
Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.1

Algebraic 10
Specification

Objectives

• To explain the role of formal specifications in the definition of
interfaces between sub-systems.

• To introduce the algebraic approach to formal specification where
abstract data types or object classes are specified by defining the
properties of their associated operations.

• To describe a systematic way to write an algebraic specification.

• To illustrate a number of incremental ways to construct algebraic
specifications from simpler specifications.

Contents

10.1 Systematic algebraic specification
10.2 Structured specification
10.3 Error specification

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.2

Large systems are usually decomposed into sub-systems which are developed
independently. Sub-systems obviously make use of other sub-systems so an
essential part of the specification process is to define sub-system interfaces. Once
the interfaces are agreed and defined, the sub-systems can be developed
independently.

Sub-system interfaces are often defined as a set of abstract data types or
objects (Figure 10.1). Each sub-system implements these interfaces and all sub-
system access is through the interfaces. It is therefore essential that the sub-system
interface is clearly and unambiguously specified. This reduces the chances of
misunderstandings between the sub-system providing a facility and the sub-system
using that facility.

The starting point for the specification is an informal interface specification,
expressed as a set of abstract data types or object classes, that has been negotiated
by the sub-system designers. The algebraic approach is particularly suitable for the
definition of sub-system interfaces. This method of formal specification defines an
object class or abstract data type in terms of the relationships between the type
operations.

Guttag [Guttag, 1977 #162] first discussed this approach in the specification
of abstract data types. Cohen et al. [Cohen, 1986 #17] show how the technique can
be extended to complete system specification using an example of a document
retrieval system. Liskov and Guttag [Liskov, 1986 #497] also cover the algebraic
specification of abstract data types. Several languages for algebraic specification
have been developed including OBJ [Futatsugi, 1985 #155] and Larch [Guttag, 1985
#163].

It is sometimes difficult to prove that algebraic specifications are
mathematically complete and consistent. Van Vliet [van Vliet, 1993 #498]
discusses some of the reasons for this in a way which is understandable by non-
mathematicians. These problems do not, however, detract from their usefulness in
supporting the critical process of interface specification. However, an incomplete
formal specification may be more precise than informal interface definitions.
Theoretical limitations of the algebraic approach do not necessarily detract from its
practical utility.

As I discussed in Chapter 9, there are good reasons for developing a formal
specification even if no mathematical manipulation of the specification is carried
out. Developing a formal specification forces an analysis of an informal interface
description. It therefore may reveal potential inconsistencies and ambiguities in that
description. The formal specification supplements the informal description. It
reduces communication problems between the developers and the users of the sub-
system interface.

Sub-system
 A

Sub-system
B

Interface objects

Figure 10.1 Sub-
system interface
objects

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.3

 In the notation which I use here, each specification has a name and an
optional generic parameter list. By allowing generic parameters, abstract types
which are collections of other types (arrays, lists, etc.) may be specified without
concern for the types in the collection. The generic type may be instantiated to
create a more specific specification. For example, an array with a generic parameter
could be instantiated to an array of integers, an array of strings, an array of arrays
and so on. As part of this generic type specification, operations which must be
defined over the generic type may be specified.

Figure 10.2 illustrates how algebraic specifications are presented in this
chapter. The body of the specification has four components.

1. An introduction that declares the sort (the type name) of the entity being
specified. A sort is the name of a set of objects. It is usually implemented as
a type. The introduction may also include an imports declaration where the
names of specifications (not the sort names) defining other sorts are declared.
Importing a specification makes these sorts available for use.

2. A description part where the operations are described informally. This makes
the formal specification easier to understand. The formal specification
complements this description by providing an unambiguous syntax and
semantics for the type operations.

3. The signature part defines the syntax of the interface to the object class or
abstract data type. The names of the operations that are defined, the number
and sorts of their parameters and the sort of operation results is described in
the signature.

4. The axioms part defines the semantics of the operations by defining a set of
axioms which characterise the behaviour of the abstract data type. These
axioms relate the operations used to construct entities of the defined sort with
operations used to inspect its values.

