|
|
|
/**********************************************************
* *
* shell> gcc -lm -o test test.c genann.h genann.c *
* *
**********************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "genann.h"
int main( int argc, char *argv[ ] ) {
printf( "Train a small ANN on the XOR function using backpropagation." );
/* This will make the neural network initialize differently each run. */
/* If you don't get a good result, try again for a different result. */
srand( time(0) );
/* Input and expected out data for the XOR function. */
const double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
const double output[4] = {0, 1, 1, 0};
double t1 = atoi( argv[1] );
double t2 = atoi( argv[2] );
double t3 = atoi( argv[3] );
double t4 = atoi( argv[4] );
/* New network with 2 inputs,
* 1 hidden layer of 2 neurons, and 1 output. */
genann *ann = genann_init( 2, 1, 2, 1 );
/* Train on the four labeled data points many times. */
int i;
for ( i = 0; i < 300; ++i ) {
genann_train( ann, input[0], &t1, 3 );
genann_train( ann, input[1], &t2, 3 );
genann_train( ann, input[2], &t3, 3 );
genann_train( ann, input[3], &t4, 3 );
}
/* Run the network and see what it predicts. */
if ( ( strcmp(argv[5],"0") == 0 ) && ( strcmp(argv[6],"0") == 0 ) )
printf( "0 XOR 0 = %1.f.\n", *genann_run( ann, input[0] ) );
else if ( ( strcmp(argv[5],"0") == 0 ) && ( strcmp(argv[6],"1") == 0 ) )
printf( "0 XOR 1 = %1.f.\n", *genann_run( ann, input[1] ) );
else if ( ( strcmp(argv[5],"1") == 0 ) && ( strcmp(argv[6],"0") == 0 ) )
printf( "1 XOR 0 = %1.f.\n", *genann_run( ann, input[2] ) );
else if ( ( strcmp(argv[5],"1") == 0 ) && ( strcmp(argv[6],"1") == 0 ) )
printf( "1 XOR 1 = %1.f.\n", *genann_run( ann, input[3] ) );
genann_free( ann );
return 0;
}
|
|
/*
* GENANN - Minimal C Artificial Neural Network
*
* Copyright (c) 2015-2018 Lewis Van Winkle
*
* http://CodePlea.com
*
*/
#ifndef GENANN_H
#define GENANN_H
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef GENANN_RANDOM
/* We use the following for uniform random numbers between 0 and 1.
* If you have a better function, redefine this macro. */
#define GENANN_RANDOM( ) ( ( (double) rand( ) ) / RAND_MAX )
#endif
struct genann;
typedef double (*genann_actfun) ( const struct genann *ann, double a );
typedef struct genann {
/* How many inputs, outputs, and hidden neurons. */
int inputs, hidden_layers, hidden, outputs;
/* Which activation function to use for hidden neurons. Default: gennann_act_sigmoid_cached */
genann_actfun activation_hidden;
/* Which activation function to use for output. Default: gennann_act_sigmoid_cached */
genann_actfun activation_output;
/* Total number of weights, and size of weights buffer. */
int total_weights;
/* Total number of neurons + inputs and size of output buffer. */
int total_neurons;
/* All weights ( total_weights long ). */
double *weight;
/* Stores input array and output of each neuron (total_neurons long). */
double *output;
/* Stores delta of each hidden and output neuron (total_neurons - inputs long). */
double *delta;
} genann;
/* Creates and returns a new ann. */
genann *genann_init( int inputs, int hidden_layers, int hidden, int outputs );
/* Creates ANN from file saved with genann_write. */
genann *genann_read( FILE *in );
/* Sets weights randomly. Called by init. */
void genann_randomize( genann *ann );
/* Returns a new copy of ann. */
genann *genann_copy( genann const *ann );
/* Frees the memory used by an ann. */
void genann_free( genann *ann );
/* Runs the feedforward algorithm to calculate the ann's output. */
double const *genann_run( genann const *ann, double const *inputs );
/* Does a single backprop update. */
void genann_train( genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate );
/* Saves the ann. */
void genann_write( genann const *ann, FILE *out );
void genann_init_sigmoid_lookup( const genann *ann );
double genann_act_sigmoid( const genann *ann, double a );
double genann_act_sigmoid_cached( const genann *ann, double a );
double genann_act_threshold( const genann *ann, double a );
double genann_act_linear( const genann *ann, double a );
#ifdef __cplusplus
}
#endif
#endif /*GENANN_H*/
|
|
#include "genann.h"
#include <assert.h>
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef genann_act
#define genann_act_hidden genann_act_hidden_indirect
#define genann_act_output genann_act_output_indirect
#else
#define genann_act_hidden genann_act
#define genann_act_output genann_act
#endif
#define LOOKUP_SIZE 4015.
