
equals anywhere in an expression.

e ∼= e′ : τ [Γ] C : (Γ . τ) (Γ′ . τ′)
C{e} ∼= C{e′} : τ′ [Γ′]

(53.5a)

Equivalence is stable under substitution of values for free variables, and
substituting equivalent values in an expression gives equivalent results.

Γ ` e : τ Γ ` e val e2 ∼= e′2 : τ′ [Γ, x : τ, x val]
[e/x]e2 ∼= [e/x]e′2 : τ′ [Γ]

(53.6a)

Γ ` e1 val Γ ` e2 val e1
∼= e′1 : τ [Γ] e2 ∼= e′2 : τ′ [Γ, x : τ, x val]

[e1/x]e2 ∼= [e′1/x]e′2 : τ′ [Γ]
(53.6b)

53.4.2 Symbolic Evaluation Laws

All of the instruction steps of an operational semantics are valid laws of
equivalence. These are called symbolic evaluation laws, because they are
extensions of the operational semantics to expressions with free variables
that may occur anywhere within a program.

ifz z {z⇒e0 | s(x)⇒e1} ∼= e0 : τ [Γ] (53.7a)

Γ ` e′ val
ifz s(e′) {z⇒e0 | s(x)⇒e1} ∼= [e′/x]e1 : τ [Γ] (53.7b)

Γ ` e1 val

(λ(x:τ1. e2))(e1) ∼= [e1/x]e2 : τ2 [Γ]
(53.7c)

fix x:τ is e ∼= [fix x:τ is e/x]e : τ [Γ] (53.7d)
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53.4.3 Extensionality Laws

Two functions are equivalent if they are equivalent on all arguments.

e(x) ∼= e′(x) : τ2 [Γ, x : τ1, x val]
e ∼= e′ : τ1 → τ2 [Γ]

(53.8)

Consequently, every value of function type is equivalent to a λ-abstraction:

Γ ` e val
e ∼= λ(x:τ1. e(x)) : τ1 → τ2 [Γ] (53.9)

53.4.4 Induction Law

An equation involving a free variable, x, of type nat can be proved by in-
duction on x.

[n/x]e ∼= [n/x]e′ : τ [Γ] (for every n ∈N)
e ∼= e′ : τ [Γ, x : nat, x val]

(53.10a)

To apply the induction rule, we proceed by mathematical induction on
n ∈N, which reduces to showing:

1. [z/x]e ∼= [z/x]e′ : τ [Γ], and

2. [s(n)/x]e ∼= [s(n)/x]e′ : τ [Γ], if [n/x]e ∼= [n/x]e′ : τ [Γ].

53.5 Exercises
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Chapter 54

Parametricity

The motivation for introducing polymorphism was to enable more pro-
grams to be written — those that are “generic” in one or more types, such
as the composition function given in Chapter 25. Then if a program does not
depend on the choice of types, we can code it using polymorphism. More-
over, if we wish to insist that a program can not depend on a choice of types,
we demand that it be polymorphic. Thus polymorphism can be used both
to expand the class of programs we may write, and also to limit the class of
programs that are permissible in a given context.

The restrictions imposed by polymorphic typing give rise to the expe-
rience that in a polymorphic functional language, if the types are correct,
then the program is correct. Roughly speaking, if a function has a poly-
morphic type, then the strictures of type genericity vastly cut down the set
of programs with that type. Thus if you have written a program with this
type, it is quite likely to be the one you intended!

The technical foundation for these remarks is called parametricity. The
goal of this chapter is to give an account of parametricity for L{→∀} under
a call-by-name interpretation.

54.1 Overview

We will begin with an informal discussion of parametricity based on a “seat
of the pants” understanding of the set of well-formed programs of a type.

Suppose that a function value f has the type ∀(t.t→ t). What function
could it be? When instantiated at a type τ it should evaluate to a function
g of type τ → τ that, when further applied to a value v of type τ returns
a value v′ of type τ. Since f is polymorphic, g cannot depend on v, so v′
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must be v. In other words, g must be the identity function at type τ, and f
must therefore be the polymorphic identity.