To illustrate the parts of an abstract data type specification, consider the
specification of an array (Figure 10.3). This is a generic abstract data type provided
in almost all programming languages. It is an abstract data type (although it is not
defined as such in Ada, C or C++) because it has a restricted set of allowed
operations. It is a generic type because the elements of an array can usually be of

 Informal description of the sort and its operations

Operation signatures setting out the names and the types of the
parameters to the operations defined over the sort

Axioms defining the operations over the sort

<SPECIFICATION NAME> (Generic Parameter)
sort <name>
imports <LIST OF SPECIFICATION NAMES>

Figure 10.2 The
format of an
algebraic
specification

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.4

any other type. The defined operations create the array, discover the lower and upper
bounds, find the value of an array element and assign a value to an array element.

 I use the notation suggested by Cohen et al. [Cohen, 1986 #17] to introduce
generic parameters. The name of the generic parameter is Elem meaning any
element type. Any operations which must be defined for the instantiated parameter
must also be specified with the generic parameter. In the array specification, this
means that the sort which instantiates Elem must have an operation called
Undefined associated with it. Undefined is a special value whose type is Elem. It
indicates that the evaluation of some operation has resulted in an error. For
example, the result of the operation is Undefined when an attempt is made to access
an element which has not been defined a value.

10.1 Systematic algebraic specification

In this section, I describe a systematic approach that may be used to define an
algebraic specification of an abstract data type or object class. This is illustrated by
specifying an abstract data type representing a very simple linked list. There are six

ARRAY (Elem: [Undefined → Elem])

sort Array
imports INTEGER

Arrays are collections of elements of generic type Elem. They have a
lower and upper bound (discovered by the operations First and Last)
Individual elements are accessed via their numeric index.
Create takes the array bounds as parameters and creates the array,
initialising its values to Undefined. Assign creates a new array which
is the same as its input with the specified element assigned the given
value. Eval reveals the value of a specified element. If an attempt is
made to access a value outside the bounds of the array, the value is
undefined.

First (Create (x, y)) = x
First (Assign (a, n, v)) = First (a)
Last (Create (x, y)) = y
Last (Assign (a, n, v)) = Last (a)
Eval (Create (x, y), n) = Undefined
Eval (Assign (a, n, v), m) =

 if m < First (a) or m > Last (a) then Undefined else
 if m = n then v else Eval (a, m)

Create (Integer, Integer) → Array
Assign (Array, Integer, Elem) → Array
First (Array) → Integer
Last (Array) → Integer
Eval (Array, Integer) → Elem

Figure 10.3 The
specification of sort
Array

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.5

stages in this approach. These are not necessarily carried out in sequence. As the
specification is developed, the specifier refines the results of earlier stages in the
process.

The stages in developing an algebraic specification are:

1. Specification structuring The informal interface specification must be
structured into a set of abstract data types or object classes. Operations
should be proposed for each interface entity.

2. Specification naming Establish a name for the specification, decide whether
or not it requires generic parameters and decide on a name for the sorts
identified.

3. Operation selection Choose a set of operations on these entities based on the
identified interface functionality. This should include operations to create
instances of the sort, to modify the value of instances and to inspect the
instance values. You may have to add functions to those initially identified
in the informal interface definition.

4. Informal operation specification Write an informal specification of each
operation. This should describe how the operations affect the defined sort.

5. Syntax definition Define the syntax of the operations and the parameters to
each operation. This represents the signature part of the formal specification.
Update the informal specification at this stage if necessary.

6. Axiom definition Define the semantics of the operations. This is described in
Section 10.1.1.

To develop the example of the list specification, assume that the first stage,
namely specification structuring has been carried out and that the need for a list has
been identified. The name of the specification and the name of the sort can be the
same although it is useful to distinguish between these by using some convention.
I use upper case for the specification name (LIST) and lower-case with an initial
capital for the sort name (List). As lists are collections of other types, the
specification has a generic parameter (Elem).