double genann_act_hidden_indirect( const struct genann *ann, double a ) {
return ann->activation_hidden( ann, a );
}
double genann_act_output_indirect( const struct genann *ann, double a ) {
return ann->activation_output( ann, a );
}
const double sigmoid_dom_min = -15.0;
const double sigmoid_dom_max = 15.0;
double interval;
double lookup[LOOKUP_SIZE];
#ifdef __GNUC__
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define unused __attribute__((unused))
#else
#define likely(x) x
#define unlikely(x) x
#define unused
#pragma warning(disable : 415.6) /* For fscanf */
#endif
double genann_act_sigmoid( const genann *ann unused, double a ) {
if ( a < -45.0 ) return 0;
if ( a > 45.0 ) return 1;
return 1.0 / ( 1 + exp( -a ) );
}
void genann_init_sigmoid_lookup( const genann *ann ) {
const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE;
int i;
interval = LOOKUP_SIZE / ( sigmoid_dom_max - sigmoid_dom_min );
for ( i = 0; i < LOOKUP_SIZE; ++i ) {
lookup[i] = genann_act_sigmoid( ann, sigmoid_dom_min + f * i );
}
}
double genann_act_sigmoid_cached( const genann *ann unused, double a ) {
assert( !isnan( a ) );
if ( a < sigmoid_dom_min ) return lookup[0];
if ( a >= sigmoid_dom_max ) return lookup[LOOKUP_SIZE - 1];
size_t j = (size_t)( ( a-sigmoid_dom_min ) * interval + 0.5 );
/* Because floating point... */
if ( unlikely( j >= LOOKUP_SIZE ) ) return lookup[LOOKUP_SIZE - 1];
return lookup[j];
}
double genann_act_linear( const struct genann *ann unused, double a ) {
return a;
}
double genann_act_threshold( const struct genann *ann unused, double a ) {
return a > 0;
}
genann *genann_init( int inputs, int hidden_layers, int hidden, int outputs ) {
if ( hidden_layers < 0 ) return 0;
if ( inputs < 1 ) return 0;
if ( outputs < 1 ) return 0;
if ( hidden_layers > 0 && hidden < 1 ) return 0;
const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0;
const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs;
const int total_weights = (hidden_weights + output_weights);
const int total_neurons = (inputs + hidden * hidden_layers + outputs);
/* Allocate extra size for weights, outputs, and deltas. */
const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs));
genann *ret = malloc(size);
if ( !ret ) return 0;
ret->inputs = inputs;
ret->hidden_layers = hidden_layers;
ret->hidden = hidden;
ret->outputs = outputs;
ret->total_weights = total_weights;
ret->total_neurons = total_neurons;
/* Set pointers. */
ret->weight = (double*) ((char*)ret + sizeof(genann));
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
genann_randomize( ret );
ret->activation_hidden = genann_act_sigmoid_cached;
ret->activation_output = genann_act_sigmoid_cached;
genann_init_sigmoid_lookup( ret );
return ret;
}
genann *genann_read( FILE *in ) {
int inputs, hidden_layers, hidden, outputs;
int rc;
errno = 0;
rc = fscanf( in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs );
if ( rc < 4 || errno != 0 ) {
perror( "fscanf" );
return NULL;
}
genann *ann = genann_init( inputs, hidden_layers, hidden, outputs );
int i;
for ( i = 0; i < ann->total_weights; ++i ) {
errno = 0;
rc = fscanf(in, " %le", ann->weight + i );
if ( rc < 1 || errno != 0 ) {
perror( "fscanf" );
genann_free( ann );
return NULL;
}
}
return ann;
}
genann *genann_copy( genann const *ann ) {
const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs) );
genann *ret = malloc( size );
if ( !ret ) return 0;
memcpy( ret, ann, size );
/* Set pointers. */
ret->weight = (double*) ( (char*)ret + sizeof(genann) );
ret->output = ret->weight + ret->total_weights;
ret->delta = ret->output + ret->total_neurons;
return ret;
}
void genann_randomize( genann *ann ) {
int i;
for ( i = 0; i < ann->total_weights; ++i ) {
double r = GENANN_RANDOM( );
/* Sets weights from -0.5 to 0.5. */
ann->weight[i] = r - 0.5;
}
}
void genann_free( genann *ann ) {
/* The weight, output, and delta pointers go to the same buffer. */
free( ann );
}
double const *genann_run(genann const *ann, double const *inputs) {
double const *w = ann->weight;
double *o = ann->output + ann->inputs;
double const *i = ann->output;
/* Copy the inputs to the scratch area, where we also store each neuron's
* output, for consistency. This way the first layer isn't a special case. */
memcpy(ann->output, inputs, sizeof(double) * ann->inputs);
int h, j, k;
if ( !ann->hidden_layers ) {