Suppose that f is a function of type ∀(t.t). What function could it be?
A moment’s thought reveals that it cannot exist at all! For it must, when
instantiated at a type τ, return a value of that type. But not every type has
a value (including this one), so this is an impossible assignment. The only
conclusion is that ∀(t.t) is an empty type.

Let N be the type of polymorphic Church numerals introduced in Chap-
ter 25, namely ∀(t.t→ (t→ t)→ t). What are the values of this type?
Given any type τ, and values z : τ and s : τ → τ, the expression

f[τ](z)(s)

must yield a value of type τ. Moreover, it must behave uniformly with
respect to the choice of τ. What values could it yield? The only way to
build a value of type τ is by using the element z and the function s passed
to it. A moment’s thought reveals that the application must amount to the
n-fold composition

s(s(. . . s(z) . . .)).

That is, the elements of N are in one-to-one correspondence with the natu-
ral numbers.

54.2 Observational Equivalence

In this section we give a precise formulation of observational equivalence
for L{→∀}.

An expression context is, as in Chapter 52, an expression with a single
occurrence of a “hole” that may be filled by an open expression. The typing
judgement for expression contexts,

C : (∆; Γ . τ) (∆′; Γ′ . τ′),

is defined as in Chapter 52 to mean that C exposes the variables Γ, and is
such that ∆′; Γ′ ` C{e} : τ′ whenever ∆; Γ ` e : τ.

We define a program to be a closed expression of type 2 = ∀(t.t→ t→ t),
the Church booleans, with closed values tt = Λ(t.λ(x:t. λ(y:t. x))) and
ff = Λ(t.λ(x:t. λ(y:t. y))). Kleene equivalence is defined for programs
by e ' e′ iff (1) e 7→∗ tt iff e′ 7→∗ tt, and (2) e 7→∗ ff iff e′ 7→∗ ff. This
is obviously an equivalence relation. We say that a type-indexed family
of relations between closed expressions of the same type is consistent if it
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does not relate tt and ff at type 2. Kleene equivalence is therefore evidently
consistent.

Definition 54.1. Two expressions of the same type are observationally equiva-
lent, written e ∼= e′ : τ [∆; Γ], iff C{e} ' C{e′}whenever C : (∆; Γ . τ) ( . 2).

Lemma 54.1. Observational equivalence is the coarsest consistent congruence.

Proof. The composition of a program context with another context is itself
a program context. It is consistent by virtue of the empty context being a
program context.

Lemma 54.2 (Closed Substitution and Functionality).

1. If e ∼= e′ : τ [∆, t; Γ] and ρ type, then [ρ/t]e ∼= [ρ/t]e′ : [ρ/t]τ [∆; [ρ/t]Γ].

2. If e ∼= e′ : τ [∅; Γ, x : σ] and d : σ, then [d/x]e ∼= [d/x]e′ : τ [∅; Γ].
Moreover, if d ∼= d′ : σ, then [d/x]e ∼= [d′/x]e : τ [∅; Γ], and similarly for
e′.

Proof. 1. Let C : (∆; [ρ/t]Γ . [ρ/t]τ) ( . 2) be a program context. We
are to show that

C{[ρ/t]e} ' C{[ρ/t]e′}.

Since C and ρ are closed, this is equivalent to

[ρ/t]C{e} ' [ρ/t]C{e′}.

Let C ′ be the context Λ(t.C{◦})[ρ], and observe that

C ′ : (∆, t; Γ . τ) ( . 2).

Therefore, from the assumption, it follows that

C ′{e} ' C ′{e′}.

But C ′{e} ' [ρ/t]C{e}, and C ′{e′} ' [ρ/t]C{e′}, from which the re-
sult follows.

2. By an argument essentially similar to that for Lemma 52.4 on page 410.
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54.3 Logical Equivalence

In this section we introduce a form of logical equivalence that captures the
informal concept of parametricity, and also provides a characterization of
observational equivalence. This will permit us to derive properties of ob-
servational equivalence of polymorphic programs of the kind suggested
earlier.