In general, for each abstract type, the required operations must include an
operation to bring instances of the type into existence (Create) and to construct the
type from its elements (Cons). In the case of lists, we need an operation to evaluate
the first list element (Head), an operation which returns the list created by
removing the first element (Tail) and an operation to count the number of list
elements (Length). We shall see in Section 10.2 how to add more operations to this
set.

To define the syntax of each of these operations, you must decide which
parameters are required for the operation and the results of the operation. In general,
input parameters are either the sort being defined (List) or the generic sort. Results
of operations may be either of those sorts or some other sort such as integer or
Boolean. In the list example, the Length operation returns an integer. An imports
declaration declaring that the specification of integer is used should therefore be
included in the specification. Finally, the semantics are defined as a set of equations
as explained in Section 10.1.1. The final specification is shown in Figure 10.4.

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.6

10.1.1 Defining axioms

The axioms which define the semantics of an abstract data type are written using the
operations defined in the signature part. They specify the semantics by setting out
what is always true about the behaviour of entities with that abstract type.

Operations on an abstract data type usually fall into two classes.

1. Constructor operations which create or modify entities of the sort defined in
the specification. Typically, these are given names such as Create, Update,
Add, etc.

2. Inspection operations which evaluate attributes of the sort defined in the
specification. Typically, these are given names which correspond to attribute
names or names such as Eval, Get, etc.

 A good rule of thumb for writing an algebraic specification is to establish
the constructor operations and write down an axiom for each inspection operation
over each constructor. This suggests that if there are m constructor operations and n
inspection operations there should be m*n axioms defined.

However, the constructor operations associated with an abstract type may not
be primitive constructors. Primitive constructors are operations which can’t be
expressed using other constructors. If a constructor operation can be defined using

LIST (Elem: [Undefined → Elem])

sort List
imports INTEGER

This specification defines a list where elements are added at one end
and may be removed from the other end. List operations are Create,
which brings an empty list into existence, Cons which creates a new
list with an additional member added to the end, Length which
evaluates the list size, Head which evaluates the front element of the
list and Tail which evaluates to a new list with the head element
removed.

Create → List
Cons (List, Elem) → List
Tail (List) → List
Head (List) → Elem
Length (List) → Integer

Head (Create) = Undefined -- Error to evaluate an empty list
Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)Figure 10.4 The

specification of sort
List

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.7

other constructors, it is only necessary to define the inspection operations using the
primitive constructors.

 An example of this is given in the specification a list shown in Figure
10.4. The constructor operations are Create, Cons and Tail which build lists. The
access operations are Head and Length which are used to discover list attributes.
The Tail operation is not a primitive constructor as it can be defined using Cons and
Create. There is therefore no need to define axioms over the Tail operation for Head
and Length operations. These would include redundant information that could be
derived from other axioms.

Evaluating the head of an empty list results in an undefined value. The
specifications of Head and Tail show that Head evaluates the front of the list and
Tail evaluates to the input list with its head removed. The specification of Head
states that the head of a list created using Cons is either the value added to the list
(if the initial list is empty) or is the same as the head of the initial list parameter to
Cons. Adding an element to a list does not affect its head unless the list is empty.

The value of the Tail operation is the list which is formed by taking the
input list and removing its head. The definition of Tail shows how recursion is
used in constructing algebraic specifications. The operation is defined on empty
lists then recursively on non-empty lists with the recursion terminating when the
empty list results. This is a very common technique to use when writing algebraic
specifications.

It is sometimes easier to understand recursive specifications by developing a
short example. Say we have a list [5, 7] where 5 is the front of the list and 7 the
end of the list. The operation Cons ([5, 7], 9) should return a list [5, 7, 9] and a
Tail operation applied to this should return the list [7, 9]. The sequence of equations
which results from substituting the parameters in the above specification with these
values is:

Tail ([5, 7, 9]) =
 Tail (Cons ([5, 7], 9)) =
 Cons (Tail ([5, 7]), 9) =
 Cons (Tail (Cons ([5], 7)), 9) =
 Cons (Cons (Tail ([5]), 7), 9) =

 Cons (Cons (Tail (Cons ([], 5)), 7), 9) =
 Cons (Cons ([Create], 7), 9) =

 Cons ([7], 9) =
 [7, 9]

The systematic rewriting of the axiom for Tail illustrates that it does indeed
produce the anticipated result. The axiom for Head can be verified using a similar
approach.

