Slide 3.3: Binary numbers
Slide 3.5: Hexadecimal integers
Home

Integer Storage Sizes

Storage Type Bit Number Range (Low – High) Powers of 2
Unsigned byte 8 0 [(00000000)2] to 255 [(11111111)2] 0 to (28 – 1)
Unsigned word 16 0 to 65,535 0 to (216 – 1)
Unsigned doubleword 32 0 to 4,294,967,295 0 to (232 – 1)
Unsigned quadword 64 0 to 18,466,744,073,709,551,615 0 to (264 – 1)

kilobyte (KB) 210 bytes   megabyte (MB) 220 bytes   gigabyte (GB) 230 bytes
terabyte (TB) 240 bytes petabyte (PB) 250 bytes exabyte (EB) 260 bytes


Hexadecimal Integers


Large binary numbers are cumbersome to read, so hexadecimal digits are usually used by assemblers and debuggers to represent binary data.

Decimal (base 10) Binary (base 2) Octal (base 8) Hexadecimal (base 16)   Decimal (base 10) Binary (base 2) Octal (base 8) Hexadecimal (base 16)
00 0000 00 0 08 1000 10 8
01 0001 01 1 09 1001 11 9
02 0010 02 2 10 1010 12 A
03 0011 03 3 11 1011 13 B
04 0100 04 4 12 1100 14 C
05 0101 05 5 13 1101 15 D
06 0110 06 6 14 1110 16 E
07 0111 07 7 15 1111 17 F

For example, the binary number: (10110001101011)2 is represented by a hexadecimal number:

Binary Number:   (10110001101011)2 10 1100 0110 1011

Hexadecimal Number:   ( )16