The definition of logical equivalence for L{→∀} is somewhat more
complex than for L{nat→}. The main idea is to define logical equiva-
lence for a polymorphic type, ∀(t.τ) to satisfy a very strong condition that
captures the essence of parametricity. As a first approximation, we might
say that two expressions, e and e′, of this type should be logically equiva-
lent if they are logically equivalent for “all possible” interpretations of the
type t. More precisely, we might require that e[ρ] be related to e′[ρ] at
type [ρ/t]τ, for any choice of type ρ. But this runs into two problems, one
technical, the other conceptual. The same device will be used to solve both
problems.

The technical problem stems from impredicativity. In Chapter 52 logi-
cal equivalence is defined by induction on the structure of types. But when
polymorphism is impredicative, the type [ρ/t]τ might well be larger than
∀(t.τ)! At the very least we would have to justify the definition of logical
equivalence on some other grounds, but no criterion appears to be avail-
able. The conceptual problem is that, even if we could make sense of the
definition of logical equivalence, it would be too restrictive. For such a def-
inition amounts to saying that the unknown type t is to be interpreted as
logical equivalence at whatever type it turns out to be when instantiated.
To obtain useful parametricity results, we shall ask for much more than
this. What we shall do is to consider separately instances of e and e′ by types
ρ and ρ′, and treat the type variable t as standing for any relation (of a suit-
able class) between ρ and ρ′. One may suspect that this is asking too much:
perhaps logical equivalence is the empty relation! Surprisingly, this is not
the case, and indeed it is this very feature of the definition that we shall
exploit to derive parametricity results about the language.

To manage both of these problems we will consider a generalization of
logical equivalence that is parameterized by a relational interpretation of
the free type variables of its classifier. The parameters determine a sepa-
rate binding for each free type variable in the classifier for each side of the
equation, with the discrepancy being mediated by a specified relation be-
tween them. This permits us to consider a notion of “equivalence” between
two expressions of different type—they are equivalent, modulo a relation
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between the interpretations of their free type variables.

We will restrict attention to a certain class of “admissible” binary rela-
tions between closed expressions. The conditions are imposed to ensure
that logical equivalence and observational equivalence coincide.

Definition 54.2 (Admissibility). A relation R between expressions of types ρ
and ρ′ is admissible, written R : ρ↔ ρ′, iff it satisfies two requirements:

1. Respect for observational equivalence: if R(e, e′) and d ∼= e : ρ and d′ ∼= e′ :
ρ′, then R(d, d′).

2. Closure under converse evaluation: if R(e, e′), then if d 7→ e, then R(d, e′)
and if d′ 7→ e′, then R(e, d′).

The second of these conditions will turn out to be a consequence of the first,
but we are not yet in a position to establish this fact.

The judgement δ : ∆ states that δ is a type assignment that assigns a
closed type to each type variable t ∈ ∆. A type assignment, δ, induces a
substitution function, δ̂, on types given by the equation

δ̂(τ) = [δ(t1), . . . , δ(tn)/t1, . . . , tn]τ,

and similarly for expressions. Substitution is extended to contexts point-
wise by defining δ̂(Γ)(x) = δ̂(Γ(x)) for each x ∈ dom(Γ).

Let δ and δ′ be two type assignments of closed types to the type vari-
ables in ∆. A relation assignment, η, between δ and δ′ is an assignment of
an admissible relation η(t) : δ(t)↔ δ′(t) for each t ∈ ∆. The judgement
η : δ↔ δ′ states that η is a relation assignment between δ and δ′.

Logical equivalence is defined in terms of its generalization, called pa-
rameterized logical equivalence, written e ∼ e′ : τ [η : δ↔ δ′], is defined as
follows.