10.1.2 Primitive constructor operations

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.8

When developing an algebraic specification, it is sometimes necessary to introduce
additional constructor operations in addition to those identified as part of the
interface specification. The interface constructors are then defined in terms of these
more primitive operations.

These additional primitive constructors may be required because it is difficult
or impossible to define the inspection functions in terms of the interface functions.
We can see an example of this in a binary tree specification with the identified
interface functions as shown in Figure 10.5.

It is impossible to specify the inspection operations (Left, Data, Right,
Is_empty, Contains) in terms of the Add function. An extra function (Build) is
therefore added to the specification to simplify their definition. There is no easy or
automatic way to identify these functions. If you find it very difficult to specify
inspection functions in terms of the identified constructors, this may mean that you
have to think about the problem and try to identify a more primitive constructor
operation.

The specification for Binary_tree with the Add constructor defined in terms
of the Build constructor and other functions is shown in Figure 10.6.

The notation .=. (Elem, Elem) means that the equality operator '=' is an infix
operator with operands of type Elem. The precise notion of equality depends on the
sort of the entities to which the operator is applied. It must therefore be defined for
each abstract type which may be used to instantiate Elem.

Operation Description
Create Creates an empty tree.
Add (Binary_tree, Elem) Adds a node to the binary tree using the

usual ordering principles i.e. if it is less
than the current node it is entered in the left
subtree; if it is greater than or equal to the
current node, it is entered in the right sub-
tree.

Left (Binary_tree) Returns the left sub-tree of the top of the
tree.

Data (Binary_tree) Returns the value of the data element at the
top of the tree.

Right (Binary_tree) Returns the right sub-tree of the top of the
tree.

Is_empty (Binary_tree) Returns true if the tree does not contain any
elements.

Contains (Binary_tree,
Elem)

Returns true if the tree contains the given
element.

Figure 10.5
Operations on a
binary tree

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.9

10.2 Incremental specification

Writing formal specifications is time-consuming and is an expensive software
process activity. A good strategy to minimise the amount of effort needed to
develop a specification is to reuse specifications which have already been developed.
To do this, you need to derive specifications in an incremental way. Simple
specifications then serve as building blocks for more complex specifications.

There are a number of different ways in which specifications can be reused. I
will discuss three of these here namely:

1. The instantiation of generic specifications.

sort Binary_tree
imports BOOLEAN

Defines a binary tree where the data is of generic type Elem.
See Figure 10.5 for interface operation description.
Build is an additional primitive constructor operation which is
introduced to simplify the specification. It builds a tree given the
value of a node and the left and right sub-trees.

Create → Binary_tree
Add (Binary_tree, Elem) → Binary_tree
Left (Binary_tree) → Binary_tree
Data (Binary_tree) → Elem
Right (Binary_tree) → Binary_tree
Is_empty → Boolean
Contains (Binary_tree, Elem) → Boolean
Build (Binary_tree, Elem, Binary_tree) → Binary_tree

Add (Create, E) = Build (Create, E, Create)
Add (B, E) = if E < Data (B) then Add (Left (B), E)

else Add (Right (B), E)
Left (Create) = Create
Right (Create) = Create
Data (Create) = Undefined
Left (Build (L, D, R)) = L
Right (Build (L, D, R)) = R
Data (Build (L, D, R)) = D
Is_empty (Create) = true
Is_empty (Build (L, D, R)) = false
Contains (Create, E) = false
Contains (Build (L, D, R), E) = if E= D then true else if E < D then

Contains (L, D) else Contains (R, D)