double *ret = o;
for ( j = 0; j < ann->outputs; ++j ) {
double sum = *w++ * -1.0;
for ( k = 0; k < ann->inputs; ++k ) {
sum += *w++ * i[k];
}
*o++ = genann_act_output( ann, sum );
}
return ret;
}
/* Figure input layer */
for ( j = 0; j < ann->hidden; ++j ) {
double sum = *w++ * -1.0;
for ( k = 0; k < ann->inputs; ++k ) {
sum += *w++ * i[k];
}
*o++ = genann_act_hidden( ann, sum );
}
i += ann->inputs;
/* Figure hidden layers, if any. */
for ( h = 1; h < ann->hidden_layers; ++h ) {
for ( j = 0; j < ann->hidden; ++j ) {
double sum = *w++ * -1.0;
for ( k = 0; k < ann->hidden; ++k ) {
sum += *w++ * i[k];
}
*o++ = genann_act_hidden( ann, sum );
}
i += ann->hidden;
}
double const *ret = o;
/* Figure output layer. */
for ( j = 0; j < ann->outputs; ++j ) {
double sum = *w++ * -1.0;
for ( k = 0; k < ann->hidden; ++k ) {
sum += *w++ * i[k];
}
*o++ = genann_act_output( ann, sum );
}
/* Sanity check that we used all weights and wrote all outputs. */
assert( w - ann->weight == ann->total_weights );
assert( o - ann->output == ann->total_neurons );
return ret;
}
void genann_train( genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate ) {
/* To begin with, we must run the network forward. */
genann_run( ann, inputs );
int h, j, k;
/* First set the output layer deltas. */
{
double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */
double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */
double const *t = desired_outputs; /* First desired output. */
/* Set output layer deltas. */
if ( genann_act_output == genann_act_linear ||
ann->activation_output == genann_act_linear ) {
for ( j = 0; j < ann->outputs; ++j ) {
*d++ = *t++ - *o++;
}
}
else {
for ( j = 0; j < ann->outputs; ++j ) {
*d++ = ( *t - *o ) * *o * ( 1.0 - *o );
++o; ++t;
}
}
}
/* Set hidden layer deltas, start on last layer and work backwards. */
/* Note that loop is skipped in the case of hidden_layers == 0. */
for ( h = ann->hidden_layers - 1; h >= 0; --h ) {
/* Find first output and delta in this layer. */
double const *o = ann->output + ann->inputs + ( h * ann->hidden );
double *d = ann->delta + ( h * ann->hidden );
/* Find first delta in following layer (which may be hidden or output). */
double const * const dd = ann->delta + ( (h+1) * ann->hidden );
/* Find first weight in following layer (which may be hidden or output). */
double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h));
for ( j = 0; j < ann->hidden; ++j ) {
double delta = 0;
for ( k = 0; k < ( h == ann->hidden_layers-1 ? ann->outputs : ann->hidden ); ++k ) {
const double forward_delta = dd[k];
const int windex = k * ( ann->hidden + 1 ) + ( j + 1 );
const double forward_weight = ww[windex];
delta += forward_delta * forward_weight;
}
*d = *o * (1.0-*o) * delta;
++d; ++o;
}
}
/* Train the outputs. */
{
/* Find first output delta. */
double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */
/* Find first weight to first output delta. */
double *w = ann->weight + (ann->hidden_layers
? ( (ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1) )
: ( 0 ) );
/* Find first output in previous layer. */
double const * const i = ann->output + (ann->hidden_layers
? ( ann->inputs + (ann->hidden) * (ann->hidden_layers-1) )
: 0 );
/* Set output layer weights. */
for ( j = 0; j < ann->outputs; ++j ) {
*w++ += *d * learning_rate * -1.0;
for ( k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k ) {
*w++ += *d * learning_rate * i[k-1];
}
++d;
}
assert( w - ann->weight == ann->total_weights );
}
/* Train the hidden layers. */
for ( h = ann->hidden_layers - 1; h >= 0; --h ) {
/* Find first delta in this layer. */
double const *d = ann->delta + ( h * ann->hidden );
/* Find first input to this layer. */
double const *i = ann->output + ( h
? ( ann->inputs + ann->hidden * (h-1) )
: 0 );
/* Find first weight to this layer. */
double *w = ann->weight + ( h
? ( (ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1) )
: 0 );
for ( j = 0; j < ann->hidden; ++j ) {
*w++ += *d * learning_rate * -1.0;
for ( k = 1; k < ( h == 0 ? ann->inputs : ann->hidden ) + 1; ++k ) {
*w++ += *d * learning_rate * i[k-1];
}
++d;
}
}
}
void genann_write( genann const *ann, FILE *out ) {
fprintf( out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs );
int i;
for ( i = 0; i < ann->total_weights; ++i ) {
fprintf( out, " %.20e", ann->weight[i] );
}
}
|