Definition 54.3 (Parameterized Logical Equivalence). The relation e ∼ e′ :
τ [η : δ↔ δ′] is defined by induction on the structure of τ by the following con-
ditions:

e ∼ e′ : t [η : δ↔ δ′] iff η(t)(e, e′)
e ∼ e′ : τ1 → τ2 [η : δ↔ δ′] iff e1 ∼ e′1 : τ1 [η : δ↔ δ′] implies

e(e1) ∼ e′(e′1) : τ2 [η : δ↔ δ′]
e ∼ e′ : ∀(t.τ) [η : δ↔ δ′] iff for every ρ, ρ′, and every R : ρ↔ ρ′,

e[ρ] ∼ e′[ρ′] : τ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]]
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Logical equivalence is defined in terms of parameterized logical equiv-
alence by considering all possible interpretations of its free type- and ex-
pression variables. An expression assignment, γ, for a context Γ, written
γ : Γ, is an assignment of a closed expression γ(x) : Γ(x) to each vari-
able x ∈ dom(Γ). An expression assignment, γ : Γ, induces a substitution
function, γ̂, defined by the equation

γ̂(e) = [γ(x1), . . . , γ(xn)/x1, . . . , xn]e,

where the domain of Γ consists of the variables x1, . . . , xn.
The relation γ ∼ γ′ : Γ [η : δ↔ δ′] is defined to hold iff dom(γ) =

dom(γ′) = dom(Γ), and γ(x) ∼ γ′(x) : Γ(x) [η : δ↔ δ′] for every variable,
x, in their common domain.

Definition 54.4 (Logical Equivalence). The expressions ∆; Γ ` e : τ and ∆; Γ `
e′ : τ are logically equivalent, written e ∼ e′ : τ [∆; Γ] iff for every assigment
δ and δ′ of closed types to type variables in ∆, and every relation assignment η :
δ↔ δ′, if γ ∼ γ′ : Γ [η : δ↔ δ′], then γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e′)) : τ [η : δ↔ δ′].

When e, e′, and τ are closed, then this definition states that e ∼ e′ : τ iff
e ∼ e′ : τ [∅ : ∅↔ ∅], so that logical equivalence is indeed a special case
of its generalization.

Lemma 54.3 (Closure under Converse Evaluation). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d 7→ e, then d ∼ e′ : τ, and if d′ 7→ e′, then e ∼ d′ : τ.

Proof. By induction on the structure of τ. When τ = t, the result holds
because all relations under consideration are closed under converse evalu-
ation. Otherwise the result follows by induction, making use of the defini-
tion of the transition relation for applications and type applications.

Lemma 54.4 (Respect for Observational Equivalence). Suppose that e ∼ e′ :
τ [η : δ↔ δ′]. If d ∼= e : δ̂(τ) and d′ ∼= e′ : δ̂′(τ), then d ∼ d′ : τ [η : δ↔ δ′].

Proof. By induction on the structure of τ, relying on the definition of ad-
missibility, and the congruence property of observational equivalence. For
example, if τ = ∀(t.σ), then we are to show that for every R : ρ↔ ρ′,

d[ρ] ∼ d′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]].

Since observational equivalence is a congruence, d[ρ] ∼= e[ρ] : [ρ/t]δ̂(σ),
d′[ρ] ∼= e′[ρ] : [ρ′/t]δ̂′(σ). From the assumption it follows that

e[ρ] ∼ e′[ρ′] : σ [η[t 7→ R] : δ[t 7→ ρ]↔ δ′[t 7→ ρ′]],

from which the result follows by induction.
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Corollary 54.5. The relation e ∼ e′ : τ [η : δ↔ δ′] is an admissible relation
between closed types δ̂(τ) and δ̂′(τ).

Proof. By Lemmas 54.3 on the facing page and 54.4 on the preceding page.

Logical Equivalence respects observational equivalence.

Corollary 54.6. If e ∼ e′ : τ [∆; Γ], and d ∼= e : τ [∆; Γ] and d′ ∼= e′ : τ [∆; Γ],
then d ∼ d′ : τ [∆; Γ].

Proof. By Lemma 54.2 on page 429 and Corollary 54.5.

Lemma 54.7 (Compositionality). Suppose that

e ∼ e′ : τ [η[t 7→ R] : δ[t 7→ δ̂(ρ)]↔ δ′[t 7→ δ̂′(ρ)]],

where R : δ̂(ρ)↔ δ̂′(ρ) is such that R(d, d′) holds iff d ∼ d′ : ρ [η : δ↔ δ′].
Then e ∼ e′ : [ρ/t]τ [η : δ↔ δ′].