BINTREE (Elem: [Undefined → Elem, .=. → Bool, .<. → Bool])

Figure 10.6 The
specification of sort
Binary_tree

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.10

2. The incremental development of specifications.

3. The enrichment of specifications.

10.2.1 Specification instantiation

The simplest form of reuse is to take an existing specification which has been
specified with a generic parameter and instantiate this with some other sort. Figure
10.7 shows an example of how the array specification given in Figure 10.3 can be
instantiated to create the specification of an array of characters. I assume that the
sort Char has been defined in a separate specification. It must have a constant
operation called Undefined associated with it. This could be implemented using
some reserved bit pattern.

To instantiate a specification, the name of the generic specification is given
along with the name of the specification being defined. The new sort name is
defined by instantiating it with the name of the generic sort and the element type.
When specifications are instantiated, the set of operations available is the same as
the set of operations in the generic specification.

10.2.2 Incremental development

The incremental development of specifications involves developing simple
specifications then using these to specify more complex entities. The simple
specifications are imported into the more complex specifications. This means the
operations which are defined on the imported specifications are available for use in
the importing specification.

Figure 10.8 is an example of a general-purpose specification building block.
A basic building block for a graphical system is an object class representing a
Cartesian coordinate. Figure 10.8 shows an example of a simple algebraic
specification of a sort called Coord. The operations are create a coordinate, test
coordinates for equality and access the X and Y components.

The specification of Coord can be used in the specification of a cursor in a
graphical user interface (Figure 10.9). Cursors can be moved around the screen to
point at a particular screen element. They have an associated representation (such as
an arrow) which may change depending on the area of the screen where the cursor is
positioned. This is supported in the specification by importing the specification of
a bitmap (not defined here). Assume that the change of cursor is invoked by some
event handler which detects the cursor position with respect to other displayed
objects. Note that the operations defined in COORD may be accessed directly if their

CHAR_ARRAY : ARRAY

sort Char_array instantiates Array (Elem:=Char)
imports INTEGER Figure 10.7 The

specification of a
character array

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.11

name is distinct from names defined in CURSOR. If the names clash, the operation
name in the imported specification must be preceded by the specification name.

sort Coord
imports INTEGER, BOOLEAN

Defines a sort representing a Cartesian coordinate. The
operations defined on Coord are X and Y which evaluate the
x and y attributes of an entity of this sort and Eq which
compares two entities of sort Coord for equality.

Create (Integer, Integer) → Coord ;
X (Coord) → Integer ;
Y (Coord) → Integer ;
Eq (Coord, Coord) → Boolean ;

 COORD

X (Create (x, y)) = x
Y (Create (x, y)) = y
Eq (Create (x1, y1), Create (x2, y2)) = ((x1= x2) and (y1=y2))

Figure 10.8 The
specification of sort
Coord

sort Cursor
imports INTEGER, COORD, BITMAP

A cursor is a representation of a screen position. Defined
operations are Create which associates an icon with the cursor at a
screen position, Position which returns the current coordinate of the
cursor, Translate which moves the cursor a given amount in the x
and y directions and Change_Icon which causes the cursor icon to
be switched.

The Display operation is not defined formally. Informally, it causes
the icon associated with the cursor to be displayed so that the top-
left corner of the icon represents the cursor's position. When
displayed, the 'clear' parts of the cursor bitmap should not obscure
the underlying objects.

CURSOR

Create (Coord, Bitmap) → Cursor
Translate (Cursor, Integer, Integer) → Cursor
Position (Cursor) → Coord
Change_Icon (Cursor, Bitmap) → Cursor
Display (Cursor) → Cursor

Translate (Create (C, Icon), xd, yd) =
 Create (COORD.Create (X(C)+xd, Y(C)+yd), Icon)
Position (Create (C, Icon)) = C
Position (Translate (C, xd, yd)) = COORD.Create (X(C)+xd, Y(C)+yd)
Change_Icon (Create (C, Icon), Icon2) = Create (C, Icon2)

Figure 10.9 The
specification of sort
Cursor

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.12

The specification of a cursor class illustrates a problem with algebraic
specification. It is difficult to use this approach to specify input and output
operations. Most formal specification techniques are deficient in this respect.
However, the algebraic approach is particularly inconvenient because it is difficult
to specify global state changes which are the side-effects of operations.

It is good design practice in an object-oriented system for each object class to
include an operation which displays objects. In the case of cursors, the icon
associated with the cursor is displayed in such a way that the ‘clear’ parts of the
cursor icon does not obscure other display objects. In general, cursor icons occupy a
group of coordinates only one of which is the cursor ‘hot spot’. The specification
must establish the position of this hot-spot with respect to the cursor icon.

This is an example of an informal specification which is shorter and more
readable than a formal specification. When formal specifications are developed as
part of the software specification process, it is always important to keep in mind
that formality is usually intended to clarify the specification. It is not an objective
in its own right. You should not insist on formality when it does not have any real
benefits. In the specification of Cursor given in Figure 10.9, I have therefore
excluded the Display operation from the formal part of the specification.

10.2.3 Specification enrichment

The enrichment of a specification is like inheritance in object-oriented development.
The operations and axioms on the base sort are inherited and become part of the
specification. New operations in the specification may overwrite operations with
the same name in the base sort, operations may be added to the base specification or
removed from it.

Enrichment is not the same as importing a specification. When a
specification is imported, the sort and its operations defined in the imported
specification are made accessible (brought into the scope of in programming
language terms) to the specification being defined. They do not become part of that
specification.

As an illustration of enrichment, consider the list specification defined in
Figure 10.4. A list with additional functionality is needed where elements can be
added to either end and an operation to test for list membership is included. Figure
10.10 summarises the operations on the List sort. The Add operation adds an
element to the front of the list and the Member operation tests if a given value is
contained in the list.

Figure 10.11 shows the basic definition of List may be used as a component
in the definition of a sort New_List which is an enriched version of the sort List .
New_List inherits the operations and axioms defined on List so that these also apply
to that sort. In effect, they could be written into the specification NEW_LIST with
the name List replaced by New_List .

To complete the specification the access operations Head, Tail and Member
must be defined over the new constructor (Add) and Member must be specified over
previously defined constructor operations.

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.13

When a sort is created by enrichment, the names of the generic parameters of
the base sort are inherited. The generic parameters in an enriched specification must
include the operations from the base sort. In NEW_LIST, the parameters of LIST are
extended with an additional equality operation (“=“).

In the above examples of array and list specifications, the operations on a
sort have been shown as functions which evaluate to a single atomic value. In
many cases, this is a reasonable model of the system which is being specified.
However, there are some classes of operation which, when implemented, involve
modifying more than one entity. For example, the familiar stack pop operation
returns a value from a stack and also removes the top element from the stack.

It is possible to model such operations using multiple simpler operations
which take the top value from the stack and which remove the top stack element.
However, a more natural approach is to define operations which return a tuple rather
than a single value. Rather than returning a single value, the function has multiple
output values. Thus, the stack pop operation might have the signature:

Operation Description
Create Brings a list into existence.
Cons (New_list, Elem) Adds an element to the end of the list.
Add (New_list, Elem) Adds an element to the front of the list.
Head (New_list) Returns the first element in the list.
Tail (New_list) Returns the list with the first element

removed.
Member (New_list, Elem) Returns true if an element of the list

matches Elem
Length (New_list) Returns the number of elements in the list

Figure 10.10 The
operations on sort
List

NEW_LIST (Elem: [Undefined → Elem; .=. → Boolean])

Add (New_List, Elem) → New_List
Member (New_List, Elem) → Boolean

Add (Create, v) = Cons (Create, v)
Member (Create, v) = false
Member (Add (L, v), v1) = ((v = v1) or Member (L, v1))
Member (Cons (L, v), v1) = ((v = v1) or Member (L, v1))
Head (Add (L, v)) = v
Tail (Add (L, v)) = L
Length (Add (L, v)) = Length (L) + 1

sort New_List enrich List
imports INTEGER, BOOLEAN

Defines an extended form of list which inherits the operations
and properties of the simpler specification of List and which adds
new operations (Add and Member) to these.
See Figure 10.10 for a description of the list operations.