Proof. By induction on the structure of τ. When τ = t, the result is imme-
diate from the definition of the relation R. When τ = t′ 6= t, the result
holds vacuously. When τ = τ1 → τ2 or τ = ∀(u.τ), where without loss of
generality u 6= t and u # ρ, the result follows by induction.

Despite the strong conditions on polymorphic types, logical equiva-
lence is not vacuous—in fact, expression satisfies its constraints.

Theorem 54.8 (Reynolds). If e : τ is a closed expression, then e ∼ e : τ.

Proof. By induction on derivations of the typing judgement for L{→∀}.
We consider two representative cases here.

Rule (25.2d) By induction we have that for all δ : ∆, δ′ : ∆, η : δ↔ δ′, and
all ρ, ρ′, and R : ρ↔ ρ′,

[ρ/t]γ̂(δ̂(e)) ∼ [ρ′/t]γ̂′(δ̂′(e)) : τ [η∗ : δ∗ ↔ δ′∗],

where η∗ = η[t 7→ R], δ∗ = δ[t 7→ ρ], and δ′∗ = δ′[t 7→ ρ′]. Since

Λ(t.γ̂(δ̂(e)))[ρ] 7→∗ [ρ/t]γ̂(δ̂(e))

and
Λ(t.γ̂′(δ̂′(e)))[ρ′] 7→∗ [ρ′/t]γ̂′(δ̂′(e)),

the result follows by Lemma 54.3 on the facing page.
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Rule (25.2e) By induction we have that for all δ : ∆, δ′ : ∆, η : δ↔ δ′,

γ̂(δ̂(e)) ∼ γ̂′(δ̂′(e)) : ∀(t.τ) [η : δ↔ δ′]

Let ρ̂ = δ̂(ρ) and ρ̂′ = δ̂′(ρ). Define the relation R : ρ̂↔ ρ̂′ by R(d, d′)
iff d ∼ d′ : ρ [η : δ↔ δ′]. By Corollary 54.5 on the previous page, this
relation is admissible.

By the definition of logical equivalence at polymorphic types, we ob-
tain

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : τ [η[t 7→ R] : δ[t 7→ ρ̂]↔ δ′[t 7→ ρ̂′]].

By Lemma 54.7 on the preceding page

γ̂(δ̂(e))[ρ̂] ∼ γ̂′(δ̂′(e))[ρ̂′] : [ρ/t]τ [η : δ↔ δ′]

But

γ̂(δ̂(e))[ρ̂] = γ̂(δ̂(e))[δ̂(ρ)] (54.1)

= γ̂(δ̂(e[ρ])), (54.2)

and similarly

γ̂′(δ̂′(e))[ρ̂′] = γ̂′(δ̂′(e))[δ̂′(ρ)] (54.3)

= γ̂′(δ̂′(e[ρ])), (54.4)

from which the result follows.

Corollary 54.9. If e ∼= e′ : τ [∆; Γ], then e ∼ e′ : τ [∆; Γ].

Proof. By Theorem 54.8 on the previous page e ∼ e : τ [∆; Γ], and hence by
Corollary 54.6 on the preceding page, e ∼ e′ : τ [∆; Γ].

Lemma 54.10 (Congruence). If e ∼ e′ : τ [∆ ∆′; Γ Γ′] and C : (∆; Γ . τ) (∆′; Γ′ . τ′),
then C{e} ∼ C{e′} : τ [∆′; Γ′].

Proof. By induction on the structure of C.

Lemma 54.11 (Consistency). Logical equivalence is consistent.
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Proof. To see that tt and ff are not logically related at type 2, pick any type τ
for which we have two expressions that are not observationally equivalent.
The presumed logical equivalence of tt and ff implies that any two values
of any type are observationally equivalent, from which we may derive a
contradiction. For specificity, observe that tt and ff are not observationally
equivalent at type 2, since we may consider their behavior in the empty
context.

Corollary 54.12. If e ∼ e′ : τ [∆; Γ], then e ∼= e′ : τ [∆; Γ].

Proof. By Lemma 54.11 on the preceding page Logical equivalence is con-
sistent, and by Lemma 54.10 on the facing page, it is a congruence, and
hence is contained in observational equivalence.

Corollary 54.13. Logical and observational equivalence coincide.

Proof. By Corollaries 54.9 on the preceding page and 54.12.

If d : τ and d 7→ e, then d ∼ e : τ, and hence by Corollary 54.12, d ∼= e : τ.
Therefore if a relation respects observational equivalence, it must also be
closed under converse evaluation. This shows that the second condition
on admissibility is redundant, though it cannot be omitted at such an early
stage.

54.4 Relational Parametricity

Using the Parametricity Theorem we may prove results about the inhabi-
tants of polymorphic types. For example, if e : ∀(t.t→ t), then we may
show that if ρ is any type, and d : ρ, then e[ρ](d) 7→∗ d. Let R be such that
R(e, e′) iff e 7→∗ d and e′ 7→∗ d. Observe that R : ρ↔ ρ, and that R(d, d). It
follows by Theorem 54.8 on page 433 that R(e[ρ](d), e[ρ](d)), which is to
say that e[ρ](d) 7→∗ d, as required.

(More examples to follow. . . .)

54.5 Exercises
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Chapter 55

Representation Independence

Parametricity is the essence of representation independence. The typing
rules for open given in 26.1 on page 204 ensure that the client of an abstract
type is polymorphic in the representation type. According to our informal
understanding of parametricity this means that the client behavior of the
client is independent of the choice of representation.

To say that no client can distinguish between two implementations of
the same existential type is just to say that these two implementations are
observationally equivalent as expressions of the existential type. Therefore
representation independence for abstract types boils down to observational
equivalence. But, as we have argued in Chapters 52 and 54, it can be quite
difficult to reason directly about observational equivalence. A useful suffi-
cient condition is derived from the concept of logical equivalence defined
in Chapter 54 for polymorphic languages. This condition is called bisimi-
larity.

55.1 Bisimilarity of Packages

For two packages
e′1 = pack ρ1 with e1 as ∃(t.τ)

and
e′2 = pack ρ2 with e2 as ∃(t.τ)

of the same existential type, ∃(t.τ), to be observationally equivalent, it is
sufficient to exhibit a relation R : ρ1 ↔ ρ2 between closed expressions of
types ρ1 and ρ2, respectively, such that

e1 ∼ e2 : τ [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]].
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This means that e1 and e2 are to be logically related as elements of type τ,
under the assumption that elements of type t (which may occur free in τ)
are related by the specified relation R. When this is the case, we say that
R is a bisimulation between the two packages, and that the packages are
thereby bisimilar.

Recall from Chapter 26 that the client, ec, of the abstract type ∃(t.τ) is
such that t type, x : τ ` ec : τc for some type τc such that t # τc. It follows
from Theorem 54.8 on page 433 that

[e1/x]ec ∼ [e2/x]ec : τc [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]]

whenever
e1 ∼ e2 : τ [[t 7→ R] : [t 7→ ρ1]↔ [t 7→ ρ2]].

It follows that

open e′1 as t with x:τ in ec ∼ open e′2 as t with x:τ in ec : τc.

That is, the two implementations are indistinguishable by any client of the
abstraction. This crucial property is called representation independence for
abstract types. It is crucial that t # τc to ensure that the equivalence of
the client under change of representation is independent of the relation R,
which governs only the “private” parts of the abstraction.

Representation independence validates the following technique for prov-
ing the correctness of an ADT implementation. Suppose that we have a
“clever” implementation of an abstract type ∃(t.τ) whose correctness we
wish to verify. Let us call this the candidate implementation. To prove cor-
rectness of the candidate, we exhibit a reference implementation that is taken
to be manifestly correct (or proved correct by a separate argument), and
show that the reference and candidate implementations are bisimilar. It
follows that they are observationally equivalent, and hence interchange-
able in all contexts. In other words the candidate is “as correct as” the
reference implementation.