Figure 10.11 The
specification of sort
List

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.14

Pop (Stack) → (Elem, Stack)

Operations which evaluate to a tuple are used in a specification of a queue
which can be specified as an enrichment of lists. An operation is added which
evaluates to a pair consisting of the first item on the queue and the queue minus its
head. The operations on sort Queue are shown in Figure 10.12 and the queue
specification in Figure 10.13.

10.3 Error specification

A problem which faces the developer of a specification is how to indicate errors and
exceptional conditions. The basic problem is that under normal conditions, the
result of an operation may be of some sort X, but under exceptional conditions, an
error should be indicated. The appropriate error indicator may not be of the same
sort as the normal result so a type clash occurs.

There are several ways of tackling this problem. Three possibilities are:

Operation Description
Create Brings a queue into existence.
Cons (Queue, Elem) Adds an element to the end of the queue.
Head (Queue) Returns the element at the front of the

queue.
Tail (Queue) Returns the queue minus its front element.
Length (Queue) Returns the number of elements in the

queue.
Get (Queue) Returns a tuple composed of the element at

the head of the queue and the queue with the
front element removed

Figure 10.12 The
operations on sort
Queue

QUEUE (Elem: [Undefined → Elem])

sort Queue enrich List
imports INTEGER

This specification defines a queue which is a first-in, first-out data
structure. It can therefore be specified as a List where the insert
operation adds a member to the end of the queue.
See Figure 10.12 for a description of queue operations.

Get (Queue) → (Elem, Queue)

Get (Create) = (Undefined, Create)
Get (Cons (Q, v)) = (Head (Q), Tail (Cons (Q, v)))

Figure 10.13 The
specification of a
queue

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.15

1. A special distinguished, constant operation such as Undefined may be
defined. In exceptional cases, the operation evaluates to Undefined. We have
already seen examples of this technique in the array specification in Figure
10.3. The Eval operation evaluates to Undefined if the index is out of
bounds. The value Undefined is untyped so can be the result of any
specification operation.

2. The operation may evaluate to a tuple where one component of the tuple
indicates whether or not the operation has evaluated successfully. The
specification of a queue shown in Figure 10.13 illustrated how a tuple could
be the result of an operation. The examples in Chapter 20 which is concerned
with software reuse illustrate how this approach can be implemented.

3. The specification may include an exceptions section which defines conditions
under which the axioms do not hold.

Figure 10.14 illustrates how an exceptions section can be added to the
specification of a list which was introduced in Figure 10.4. In this case, the
exceptions part specifies that if the length of the list L is 0 then the Head
operation, applied to L, fails. Notice that this means that no operations need be
associated with the generic specification parameter. Guttag [Guttag, 1980 #499]
discusses this approach to error specification in more detail.

LIST (Elem)

sort List
imports INTEGER

Create → List
Cons (List, Elem) → List
Tail (List) → List
Head (List) → Elem
Length (List) → Integer

Head (Cons (L, v)) = if L = Create then v else Head (L)
Length (Create) = 0
Length (Cons (L, v)) = Length (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v)

See Figure 10.4

exceptions
Length (L) = 0 ⇒ failure (Head (L))

Figure 10.14 The
specification of List
with an exception
part

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.16

KEY POINTS

• Algebraic specification is a particularly appropriate technique when interfaces
between software systems must be specified.

• Algebraic specification involves designing the operations on an abstract data
type or object and specifying them in terms of their inter-relationships.

• An algebraic specification consists of two formal parts. A signature part where
the operations and their parameters are set out and an axioms part where the
relationships between these operations are defined.

• Formal specifications should always have an associated informal description to
make the formal semantics more understandable.

• Algebraic specifications should be constructed by identifying constructor
operations, which create instances of the type or class, and inspection
operations which inspect the values of these instances. The semantics of each
inspection operation should be defined for each constructor.

• Complex formal specifications may be constructed from simple building blocks.
Specifications can be developed from simpler specifications by instantiating a
generic specification, incremental specification development and specification
enrichment.

• Errors in operations can be specified by identifying distinguished ‘error values’,
by associating an error indicator with the value of an operation or by
incorporating a special section in a specification which defines values for
exceptional situations.

FURTHER READING

Recent books on algebraic specification have concentrated on describing the method
on its own without placing it in the context of a wider software development
process. I have therefore suggested these older references which should be available
in libraries. They are better for understanding how this technique can be used.

The Specification of Complex Systems This excellent introductory text contains a
good chapter discussing algebraic specification. A simple electronic mail system is
used as an example. (B. Cohen, W.T. Harwood and M.I. Jackson, 1986, Addison-
Wesley)

‘Formal Specification as a Design Tool’. This paper is included in a collection of
papers on specification which includes other papers on algebraic specification. I
think this paper is particularly useful as it illustrates the practical use of formal
specification. (J.V. Guttag and J.J. Horning, in Software Specification Techniques,
Gehani, N. and McGettrick, A.D. (eds.), 1986, Addison-Wesley)

Abstraction and Specification in Program Development This is a general text on
systems development with good chapters on algebraic specification. (B. Liskov and
J. Guttag, 1986, MIT Press)

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.17

EXERCISES

10.1 Explain why formal specification is a valuable technique for defining the
interfaces between sub-systems.

10.2 An abstract data type representing a stack has the following operations
associated with it:

New: Bring a stack into existence
Push: Add an element to the top of the stack
Top: Evaluate the element on top of the stack
Retract : Remove the top element from the stack and return the

modified stack
Empty: True if there are no elements on the stack

Write an algebraic specification of this stack. Make reasonable assumptions
about the syntax and semantics of the stack operations.

10.3 Modify the example presented in Figure 10.3 (array specification) by adding a
new operation called ArrayAssign which assigns all the values of one array to
another array given that the arrays have the same number of elements.

10.4 An abstract data type called Set has a signature defined as follows:

New → Set
Add (Set, Elem) → Set
Size (Set) → Integer
Remove (Set) → Elem
Contains (Set, Elem) → Boolean
Delete (Set, Elem) → Set

Explain informally what these operations are likely to do. Write axioms
which formally define your informal English specification.

10.5 Using the equation rewriting approach as used in Example 10.4, verify that
the operation Add ([10, 7, 4], 8) on the list defined in Figure 10.11 causes
the list [8, 10, 7, 4] to be built. (Hint: Show the head of the list is 8 and the
tail is [10, 7, 4]).

10.6 Write a formal algebraic specification of a sort Symbol_table whose
operations are informally defined as follows:

Create: Bring a symbol table into existence
Enter: Enter a symbol and its type into the table.
Lookup: Return the type associated with a name in the table.
Delete: Remove a name, type pair from the table, given a name as

a parameter.
Replace: Replace the type associated with a given name with the

type specified as a parameter.

The Enter operation fails if the name is in the table. The Lookup, Delete and
Replace operations fail if the name is not in the table.

Algebraic Specification ©Ian Sommerville 1995

Version 1.0 April 25, 2000, 11:19 PM
Page 10.18

10.7 Discuss how your specification would have to be modified if a block-
structured symbol table was required. A block structured symbol table is one
used in compiling a language with block structure like Pascal where
declarations in an inner block override the outer block declarations if the same
name is used.

10.8 Enrich the specification of List (Figure 10.11) with further operations to
implement an ordered list. Add a new operation called Insert which inserts an
element in the correct place to maintain the ordering and an operation
Remove which, given an element value, removes the element with that value
from the list.

10.9 For all of the abstract data types you have specified, write Ada or C++
package specifications defining a package to implement the abstract type. Pay
particular attention to error handling in the implementation.