55.2 Two Representations of Queues

Returning to the queues example, let us take as a reference implementation
the package determined by representing queues as lists. As a candidate
implementation we take the package corresponding to the following ML
code:

11:12PM DRAFT JULY 8, 2008



55.2. TWO REPRESENTATIONS OF QUEUES 439

structure QFB :> QUEUE =
struct
type queue = int list * int list
val empty = (nil, nil)
fun insert (x, (bs, fs)) = (x::bs, fs)
fun remove (bs, nil) = remove (nil, rev bs)

| remove (bs, f::fs) = (f, (bs, fs))
end

We will show that QL and QFB are bisimilar, and therefore indistinguishable
by any client.

Letting ρls = nat list and ρfb = nat list× nat list, define the rela-
tion R : ρls ↔ ρfb as follows:

R = { (l, 〈b, f 〉)) | l ∼= b @ rev( f) : nat list }

We will show that R is a bisimulation by showing that implementations of
empty, insert, and remove determined by the structures QL and QFB are
equivalent relative to R.

To do so, we will establish the following facts:

1. QL.empty R QFB.empty.

2. Assuming that m ∼ n : nat and l R 〈b, f 〉, show that

QL.insert(〈m, l〉) R QFB.insert(〈n, 〈b, f 〉〉).

3. Assuming that l R 〈b, f 〉, show that

QL.remove(l) ∼ QFB.remove(〈b, f 〉) : nat× t [[t 7→ R] : [t 7→ ρls]↔ [t 7→ ρfb]].

Observe that the latter two statements amount to the assertion that the op-
erations preserve the relation R — they map related input queues to related
output queues.

The proofs of these facts are relatively straightforward, given some rel-
atively obvious lemmas about expression equivalence.

1. To show that QL.empty R QFB.empty, it suffices to show that

nil @ rev(nil) ∼= nil : nat list,

which follows by symbolic execution, using the definitions of the op-
erations involved.
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2. For insert, we assume that m ∼ n : nat and l R 〈b, f 〉, and prove that

QL.insert(m, l) R QFB.insert(n, 〈b, f 〉).

By the definition of QL.insert, the left-hand side is observationally
equivalent to m :: l, and by the definition of QR.insert, the right-
hand side is observationally equivalent to 〈n :: b, f 〉. It suffices to
show that

m :: l ∼= (n :: b) @ rev( f) : nat list.

Calculating, we obtain

(n :: b) @ rev( f) ∼= n :: (b @ rev( f)) : nat list

and
n :: (b @ rev( f)) ∼= n :: l : nat list,

since l ∼= b @ rev( f) : nat list. Since m ∼ n : nat, it follows that
m = n, which completes the proof.

3. For remove, we assume that l is related by R to 〈b, f 〉, which is to say
that l ∼= b @ rev( f) : nat list. We are to show

QL.remove(l) ∼ QFB.remove(〈b, f 〉) : nat× t [[t 7→ R] : [t 7→ ρls]↔ [t 7→ ρfb]].

Assuming that the queue is non-empty, so that removing an element
is well-defined, it can be shown that l ∼= l′ @ [m] : nat list for some
l′ and m. We proceed by cases according to whether or not f is empty.
If f is non-empty, then it can be shown that f ∼= n :: f ′ : nat list for
some n and f ′. Then by the definition of QFB.remove,

QFB.remove(〈b, f 〉) ∼= 〈n, 〈b, f ′〉〉 : nat× t,

taking equality at type t to be the relation R. We must show that

〈m, l′〉 ∼ 〈n, 〈b, f ′〉〉 : nat× t,

with t equality being R. This means that we must show that m = n
and l′ ∼= b @ rev( f ′) : nat list.

Calculating from our assumptions,

l ∼= l′ @ [m]
∼= b @ rev( f)
∼= b @ rev(n :: f ′)
∼= b @ (rev( f ′) @ [n])
∼= (b @ rev( f ′)) @ [n],
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from which the result follows. Finally, if f is empty, then it can be
shown that b ∼= b′ @ [n] : nat list for some b′ and n. But then

rev(b) ∼= n :: rev(b′) : nat list,

which reduces to the case for f non-empty.

This completes the proof — by representation independence the refer-
ence and candidate implementations are equivalent.

55.3 Exercises
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